Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (79)

Search Parameters:
Keywords = Pigeon pea

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 674 KiB  
Proceeding Paper
Microbial Growth Kinetics of Fermenting Botanicals Used as Gluten-Free Flour Blends
by Peace Omoikhudu Oleghe, Fred Coolborn Akharaiyi and Chioma Bertha Ehis-Eriakha
Biol. Life Sci. Forum 2025, 41(1), 9; https://doi.org/10.3390/blsf2025041009 - 23 May 2025
Viewed by 440
Abstract
The fragmentary and whole substitution of wheat flour with flour blends is an alternative approach for producing cheaper, nutrient-rich, and comparatively advantageous gluten-free foods through fermentation. Dry samples of sweet potato, pigeon pea, and maize botanicals were purchased from local vendors, authenticated and [...] Read more.
The fragmentary and whole substitution of wheat flour with flour blends is an alternative approach for producing cheaper, nutrient-rich, and comparatively advantageous gluten-free foods through fermentation. Dry samples of sweet potato, pigeon pea, and maize botanicals were purchased from local vendors, authenticated and processed before spontaneous fermentation at room temperature. The pH and microbiological growth patterns of the fermenting botanicals were evaluated every 12 h for 72 h, using standard test protocols. It revealed that the rates of growth of isolated microorganisms were affected by pH; all the botanicals fermented had a reduction in their pH values. Acids were produced during fermentation, leading to a reduction in pH. Bacteria growth on the fermenting samples on nutrient agar reveals that the bacterial load increased with fermentation time, from 7.52 Log10 CFU/g to 10.6 Log10 CFU/g (sweet potato); 6.3 Log10 CFU/g to 10.54 Log10 CFU/g (pigeon pea), and 6.3 Log10 CFU/g to 10.54 Log10 CFU/g (maize). On MacConkey agar, the bacterial load on all samples started after 24 h of fermentation, peaked at 48 h, and gradually reduced towards 72 h of fermentation. There was increase in fungal growth with time from 0 to 36 h across all samples. The microorganisms isolated can be categorized into lactic acid bacteria, spore formers, Enterobacteriaceae, Staphylococcace, yeast, and molds. Fermentation of botanicals over 72 h results in organic acid formation, which lowers pH; this attribute helps in checkmating undesirable microorganisms capable of affecting the production of gluten-free flours with good keeping qualities. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Agronomy)
Show Figures

Figure 1

13 pages, 889 KiB  
Proceeding Paper
Enhancing Food Security and Nutrition Through Indigenous Agro-Product-Based Functional Foods: A Case Study on Composite Flour Development
by Chioma Bertha Ehis-Eriakha, Peace Omoikhudu Oleghe and Fred Coolborn Akharaiyi
Proceedings 2025, 118(1), 4; https://doi.org/10.3390/proceedings2025118004 - 16 May 2025
Viewed by 604
Abstract
The current rising food prices, influenced by importation costs, the global food crisis, as well as pre- and post-harvest losses, have contributed majorly to malnutrition and food insecurity. Therefore, utilizing technologies that harness our indigenous agro-products as composite flours to develop functional foods [...] Read more.
The current rising food prices, influenced by importation costs, the global food crisis, as well as pre- and post-harvest losses, have contributed majorly to malnutrition and food insecurity. Therefore, utilizing technologies that harness our indigenous agro-products as composite flours to develop functional foods will address these issues. In this study, dry raw samples of perishable and healthy yellow potato, yellow maize and pigeon pea were obtained from the agricultural development program, Edo State, Nigeria, and authenticated and processed into gluten-free fermented composite flours. The flours were profiled physicochemically and nutritionally, providing valuable insight into their multiple benefits. An experimental design software (Design Expert 13.0.) was applied to achieve optimum blended flours regarding the ratio of sweet potato–pigeon pea–maize, and mix 5 (67.70:20.00:12.31) displayed more outstanding attributes than other blends for the production of biscuits, bread and cakes using creaming and mixing methods. Various standard tests for flours and products were appropriately carried out to evaluate the proximate, techno-functional, mineral, antioxidant, anti-nutrient, sensory and color values. Individual antioxidant parameters were improved across all products compared to wheat-based products (control) under the same production conditions, showing a statistical significance at p < 0.05. A similar trend was observed in the proximate, anti-nutritional and mineral contents, while all products had a desirable color outlook. A sensory evaluation revealed the general acceptability, while an in vivo animal experimental model revealed that all animals fed with the various product samples gained weight with improved general body organs and no evidence of disease. This research underscores the potential of harnessing agri-value chain approaches in developing functional foods and promoting food security. Full article
Show Figures

Figure 1

17 pages, 4837 KiB  
Article
Cover Crops Optimize Soil Fertility and Soybean Productivity in the Cerrado of MATOPIBA, Brazil
by Hosana Aguiar Freitas de Andrade, Edvaldo Sagrilo, José Oscar Lustosa de Oliveira Júnior, Daiane Conceição de Sousa, Carlos Pedro de Menezes Costa, Paula Muniz Costa, Raimundo Bezerra de Araújo Neto, Rosa Maria Cardoso Mota de Alcantara, Luiz Fernando Carvalho Leite, Mariléia Barros Furtado, Marcelo Javier Beltrán, Nicolas Cafaro La Menza and Henrique Antunes de Souza
Agronomy 2025, 15(5), 1083; https://doi.org/10.3390/agronomy15051083 - 29 Apr 2025
Viewed by 993
Abstract
The main challenge of soybean cultivation in Brazil’s last agricultural frontier is to ensure sustainable production. This study aimed to evaluate the use of cover crops (CC) to improve soil fertility, plant nutrition, and soybeans productivity grown in the Cerrado of Brazil. The [...] Read more.
The main challenge of soybean cultivation in Brazil’s last agricultural frontier is to ensure sustainable production. This study aimed to evaluate the use of cover crops (CC) to improve soil fertility, plant nutrition, and soybeans productivity grown in the Cerrado of Brazil. The study was carried out on a farm located in the state of Maranhão, Brazil, with nine treatments, fallow and CC preceding soybean cultivation: (i) Millet (Pennisetum glaucum L.); (ii) Marandu (Urochloa brizantha); (iii) Ruziziensis (Urochloa ruziziensi); (iv) Tanzania (Megathyrsus maximum); (v) Massai (Megathyrsus maximum); (vi) cowpea (Vigna unguiculata L.); (vii) pigeon pea (Cajanus cajan L.); and (viii) Crotalaria (Crotalaria juncea). An analysis for the characterization of the biomass of cover crops and fallow was carried out. Soil chemical and biological properties, soybean foliar nutrient concentrations, and the soybean seed yield and quality grown in sequence to the CC were also analyzed. Soil microbial carbon was favored by the cultivation of ‘Marandu’, ‘Ruziziensis’, ‘Tanzania’, and cowpea. Nutrient cycling promoted by CC contributed to the maintenance of soil quality and increases in the leaf nutrient concentrations of soybeans. The cultivation of millet, ‘Tanzania’, ‘Massai’, cowpea, and C. juncea increased the soybean yield. Cover crops improved soil fertility while increasing soybean productivity, thus being an effective strategy for the achievement of sustainable soybean production. Full article
Show Figures

Figure 1

17 pages, 2396 KiB  
Article
Exposed Subsoil Under Recovery for 30 Years: Influence of Management Strategies on Soil Physical Attributes and Organic Matter
by Laura Silva Nantes, Carolina dos Santos Batista Bonini, Melissa Alexandre Santos, Lucas da Silva Alves, Josiane Lourencetti, Alfredo Bonini Neto, José Augusto Liberato de Souza, Gabriel Augusto da Silva Lunardelli, Mariana Bonini Silva, Dayara Vivian Alvares and Antonio Paz-Gonzalez
Soil Syst. 2025, 9(1), 17; https://doi.org/10.3390/soilsystems9010017 - 19 Feb 2025
Viewed by 840
Abstract
This study aimed to evaluate the residual effect of different management practices on a subsoil that has been exposed since 1969, which has been under recovery for 30 years. The soil under study is an Oxisol, and its assessment was conducted in 2023 [...] Read more.
This study aimed to evaluate the residual effect of different management practices on a subsoil that has been exposed since 1969, which has been under recovery for 30 years. The soil under study is an Oxisol, and its assessment was conducted in 2023 and 2024. The experiment included nine treatments, with two controls, native vegetation and exposed soil, while the remaining treatments combined green manures (velvet bean, pigeon pea replaced by jack bean), liming, and liming + gypsum application from 1992 to 1997. Starting in 1999, Urochloa decumbens was planted in all plots, and from 2009, native Cerrado tree species naturally emerged. The following parameters were evaluated: gravimetric moisture, aggregate stability, infiltration rate, bulk density, soil penetration resistance, and organic matter content. Soil recovery management techniques reduced soil mechanical penetration resistance by 50% and soil density by 19.47%. The velvet bean increased gravimetric moisture by 11.32% compared to mobilized soil. The exposed soil exhibited an infiltration rate that was 90% lower than the other treatments. Conservation management practices increased the soil organic matter content, particularly in the 0–5 cm layer. Additionally, mucuna increased soil organic matter by 7% in the 10–20 cm layer and enhanced the soil organic carbon content. The strategies involving an initial use of velvet bean, velvet bean + liming, or velvet bean with liming + gypsum positively influenced the soil moisture, bulk density, aggregate stability, and organic matter at the 5–10 cm and 10–20 cm depths. Furthermore, the use of pigeon pea/jack bean with liming + gypsum improved attributes such as moisture, infiltration, and soil bulk density. It was concluded that green manuring enhances the physical properties of soil, with velvet bean or pigeon pea/jack bean combined with liming + gypsum being effective alternatives that are capable of positively impacting soil recovery. Full article
(This article belongs to the Special Issue Research on Soil Management and Conservation: 2nd Edition)
Show Figures

Figure 1

26 pages, 3792 KiB  
Article
The Effects of Malting and Extrusion on the Functional and Physical Properties of Extrudates from Malted Brown Rice and Pigeon Pea Flour Blends
by Chinenye Azuka, Amarachi Onwuchekwa, Adaora Nwosu, Mel Holmes, Christine Boesch and Gabriel Okafor
Foods 2025, 14(3), 422; https://doi.org/10.3390/foods14030422 - 28 Jan 2025
Viewed by 906
Abstract
Malted grains subjected to extrusion technology could have better quality indices than non-malted grains. The effects of malting and extrusion on the functional and physical qualities of foods extruded from malted brown rice and pigeon pea flour blends were investigated. Malted pigeon pea [...] Read more.
Malted grains subjected to extrusion technology could have better quality indices than non-malted grains. The effects of malting and extrusion on the functional and physical qualities of foods extruded from malted brown rice and pigeon pea flour blends were investigated. Malted pigeon pea and brown rice flours were processed into blends, extruded under various conditions of feed moisture levels (15–20), feed compositions (8–30%), and barrel temperatures (100–130 °C), and analyzed using Response Surface Methodology with a Box–Behnken design. The impacts of malting and extrusion were assessed on the following functional qualities: bulk density, rheology, swelling capacity, water absorption capacity, and solubility. The physical quality assessment included a 2-D photographic representation of the extrudates, a microscopic assessment of their internal structure, expansion index, color parameters (L*, a*, b*), and alterations in the color index. Increased feed moisture, malted pigeon pea, and decreased barrel temperature resulted in a higher bulk density (0.72 to 0.84 g/cm3) of the extrudates. There was a decrease in water absorption capacity (6.82–4.49%) with an increase in barrel temperature above 100 °C. All the samples showed a decrease in viscosity with increasing shear rate. At low barrel temperatures, feed compositions, and feed moistures, extrusion led to increases in the expansion index (3.5 to 12.94) and the color lightness (66.83–81.71) of the extrudates. Samples with a higher proportion of malted brown rice showed a higher expansion index, lower bulk density, and lighter color of the extrudates. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

14 pages, 889 KiB  
Article
Cover Crops Can Reduce Greenhouse Gas Emissions from No-Till Maize in Southern Brazil: Insights from a Long-Term Field Experiment
by Guilherme Rosa da Silva, Adam J. Liska and Cimélio Bayer
Agronomy 2025, 15(2), 267; https://doi.org/10.3390/agronomy15020267 - 22 Jan 2025
Cited by 1 | Viewed by 1342
Abstract
Brazil is one of the countries that has the most agricultural area under no-till (NT) management. This research study aims to evaluate life-cycle greenhouse gas (GHG) emissions from maize (M) grain production in agroecosystems that used different cover crops under NT management in [...] Read more.
Brazil is one of the countries that has the most agricultural area under no-till (NT) management. This research study aims to evaluate life-cycle greenhouse gas (GHG) emissions from maize (M) grain production in agroecosystems that used different cover crops under NT management in southern Brazil. The data for this study were from a long-term 41-year field experiment in southern Brazil. The long-term experiment evaluated the effects of fallow (F) and cover crops (oat (O), vetch (V), cowpea (B), pigeon pea (P), and lablab (L)) on nitrous oxide and methane emissions and soil carbon (C) sequestration in maize agroecosystems. Five cropping systems, FM, OV/M, OV/MB, PM, and LM, were evaluated. Our results show that cover crops can reduce life-cycle GHG emissions by ~40 to >100% through increased soil C sequestration. The agroecosystems with winter cover crops (OV/M and OV/MB) had higher life-cycle GHG emissions (0.5 kg CO2e kg−1 of M or 2.6 Mg CO2e ha−1) than the agroecosystem with winter F (0.06 kg CO2e kg−1 of M or 0.2 Mg CO2e ha−1). Summer cover crops (P and L) resulted in negative life-cycle GHG emissions (an average of −0.2 kg CO2e kg M−1 or −1.2 Mg CO2e ha−1) and increased the M grain yield. This study shows that cover crops can reduce greenhouse gas emissions from NT M in southern Brazil. Full article
Show Figures

Figure 1

19 pages, 626 KiB  
Article
Assessment of Protein Quality and Nutritional Characteristics of Commonly Consumed Pulses in the Caribbean Diet by Different In Vitro Assays
by Daniel J. Thomas, Zhanhui Lu, Yolanda Brummer, Yan Zhu, Ronghua Liu, Lili Mats, Rong Tsao, D. Dan Ramdath and Matthew G. Nosworthy
Foods 2025, 14(2), 283; https://doi.org/10.3390/foods14020283 - 16 Jan 2025
Viewed by 1165
Abstract
Pulses, the dried seeds of leguminous plants, form an important part of the diets of many cultures, including Caribbean cuisine, and are a rich source of protein, carbohydrates, and antioxidants while being low in fats. This study examined the effect of a traditional [...] Read more.
Pulses, the dried seeds of leguminous plants, form an important part of the diets of many cultures, including Caribbean cuisine, and are a rich source of protein, carbohydrates, and antioxidants while being low in fats. This study examined the effect of a traditional home-cooking method on the nutritional characteristics of pulses commonly consumed in the Caribbean: red kidney beans and cranberry beans (Phaseolus vulgaris L.), cowpeas (Vigna unguiculata L.), and pigeon peas (Cajanus cajan L.). Protein quality, determined via three in vitro protein digestibility methods, starch, and phenolic content were determined in pre- and post-cooked samples using established methods. Pulses contained 20–26% protein, and cooking improved protein digestibility on average by 14.0 ± 2.5% (p < 0.05). However, notable differences in digestibility were observed: it was higher in static assays (pH-Drop and pH-Stat) than in the two-step digestibility assay. Average protein digestibility-corrected amino acid score (IVPDCAAS) among cooked pulses was 0.81 ± 0.14, with the highest in cranberry bean (0.82) and cowpea (0.88). Cooking modified pulse starch profiles by increasing total digestible starch. However, resistant starch and slowly digestible starch fractions accounted for approximately 20–25% of total cooked starch content. While total phenolic content (TPC) and antioxidant activity were reduced with cooking, they were within expected ranges for cooked pulse flours; however, they were higher in bean (P. vulgaris) varieties than cowpea and pigeon pea. These findings support the promotion of increased pulse consumption in Caribbean diets. Home cooking is a simple method to enhance pulse protein quality through enhancing digestibility; however, in vitro protein digestibility assays may require further standardization. Full article
(This article belongs to the Section Food Engineering and Technology)
19 pages, 1444 KiB  
Review
Possible Impacts of Elevated CO2 and Temperature on Growth and Development of Grain Legumes
by Rajanna G. Adireddy, Saseendran S. Anapalli, Krishna N. Reddy, Partson Mubvumba and Justin George
Environments 2024, 11(12), 273; https://doi.org/10.3390/environments11120273 - 2 Dec 2024
Cited by 4 | Viewed by 2634
Abstract
Carbon dioxide (CO2) is the most abundant greenhouse gas (GHG) in the atmosphere and the substrate for the photosynthetic fixation of carbohydrates in plants. Increasing GHGs from anthropogenic emissions is warming the Earth’s atmospheric system at an alarming rate and changing [...] Read more.
Carbon dioxide (CO2) is the most abundant greenhouse gas (GHG) in the atmosphere and the substrate for the photosynthetic fixation of carbohydrates in plants. Increasing GHGs from anthropogenic emissions is warming the Earth’s atmospheric system at an alarming rate and changing its climate, which can affect photosynthesis and other biochemical reactions in crop plants favorably or unfavorably, depending on plant species. For the substrate role in plant carbon reduction reactions, CO2 concentration ([CO2]) in air potentially enhances photosynthesis. However, N uptake and availability for protein synthesis can be a potential limiting factor in enhanced biomass synthesis under enriched [CO2] conditions across species. Legumes are C3 plants and symbiotic N fixers and are expected to benefit from enhanced [CO2] in the air. However, the concurrent increase in air temperatures with enhanced [CO2] demands more detailed investigations on the effects of [CO2] enhancement on grain legume growth and yield. In this article, we critically reviewed and presented the online literature on growth, phenology, photosynthetic rate, stomatal conductance, productivity, soil health, and insect behavior under elevated [CO2] and temperature conditions. The review revealed that specific leaf weight, pod weight, and nodule number and weight increased significantly under elevated [CO2] of up to 750 ppm. Under elevated [CO2], two mechanisms that were affected were the photosynthesis rate (increased) and stomatal conductivity (decreased), which helped enhance water use efficiency in the C3 legume plants to achieve higher yields. Exposure of legumes to elevated levels of [CO2] when water stressed resulted in an increase of 58% in [CO2] uptake, 73% in transpiration efficiency, and 41% in rubisco carboxylation and decreased stomatal conductance by 15–30%. The elevated [CO2] enhanced the yields of soybean by 10–101%, peanut by 28–39%, mung bean by 20–28%, chickpea by 26–31%, and pigeon pea by 31–38% over ambient [CO2]. However, seed nutritional qualities like protein, Zn, and Ca were significantly decreased. Increased soil temperatures stimulate microbial activity, spiking organic matter decomposition rates and nutrient release into the soil system. Elevated temperatures impact insect behavior through higher plant feeding rates, posing an enhanced risk of invasive pest attacks in legumes. However, further investigations on the potential interaction effects of elevated [CO2] and temperatures and extreme climate events on growth, seed yields and nutritional qualities, soil health, and insect behavior are required to develop climate-resilient management practices through the development of novel genotypes, irrigation technologies, and fertilizer management for sustainable legume production systems. Full article
Show Figures

Figure 1

11 pages, 1016 KiB  
Article
Silicon in the Production, Nutrient Mineralization and Persistence of Cover Crop Residues
by Fabiana Aparecida Fernandes, Bruna Miguel Cardoso, Orivaldo Arf and Salatier Buzetti
AgriEngineering 2024, 6(4), 4395-4405; https://doi.org/10.3390/agriengineering6040249 - 22 Nov 2024
Viewed by 869
Abstract
In tropical regions, maintaining crop residues in the soil is challenging. Silicon (Si) may increase the persistence of these residues in the soil, as it is a precursor to lignin, providing a gradual release of nutrients for subsequent crops. Therefore, the objective of [...] Read more.
In tropical regions, maintaining crop residues in the soil is challenging. Silicon (Si) may increase the persistence of these residues in the soil, as it is a precursor to lignin, providing a gradual release of nutrients for subsequent crops. Therefore, the objective of this study was to evaluate the influence of different doses of calcium silicate (Ca2SiO4) (0, 1, 2, and 3 Mg ha⁻1) and limestone (0, 1, 2, and 3 Mg ha⁻1) on the lignin content, residue decomposition, and nutrient release of four cover crops—Pennisetum glaucum, Urochloa ruziziensis, Crotalaria spectabilis, and Cajanus cajan—at various decomposition stages following cover crop management (0, 30, 60, 90, and 120 days). The experiment was conducted in the field at the experimental area of the Faculty of Engineering at Ilha Solteira-UNESP, located in the municipality of Selvíria, state of Mato Grosso do Sul, on Ferralsol. The decomposition rate of the residues was assessed using the decomposition bag method, which was installed after cover crop management. The concentrations of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sulfur (S), Si, lignin, and cellulose were determined. Silicate application did not affect the accumulation of nutrients by cover crops and their release into the soil. There was no relationship between the remaining Si in the dry matter of plants and more persistent residues. The most persistent plants had higher final dry matter lignin content. Using pearl millet and pigeon peas resulted in more persistent residues in the soil. Full article
Show Figures

Figure 1

37 pages, 9496 KiB  
Review
Cajaninstilbene Acid and Its Derivative as Multi-Therapeutic Agents: A Comprehensive Review
by Wen Hou, Lejun Huang, Jinyang Wang, Walter Luyten, Jia Lai, Zhinuo Zhou, Sishuang Kang, Ping Dai, Yanzhu Wang, Hao Huang and Jinxia Lan
Molecules 2024, 29(22), 5440; https://doi.org/10.3390/molecules29225440 - 18 Nov 2024
Cited by 2 | Viewed by 1426
Abstract
Pigeon pea (Cajanus cajan (L.) Millsp.) is a traditional Chinese medicinal plant widely utilized in folk medicine due to its significant pharmacological and nutritional properties. Cajaninstilbene acid (CSA), a stilbene compound derived from pigeon pea leaves, has been extensively investigated since the [...] Read more.
Pigeon pea (Cajanus cajan (L.) Millsp.) is a traditional Chinese medicinal plant widely utilized in folk medicine due to its significant pharmacological and nutritional properties. Cajaninstilbene acid (CSA), a stilbene compound derived from pigeon pea leaves, has been extensively investigated since the 1980s. A thorough understanding of CSA’s mechanisms of action and its therapeutic effects on various diseases is crucial for developing novel therapeutic approaches. This paper presents an overview of recent research advancements concerning the biological activities and mechanisms of CSA and its derivatives up to February 2024. The review encompasses discussions on the in vivo metabolism of CSA and its derivatives, including antipathogenic micro-organisms activity, anti-tumor activity, systematic and organ protection activity (such as bone protection, cardiovascular protection, neuroprotection), anti-inflammatory activity, antioxidant activity, immune regulation as well as action mechanism of CSA and its derivatives. The most studied activities are antipathogenic micro-organisms activities. Additionally, the structure–activity relationships of CSA and its derivatives as well as the total synthesis of CSA are explored, highlighting the potential for developing new pharmaceutical agents. This review aims to provide a foundation for future clinical applications of CSA and its derivatives. Full article
(This article belongs to the Special Issue Advances in Natural Products and Their Biological Activities)
Show Figures

Graphical abstract

26 pages, 869 KiB  
Article
Integrating Morpho-Physiological, Biochemical, and Molecular Genotyping for Selection of Drought-Tolerant Pigeon Pea (Cajanus cajan L.) Genotypes at Seedling Stage
by Benjamin O. Ouma, Kenneth Mburu, Geoffrey K. Kirui, Edward K. Muge and Evans N. Nyaboga
Plants 2024, 13(22), 3228; https://doi.org/10.3390/plants13223228 - 16 Nov 2024
Cited by 1 | Viewed by 1612
Abstract
Pigeon pea (Cajanus cajan (L.) Millsp.), a potential legume as an economic source of protein, is commonly cultivated in tropical and subtropical regions of the world. It possesses medicinal properties and acts as a cash crop, benefiting low-income farmers economically. The identification [...] Read more.
Pigeon pea (Cajanus cajan (L.) Millsp.), a potential legume as an economic source of protein, is commonly cultivated in tropical and subtropical regions of the world. It possesses medicinal properties and acts as a cash crop, benefiting low-income farmers economically. The identification of pigeon peas exhibiting drought tolerance has become crucial in addressing water scarcity issues in the agriculture sector. In addition, exploring the genetic diversity among genotypes is important for conservation, management of genetic resources, and breeding programs. The aim of this study was to evaluate the morpho-physiological and biochemical responses of selected pigeon pea genotypes under pot-induced water stress conditions through different field capacities as well as the genetic diversity using start codon targeted (SCoT) markers. A significant variation was observed for the physiological traits studied. The accumulation of fresh weight (FW) and dry weight (DW) was significantly reduced in moderate and severe drought stress conditions. The lowest % DW decrease was found in LM (35.39%), KAT (39.43%), and SM (46.98%) than other genotypes at severe drought stress. Analyses of physiological responses including the photosynthetic efficiency (Phi2), the chlorophyll content (SPAD), and the relative water content (RWC) revealed positive and negative correlations with various parameters, reflecting the impact of drought stress on the chlorophyll content. The results revealed that biochemical traits including the total phenolic content, soluble sugars, proline, total protein, total amino acids, and free amino acids were variably and significantly increased under water stress. Antioxidant enzyme activity levels, specifically ascorbate peroxidase (APX) and catalase, varied among the genotypes and in response to severe water stress, offering further insights into adaptive responses. The eight genotypes analysed by use of 20 SCoT markers revealed 206 alleles and an average of 10.3 alleles per locus. Genetic similarity ranged from 0.336 to 0.676, clustering the pigeon pea genotypes into two major groups by the unweighted pair group method of arithmetic averages (UPGMA) cluster analysis. Principal coordinate analysis (PCoA) explained 43.11% of genetic variation and based on analysis of molecular variance, a high genetic variation (80%) within populations was observed, emphasizing the potential for genetic improvement. Among the eight genotypes studied, LM and KAT were drought tolerant and genetically diverse and therefore could be used as parents for developing drought tolerance in pigeon pea. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

18 pages, 809 KiB  
Review
Microbes in Agriculture: Prospects and Constraints to Their Wider Adoption and Utilization in Nutrient-Poor Environments
by Mustapha Mohammed and Felix D. Dakora
Microorganisms 2024, 12(11), 2225; https://doi.org/10.3390/microorganisms12112225 - 2 Nov 2024
Cited by 1 | Viewed by 3839
Abstract
Microbes such as bacteria and fungi play important roles in nutrient cycling in soils, often leading to the bioavailability of metabolically important mineral elements such as nitrogen (N), phosphorus (P), iron (Fe), and zinc (Zn). Examples of microbes with beneficial traits for plant [...] Read more.
Microbes such as bacteria and fungi play important roles in nutrient cycling in soils, often leading to the bioavailability of metabolically important mineral elements such as nitrogen (N), phosphorus (P), iron (Fe), and zinc (Zn). Examples of microbes with beneficial traits for plant growth promotion include mycorrhizal fungi, associative diazotrophs, and the N2-fixing rhizobia belonging to the α, β and γ class of Proteobacteria. Mycorrhizal fungi generally contribute to increasing the surface area of soil-root interface for optimum nutrient uptake by plants. However, when transformed into bacteroids inside root nodules, rhizobia also convert N2 gas in air into ammonia for use by the bacteria and their host plant. Thus, nodulated legumes can meet a high proportion of their N requirements from N2 fixation. The percentage of legume N derived from atmospheric N2 fixation varies with crop species and genotype, with reported values ranging from 50–97%, 24–67%, 66–86% 27–92%, 50–92%, and 40–75% for soybean (Gycine max), groundnut (Arachis hypogea), mung bean (Vigna radiata), pigeon pea (Cajanus cajan), cowpea (Vigna unguiculata), and Kersting’s groundnut (Macrotyloma geocarpum), respectively. This suggests that N2-fixing legumes require little or no N fertilizer for growth and grain yield when grown under field conditions. Even cereals and other species obtain a substantial proportion of their N nutrition from associative and endophytic N2-fixing bacteria. For example, about 12–33% of maize N requirement can be obtained from their association with Pseudomonas, Hebaspirillum, Azospirillum, and Brevundioronas, while cucumber can obtain 12.9–20.9% from its interaction with Paenebacillus beijingensis BJ-18. Exploiting the plant growth-promoting traits of soil microbes for increased crop productivity without any negative impact on the environment is the basis of green agriculture which is done through the use of biofertilizers. Either alone or in combination with other synergistic rhizobacteria, rhizobia and arbuscular mycorrhizal (AM) fungi have been widely used in agriculture, often increasing crop yields but with occasional failures due to the use of poor-quality inoculants, and wrong application techniques. This review explores the literature regarding the plant growth-promoting traits of soil microbes, and also highlights the bottle-necks in tapping this potential for sustainable agriculture. Full article
(This article belongs to the Special Issue Harnessing Beneficial Microbiota in Sustainable Agriculture)
Show Figures

Figure 1

11 pages, 282 KiB  
Article
Nutritive Value of Some Concentrate Feedstuffs for Guinea Pigs (Cavia porcellus)
by Gilbert Alagón, Gardenia Tupayachi, Wagner Villacorta, Carla Taco, Moises Jancco, Eloy Zuniga, María del Carmen López-Luján, Luis Ródenas, Vicente Javier Moya, Eugenio Martínez-Paredes, Enrique Blas and Juan José Pascual
Animals 2024, 14(21), 3142; https://doi.org/10.3390/ani14213142 - 1 Nov 2024
Cited by 2 | Viewed by 1412
Abstract
The objective of this work was to ascertain the nutritive value of six concentrate feedstuffs commonly used in guinea pig feed manufacturing through the substitution method. Six test diets were obtained by replacing the corresponding basal mixture with 40% corn, 50% barley, 45% [...] Read more.
The objective of this work was to ascertain the nutritive value of six concentrate feedstuffs commonly used in guinea pig feed manufacturing through the substitution method. Six test diets were obtained by replacing the corresponding basal mixture with 40% corn, 50% barley, 45% wheat bran, 35% soybean meal, 30% pigeon pea, or 30% Leucaena leaf meal. Sixty-three guinea pigs were randomly assigned to one of the nine experimental diets (three basal diets and six test diets, with seven animals per diet). The animals were housed in individual cages and provided with feed and water ad libitum. Following a ten-day adaptation period, the feed intake and faeces excretion were monitored for a further five days. The digestible energy content, expressed as kcal/kg dry matter (±standard error), was 3857 ± 83 for corn, 3454 ± 68 for barley, 2911 ± 110 for wheat bran, 3855 ± 81 for soybean meal, 3105 ± 79 for pigeon pea, and 2972 ± 72 for Leucaena leaf meal. The apparent total tract digestibility of crude protein, expressed as % (±standard error) was 73.8 ± 4.9 for corn, 69.5 ± 4.6 for barley, 76.4 ± 3.6 for wheat bran, 88.4 ± 1.0 for soybean meal, 62.1 ± 1.9 for pigeon pea, and 68.0 ± 1.8 for Leucaena leaf meal. Further research is required to increase knowledge about these and other feedstuffs for guinea pigs. Full article
(This article belongs to the Section Animal Nutrition)
15 pages, 6819 KiB  
Article
Maize Morphophysiological Changes Modulated by Cover Crops Rotation in Northeast Brazil
by José Wilker Germano de Souza, João Henrique Silva da Luz, Dayane Mércia Ribeiro Silva, Ricardo Barros Silva, Bruno Richardson dos Santos Costa, Alan Fontes Melo, Hugo Rodrigues dos Santos, Isabelly Cristina da Silva Marques, Jadielson Inácio de Sousa, Mariana Bernardino Vanderley, Luana do Nascimento Silva Barbosa, Maria Raquel da Silva Farias, Emerson dos Santos Ferreira Farias, Sivaldo Soares Paulino, Antônio Lucrécio dos Santos Neto, Paulo Sergio Pavinato, José Vieira Silva and Valdevan Rosendo dos Santos
Stresses 2024, 4(4), 699-713; https://doi.org/10.3390/stresses4040045 - 27 Oct 2024
Viewed by 1596
Abstract
Cover crops have gained attention due to their potential benefits for the soil and physiological performance of subsequent crops. This study aimed to evaluate the physiological and productive aspects of maize grown in succession to cover crops in northeastern Brazil. A randomized complete [...] Read more.
Cover crops have gained attention due to their potential benefits for the soil and physiological performance of subsequent crops. This study aimed to evaluate the physiological and productive aspects of maize grown in succession to cover crops in northeastern Brazil. A randomized complete block design with four repetitions was employed, in which the treatments consisted of the following cover crops: sunn hemp, spectabilis, pigeon pea, Brachiaria sp., jack bean, millet, and fallow. Physiological aspects and production components of maize were evaluated at the tasseling (VT) and smooth grain (R3) phenological stages. Millet cover increased carotenoid content in maize leaves by up to 78% at R3. Maize grown after pigeon pea, millet, and Brachiaria sp. showed up to 42% greater CO2 assimilation efficiency compared to jack bean. Carboxylation efficiency increased by up to 34% in maize grown after millet and Brachiaria sp., while water use efficiency improved by up to 76% in maize after sunn hemp and pigeon pea at R3. Sunn hemp, spectabilis, and jack bean reduced soil temperature by 2 °C compared to fallow. The highest maize yield was observed after jack bean, with an 8% increase over fallow. These findings demonstrate the benefits of incorporating cover crops into maize cultivation systems in the semi-arid region of Brazil. Full article
(This article belongs to the Collection Feature Papers in Plant and Photoautotrophic Stresses)
Show Figures

Figure 1

11 pages, 2718 KiB  
Article
How the Inclusion of Pigeon Pea in Beef Cattle Diets Affects CH4 Intensity: An In Vitro Fermentation Assessment
by Althieres José Furtado, Flavio Perna Junior, Rolando Pasquini Neto, Adibe Luiz Abdalla Filho, Sophia Aparecida Morro Chamilete, Patrícia Perondi Anchão Oliveira and Paulo Henrique Mazza Rodrigues
Grasses 2024, 3(4), 253-263; https://doi.org/10.3390/grasses3040018 - 11 Oct 2024
Cited by 1 | Viewed by 1351
Abstract
Tropical pastures intercropped with legumes have been gaining prominence for increasing the efficiency of livestock production systems when compared to pasture monocultures. Here, our objective was to understand the fermentation processes that tropical grass and legumes underwent when included in ruminant diets, which [...] Read more.
Tropical pastures intercropped with legumes have been gaining prominence for increasing the efficiency of livestock production systems when compared to pasture monocultures. Here, our objective was to understand the fermentation processes that tropical grass and legumes underwent when included in ruminant diets, which have previously been found to optimize animal performance while reducing the intensity of enteric CH4 emissions. For this purpose, three areas containing pigeon pea (Cajanus cajan) and Urochloa spp. were sampled. Samples were dried, grounded, chemically analyzed, and included in five proportions (0%, 25%, 50%, 75%, and 100%) of pigeon pea in the diet. The diets were then analyzed using an in vitro fermentation technique. Statistical analysis was performed using SAS statistical software, considering bottles as replicates, and our results suggest that a 25% inclusion of pigeon pea is optimal for balancing CH4 mitigation and fermentation efficiency, highlighting the importance of more studies with this legume due to its benefits, especially as a supplement during drought periods that impact the production and quality of tropical pastures. It is important to consider that pigeon pea’s secondary compounds may have positively modulated the fermentation process and reduced CH4 emissions. However, excessive legume inclusion can negatively affect digestibility and animal health, impairing animal performance and the sustainability of pasture-based production systems. Full article
Show Figures

Figure 1

Back to TopTop