Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (40)

Search Parameters:
Keywords = Poiseuille flow rate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 9887 KiB  
Article
Advancing Pressure-Based Flow Rate Soft Sensors: Signal Filtering Effects and Non-Laminar Flow Rate Determination
by Faras Brumand-Poor, Tim Kotte, Abdulaziz Hanifa, Christian Reese, Marius Hofmeister and Katharina Schmitz
J. Exp. Theor. Anal. 2025, 3(1), 8; https://doi.org/10.3390/jeta3010008 - 4 Mar 2025
Viewed by 982
Abstract
Precise flow measurement is crucial in fluid power systems. Especially in combination with pressure, hydraulic power can be particularly beneficial for predictive maintenance and control applications. However, conventional flow sensors in fluid power systems are often invasive, thus disrupting the flow and yielding [...] Read more.
Precise flow measurement is crucial in fluid power systems. Especially in combination with pressure, hydraulic power can be particularly beneficial for predictive maintenance and control applications. However, conventional flow sensors in fluid power systems are often invasive, thus disrupting the flow and yielding unreliable measurements, especially under transient conditions. A common alternative is to estimate the flow rate using pressure differentials along a pipe and the Hagen–Poiseuille law, which is limited to steady, laminar, and incompressible flows. This study advances a previously introduced analytical soft sensor, demonstrating its ability to accurately determine the transient pipe flow beyond laminar conditions, without requiring a dedicated flow rate sensor. This method provides a robust and computationally efficient solution for real-world hydraulic systems by applying two pressure transducers. A key contribution of this work is the investigation of signal filtering, revealing that even a simple first-order low-pass filter with a 100 Hz cutoff frequency significantly improves accuracy, which is demonstrated for pulsation frequencies of 5, 10, and 15 Hz, where the filtered results closely match experimental data from a test rig. These findings underscore the soft sensor’s potential as a reliable alternative to traditional flow sensors, offering high accuracy with minimal computational overhead for a wide range of flow conditions. Full article
Show Figures

Figure 1

23 pages, 10422 KiB  
Article
High-Frequency Flow Rate Determination—A Pressure-Based Measurement Approach
by Faras Brumand-Poor, Tim Kotte, Marwin Schüpfer, Felix Figge and Katharina Schmitz
J. Exp. Theor. Anal. 2025, 3(1), 5; https://doi.org/10.3390/jeta3010005 - 12 Feb 2025
Viewed by 839
Abstract
Accurate flow measurement is critical for hydraulic systems because it represents a crucial parameter in the control of fluid power systems and enables the calculation of hydraulic power when combined with pressure data, which is valuable for applications such as predictive maintenance. Existing [...] Read more.
Accurate flow measurement is critical for hydraulic systems because it represents a crucial parameter in the control of fluid power systems and enables the calculation of hydraulic power when combined with pressure data, which is valuable for applications such as predictive maintenance. Existing flow sensors in fluid power systems typically operate invasively, disturbing the flow and providing inaccurate results, especially under transient conditions. A conventional method involves calculating the flow rate using the pressure difference along a pipe via the Hagen–Poiseuille law, which is limited to steady, laminar, incompressible flow. This paper presents a novel soft sensor with an analytical model for transient pipe flow based on two pressure signals, thus eliminating the need for an actual volumetric flow sensor. The soft sensor was derived in previous research and validated with a distributed parameter simulation. This work uses a constructed test rig to validate the soft sensor with real-world experiments. The results highlight the potential of the soft sensor to accurately and computationally efficiently measure transient pipe volumetric flow based on two pressure signals. Full article
Show Figures

Figure 1

12 pages, 2722 KiB  
Article
Impact of Addition of a Newtonian Solvent to a Giesekus Fluid: Analytical Determination of Flow Rate in Plane Laminar Motion
by Irene Daprà, Giambattista Scarpi and Vittorio Di Federico
Fluids 2025, 10(1), 1; https://doi.org/10.3390/fluids10010001 - 24 Dec 2024
Viewed by 659
Abstract
In this study, the influence of the presence of a Newtonian solvent on the flow of a Giesekus fluid in a plane channel or fracture is investigated with a focus on the determination of the flow rate for an assigned external pressure gradient. [...] Read more.
In this study, the influence of the presence of a Newtonian solvent on the flow of a Giesekus fluid in a plane channel or fracture is investigated with a focus on the determination of the flow rate for an assigned external pressure gradient. The pressure field is nonlinear due to the presence of the normal transverse stress component. As expected, the flow rate per unit width Q is larger than for a Newtonian fluid and decreases as the solvent increases. It is strongly dependent on the viscosity ratio ε (0ε1), the dimensionless mobility parameter β (0β1) and the Deborah number De, the dimensionless driving pressure gradient. The degree of dependency is notably strong in the low range of ε. Furthermore, Q increases with De and tends to a constant asymptotic value for large De, subject to the limitation of laminar flow. When the mobility factor β is in the range 0.5÷1, there is a minimum value of ε  to obtain an assigned value of De. The ratio UN/U between Newtonian and actual mean velocity depends only on the product βDe, as for other non-Newtonian fluids. Full article
(This article belongs to the Special Issue Advances in Computational Mechanics of Non-Newtonian Fluids)
Show Figures

Figure 1

29 pages, 2345 KiB  
Article
Signal Processing for Transient Flow Rate Determination: An Analytical Soft Sensor Using Two Pressure Signals
by Faras Brumand-Poor, Tim Kotte, Enrico Gaspare Pasquini and Katharina Schmitz
Signals 2024, 5(4), 812-840; https://doi.org/10.3390/signals5040045 - 2 Dec 2024
Cited by 1 | Viewed by 1526
Abstract
Accurate knowledge of the flow rate is essential for hydraulic systems, enabling the calculation of hydraulic power when combined with pressure measurements. These data are crucial for applications such as predictive maintenance. However, most flow rate sensors in fluid power systems operate invasively, [...] Read more.
Accurate knowledge of the flow rate is essential for hydraulic systems, enabling the calculation of hydraulic power when combined with pressure measurements. These data are crucial for applications such as predictive maintenance. However, most flow rate sensors in fluid power systems operate invasively, disrupting the flow and producing inaccurate results, especially under transient conditions. Utilizing pressure transducers represents a non-invasive soft sensor approach since no physical flow rate sensor is used to determine the flow rate. Usually, this approach relies on the Hagen–Poiseuille (HP) law, which is limited to steady and incompressible flow. This paper introduces a novel soft sensor with an analytical model for transient, compressible pipe flow based on two pressure signals. The model is derived by solving fundamental fluid equations in the Laplace domain and converting them back to the time domain. Using the four-pole theorem, this model contains a relationship between the pressure difference and the flow rate. Several unsteady test cases are investigated and compared to a steady soft sensor based on the HP law, highlighting our soft sensor’s promising capability. It exhibits an overall error of less than 0.15% for the investigated test cases in a distributed-parameter simulation, whereas the HP-based sensor shows errors in the double-digit range. Full article
Show Figures

Graphical abstract

9 pages, 2117 KiB  
Article
Positional Effects of a Fly’s Wing Vein in the Asymmetric Distribution of Hydraulic Resistances
by Kazuki Sugiyama, Yoshihiro Kubota and Osamu Mochizuki
Symmetry 2024, 16(9), 1212; https://doi.org/10.3390/sym16091212 - 15 Sep 2024
Viewed by 1020
Abstract
Insect wing vein networks facilitate blood transport with unknown haemodynamic effects on their structures. Fruit flies have the posterior cross vein (PCV) that disrupts the symmetry of the network topology and reduces the total pressure loss during blood transport; however, the impact of [...] Read more.
Insect wing vein networks facilitate blood transport with unknown haemodynamic effects on their structures. Fruit flies have the posterior cross vein (PCV) that disrupts the symmetry of the network topology and reduces the total pressure loss during blood transport; however, the impact of its various positions among species has not been examined. This study investigated the haemodynamic effects of this vein with various connecting positions. By analogising venous networks to hydraulic circuits, the flow rates and pressure losses within the veins were derived using Poiseuille’s and Kirchhoff’s laws. The results showed that the total pressure loss decreased for both PCV connections near the wing’s base. In an idealised circuit imitating the network topology, applied high hydraulic resistances as one-sided as those along the edge of the wing, the same pressure loss response as that in the actual network was demonstrated, but not within a symmetric resistance distribution. Therefore, the most proximal PCV minimises the pressure loss within the asymmetric resistance distribution, indicating an evolutionary adaptation to reducing the pressure loss in certain species with this vein near the base. Our findings highlight the possible optimisation of the flies’ wing morphology to maintain the functions of the liquid transport networks and flight devices simultaneously. Full article
(This article belongs to the Special Issue Symmetry in Biomechanics)
Show Figures

Figure 1

20 pages, 13691 KiB  
Article
Parametric Analysis of Compliant End Face Gas Film Seals Considering Slip Flow Effects
by Haitao Jiang, Shurong Yu and Xuexing Ding
Appl. Sci. 2024, 14(16), 6953; https://doi.org/10.3390/app14166953 - 8 Aug 2024
Cited by 1 | Viewed by 1041
Abstract
Aiming at the compliant end face gas film seal structure, based on the linearized Boltzmann equation, the Poiseuille flow coefficient is introduced, and the generalized Reynolds equation and the sealing performance parameter solution formula considering the boundary slip flow effect are established. Through [...] Read more.
Aiming at the compliant end face gas film seal structure, based on the linearized Boltzmann equation, the Poiseuille flow coefficient is introduced, and the generalized Reynolds equation and the sealing performance parameter solution formula considering the boundary slip flow effect are established. Through Newton–Raphson iterative calculation, the degree of influence of the slip flow effect under different working conditions is analyzed, and the internal relationship between structural parameters and sealing performance is compared. The results show that the slip flow effect can have a large impact on the pressure distribution in the fluid field close to the low-pressure side. Due to the existence of the step phenomenon of boundary velocity, it is not conducive to increasing the gas film opening force and controlling the mass leakage rate, but it can play a positive role in reducing the viscous friction power consumption. In the case of a smaller sealing gas film thickness and lower medium pressure, the slip flow effect is significant, which will have a greater impact on the sealing performance, and at this time, the slip flow effect can not be ignored. In addition, the change in seal structure parameters will also have a large impact on the sealing performance. With an increase in the wave foil thickness, the compliant end face evolves towards the rigid end face, the fluid wedge effect is weakened, and the gas film opening force and mass leakage rate are reduced. The stiffness-to-leakage ratio shows a strong nonlinear decreasing trend with an increase in the wave foil chord length and pitch, which eventually tends to a stable value. The results of this paper provide a theoretical basis for the matching design of the structural parameters of compliant end-face gas film seals under different service conditions. Full article
Show Figures

Figure 1

15 pages, 5586 KiB  
Article
Comparison of Maximum Heat Transfer Rate of Thin Vapor Chambers with Different Wicks under Multiple Heat Sources and Sinks
by Sung Hyoun Kim, Seo Yeon Kang, Sung Jun Park and Seok Pil Jang
Energies 2024, 17(13), 3330; https://doi.org/10.3390/en17133330 - 7 Jul 2024
Cited by 1 | Viewed by 1657
Abstract
In this paper, we present a new analytical model to investigate the maximum heat transfer rate of a thin vapor chamber (TVC) with multiple heat sources and sinks. The model can specifically consider different heat flux conditions for each heat source. Both capillary [...] Read more.
In this paper, we present a new analytical model to investigate the maximum heat transfer rate of a thin vapor chamber (TVC) with multiple heat sources and sinks. The model can specifically consider different heat flux conditions for each heat source. Both capillary limitations and allowable maximum temperature constraints were employed to determine the maximum heat transfer rate. The liquid and vapor pressure distributions within the TVC were analytically derived using the Brinkman-extended Darcy equation and the Hagen–Poiseuille equation, respectively. Additionally, the theoretical wall temperature distribution was calculated based on the 3D energy equation, considering different heat flux conditions for multiple heat sources with a weighting factor. Our results demonstrate that the heat flux conditions applied to the heat sources significantly impact the internal flow pattern of the TVC. These changes in flow patterns influence the pressure distributions of the liquid and vapor, thereby affecting the maximum heat transfer rate. Furthermore, the effects of wick parameters on the maximum heat transfer rate under various heat flux conditions were examined. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

13 pages, 8674 KiB  
Article
Numerical Study on Permeability of Reconstructed Porous Concrete Based on Lattice Boltzmann Method
by Danni Zhao, Jiangbo Xu, Xingang Wang, Qingjun Guo, Yangcheng Li, Zemin Han, Yifan Liu, Zixuan Zhang, Jiajun Zhang and Runtao Sun
Buildings 2024, 14(4), 1182; https://doi.org/10.3390/buildings14041182 - 22 Apr 2024
Cited by 2 | Viewed by 1699
Abstract
The reconstruction of the porous media model is crucial for researching the mesoscopic seepage characteristics of porous concrete. Based on a self-compiled MATLAB program, a porous concrete model was modeled by controlling four parameters (distribution probability, growth probability, probability density, and porosity) with [...] Read more.
The reconstruction of the porous media model is crucial for researching the mesoscopic seepage characteristics of porous concrete. Based on a self-compiled MATLAB program, a porous concrete model was modeled by controlling four parameters (distribution probability, growth probability, probability density, and porosity) with clear physical meanings using a quartet structure generation set (QSGS) along with the lattice Boltzmann method (LBM) to investigate permeability. The rationality of the numerical model was verified through Poiseuille flow theory. The results showed that the QSGS model exhibited varied pore shapes and disordered distributions, resembling real porous concrete. Seepage velocity distribution showed higher values in larger pores, with flow rates reaching up to 0.012 lattice point velocity. The permeability–porosity relationship demonstrated high linearity (the Pearson correlation coefficient is 0.92), consistent with real porous concrete behavior. The integration of QSGS-LBM represents a novel approach, and the research results can provide new ideas and new means for subsequent research on the permeability of porous concrete or similar porous medium materials. Full article
(This article belongs to the Special Issue Foundation Treatment and Building Structural Performance Enhancement)
Show Figures

Figure 1

19 pages, 4937 KiB  
Article
On the Flow of a Cement Suspension: The Effects of Nano-Silica and Fly Ash Particles
by Chengcheng Tao and Mehrdad Massoudi
Materials 2024, 17(7), 1504; https://doi.org/10.3390/ma17071504 - 26 Mar 2024
Cited by 3 | Viewed by 1674
Abstract
Additives such as nano-silica and fly ash are widely used in cement and concrete materials to improve the rheology of fresh cement and concrete and the performance of hardened materials and increase the sustainability of the cement and concrete industry by reducing the [...] Read more.
Additives such as nano-silica and fly ash are widely used in cement and concrete materials to improve the rheology of fresh cement and concrete and the performance of hardened materials and increase the sustainability of the cement and concrete industry by reducing the usage of Portland cement. Therefore, it is important to study the effect of these additives on the rheological behavior of fresh cement. In this paper, we study the pulsating Poiseuille flow of fresh cement in a horizontal pipe by considering two different additives and when they are combined (nano-silica, fly ash, combined nano-silica, and fly ash). To model the fresh cement suspension, we used a modified form of the power-law model to demonstrate the dependency of the cement viscosity on the shear rate and volume fraction of cement and the additive particles. The convection–diffusion equation was used to solve for the volume fraction. After solving the equations in the dimensionless forms, we conducted a parametric study to analyze the effects of nano-silica, fly ash, and combined nano-silica and fly ash additives on the velocity and volume fraction profiles of the cement suspension. According to the parametric study presented here, larger nano-silica content results in lower centerline velocity of the cement suspension and larger non-uniformity of the volume fraction. Compared to nano-silica, fly ash exhibits an opposite effect on the velocity. Larger fly ash content results in higher centerline velocity, while the effect of the fly ash on the volume fraction is not obvious. For cement suspension containing combined nano-silica and fly ash additives, nano-silica plays a dominant role in the flow behavior of the suspension. The findings of the study can help the design and operation of the pulsating flow of fresh cement mortars and concrete in the 3D printing industry. Full article
Show Figures

Figure 1

27 pages, 701 KiB  
Article
Electrohydrodynamic (In)Stability of Microfluidic Channel Flows: Analytical Expressions in the Limit of Small Reynolds Number
by Goran Goranović, Mads Peter Sørensen, Henrik Bruus and Morten Brøns
Water 2024, 16(4), 544; https://doi.org/10.3390/w16040544 - 9 Feb 2024
Cited by 3 | Viewed by 1933
Abstract
We study electrohydrodynamic (EHD) linear (in)stability of microfluidic channel flows, i.e., the stability of interface between two shearing viscous (perfect) dielectrics exposed to an electric field in large aspect ratio microchannels. We then apply our results to particular microfluidic systems known as two-liquid [...] Read more.
We study electrohydrodynamic (EHD) linear (in)stability of microfluidic channel flows, i.e., the stability of interface between two shearing viscous (perfect) dielectrics exposed to an electric field in large aspect ratio microchannels. We then apply our results to particular microfluidic systems known as two-liquid electroosmotic (EO) pumps. Our novel results are detailed analytical expressions for the growth rate of two-dimensional EHD modes in Couette–Poiseuille flows in the limit of small Reynolds number (R); the expansions to both zeroth and first order in R are considered. The growth rates are complicated functions of viscosity-, height-, density-, and dielectric-constant ratio, as well as of wavenumbers and voltages. To make the results useful to experimentalists, e.g., for voltage-control EO pump operations, we also derive equations for the impending voltages of the neutral stability curves that divide stable from unstable regions in voltage–wavenumber stability diagrams. The voltage equations and the stability diagrams are given for all wavenumbers. We finally outline the flow regimes in which our first-order-R voltage corrections could potentially be experimentally measured. Our work gives insight into the coupling mechanism between electric field and shear flow in parallel-planes channel flows, correcting an analogous EHD expansion to small R from the literature. We also revisit the case of pure shear instability, when the first-order-R voltage correction equals zero, and replace the renowned instability mechanism due to viscosity stratification at small R with the mechanism due to discontinuity in the slope of the unperturbed velocity profile. Full article
Show Figures

Figure 1

15 pages, 3124 KiB  
Article
Microchannel Gas Flow in the Multi-Flow Regime Based on the Lattice Boltzmann Method
by Xiaoyu Li, Zhi Ning and Ming Lü
Entropy 2024, 26(1), 84; https://doi.org/10.3390/e26010084 - 18 Jan 2024
Cited by 1 | Viewed by 1712
Abstract
In this work, a lattice Boltzmann method (LBM) for studying microchannel gas flow is developed in the multi-flow regime. In the LBM, by comparing previous studies’ results on effective viscosity in multi-flow regimes, the values of the rarefaction factor applicable to multi-flow regions [...] Read more.
In this work, a lattice Boltzmann method (LBM) for studying microchannel gas flow is developed in the multi-flow regime. In the LBM, by comparing previous studies’ results on effective viscosity in multi-flow regimes, the values of the rarefaction factor applicable to multi-flow regions were determined, and the relationship between relaxation time and Kn number with the rarefaction factor is given. The Kn number is introduced into the second-order slip boundary condition together with the combined bounce-back/specular-reflection (CBBSR) scheme to capture the gas flow in the multi-flow regime. Sensitivity analysis of the dimensionless flow rate to adjustable parameters using the Taguchi method was carried out, and the values of adjustable parameters were determined based on the results of the sensitivity analysis. The results show that the dimensionless flow rate is more sensitive to j than h. Numerical simulations of Poiseuille flow and pulsating flow in a microchannel with second-order slip boundary conditions are carried out to validate the method. The results show that the velocity profile and dimensionless flow rate simulated by the present numerical simulation method in this work are found in the multi-flow regime, and the phenomenon of annular velocity profile in the microchannel is reflected in the phases. Full article
(This article belongs to the Special Issue Mesoscopic Fluid Mechanics)
Show Figures

Figure 1

9 pages, 547 KiB  
Communication
Hagen-Poiseuille Flow in a Quarter-Elliptic Tube
by Mateus D. Bacelar, Hugo C. M. G. Ferreira, Rajai S. Alassar and André B. Lopes
Fluids 2023, 8(9), 247; https://doi.org/10.3390/fluids8090247 - 7 Sep 2023
Cited by 2 | Viewed by 3327
Abstract
We present a rare exact solution of the Navier–Stokes equations for the Hagen–Poiseuille flow through a quarter-elliptic tube. Utilizing the separation of variables method, we derive the solution and report expressions for both the volumetric flow rate and the friction factor–Reynolds number product. [...] Read more.
We present a rare exact solution of the Navier–Stokes equations for the Hagen–Poiseuille flow through a quarter-elliptic tube. Utilizing the separation of variables method, we derive the solution and report expressions for both the volumetric flow rate and the friction factor–Reynolds number product. Full article
(This article belongs to the Topic Fluid Mechanics)
Show Figures

Figure 1

26 pages, 7042 KiB  
Article
Analysis of the Total Leakage Characteristics of Finger Seal Considering Fractal Wear and Fractal Porous Media Seepage Effects
by Junjie Lei, Meihong Liu, Wei Chang and Yongneng Wan
Fractal Fract. 2023, 7(7), 494; https://doi.org/10.3390/fractalfract7070494 - 22 Jun 2023
Cited by 2 | Viewed by 1691
Abstract
As an advanced flexible dynamic sealing technology, the leakage characteristics of a finger seal (FS) is one of the key research areas in this technology field. Based on the fractal theory, this paper establishes a mathematical model of the FS main leakage rate [...] Read more.
As an advanced flexible dynamic sealing technology, the leakage characteristics of a finger seal (FS) is one of the key research areas in this technology field. Based on the fractal theory, this paper establishes a mathematical model of the FS main leakage rate considering the fractal wear effect by taking into account the influence of the wear height on the basis of the eccentric annular gap flow equation. Based on the Hagen-Poiseuille law and the fractal geometry theory of porous media, a mathematical model of the FS side leakage rate considering the fractal porous media seepage effect is developed. Then, a mathematical model of the FS total leakage rate is established. The results show that the mathematical model of the FS total leakage rate is verified with the test results, the maximum error rate is less than 5%, and the mathematical model of the FS total leakage rate is feasible. With the gradual increase in working conditions and eccentricity, the FS main leakage rate gradually increases. In addition, the effects of the fractal dimension, fractal roughness parameters and porosity after loading on the FS main leakage rate are negligible. As the fractal dimension of tortuosity after loading gradually decreases, the fractal dimension of porosity after loading gradually increases, and the FS side leakage rate gradually increases. As the porosity after loading gradually increases, the FS side leakage rate gradually increases. Under different working conditions, different fractal characteristic parameters and different porosities after loading, the weight of the FS main leakage rate is much greater than that of the FS side leakage rate by more than 95%. Full article
(This article belongs to the Special Issue Transport Phenomena in Porous Media and Fractal Geometry)
Show Figures

Figure 1

21 pages, 2080 KiB  
Article
Pipe Flow of Viscoplastic Fluids and Analytical Predictions of Concrete Pumping Based on the Shear-Stress-Dependent Parabolic Model
by Balnur Zhaidarbek, Kristina Savitskaya and Yanwei Wang
Processes 2023, 11(6), 1745; https://doi.org/10.3390/pr11061745 - 7 Jun 2023
Cited by 1 | Viewed by 3311
Abstract
This study investigates the Hagen–Poiseuille pipe flow of viscoplastic fluids, focusing on analytical predictions of concrete pumping using the shear-stress-dependent parabolic model, extending analytical studies to a nonlinear rheological model with easily accessible experimental parameters. Research novelty and highlights encompass solving the steady [...] Read more.
This study investigates the Hagen–Poiseuille pipe flow of viscoplastic fluids, focusing on analytical predictions of concrete pumping using the shear-stress-dependent parabolic model, extending analytical studies to a nonlinear rheological model with easily accessible experimental parameters. Research novelty and highlights encompass solving the steady laminar pipe flow for viscoplastic fluids described by the parabolic model, presenting detailed results for the two-fluid parabolic model, and introducing a computational app implementing theoretical findings. The parabolic model outperforms linear models, such as the Bingham model, in accuracy by accounting for the nonlinearity in the flow curves (i.e., shear stress and shear rate relations) of pumped concrete. The influence of rheological parameters on these relations is analyzed, and their versatility is demonstrated by a Wolfram Mathematica-based application program. The analytical approach developed in this work is adaptable for other models with shear stress as the independent variable, offering valuable insights into viscoplastic fluid flows. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

13 pages, 4000 KiB  
Article
Traceability of the Micro Scale Pipe Viscometer for Traceable Calibration of Dynamic Viscosity
by Stefanie Neuhaus, Hugo Bissig, Benjamin A. Bircher and Marc de Huu
Appl. Sci. 2023, 13(10), 5984; https://doi.org/10.3390/app13105984 - 12 May 2023
Viewed by 1509
Abstract
Calibration of flow devices is important in several areas of pharmaceutical, flow chemistry and microfluidic applications where dosage of process liquids or accurate measurement of flow rate is important. The process-oriented liquid itself might influence the performance of a flow device and the [...] Read more.
Calibration of flow devices is important in several areas of pharmaceutical, flow chemistry and microfluidic applications where dosage of process liquids or accurate measurement of flow rate is important. The process-oriented liquid itself might influence the performance of a flow device and the simultaneous determination of dynamic viscosity under flow conditions might provide valuable information for process parameters. To offer simultaneous calibration of the dynamic viscosity of a process-oriented liquid at the corresponding flowrate, METAS built a pipe viscometer for the traceable inline measurement of dynamic viscosity in current flow facilities for low flowrates from 1 μL/min to 150 mL/min and pressure drops up to 10 bar. The traceability of all measuring quantities as well as geometrical dimensions of the microtube guarantee the traceability of the pipe viscometer to SI units. The most challenging part is the traceable determination of the inner diameter of the microtube. This can be achieved by measuring the pressure drop as a function of flowrate using a pipe viscometer and applying the Hagen–Poiseuille law with a traceable dynamic viscosity of a reference liquid (water) or performing measurements by utilizing the μ-CT facility at METAS, where the inner diameter is determined using X-ray diffraction. The validation of the stated measurement uncertainty of the pipe viscometer was performed by calibrating the dynamic viscosity of several reference liquids with traceable density and kinematic viscosity. The setup of the facility, traceability as well as uncertainty calculation of the pipe viscometer for inline measurement of dynamic viscosity are discussed in this paper. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

Back to TopTop