Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (277)

Search Parameters:
Keywords = Picea abies Norway spruce

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1976 KiB  
Article
Soil Hydrological Properties and Organic Matter Content in Douglas-Fir and Spruce Stands: Implications for Forest Resilience to Climate Change
by Anna Klamerus-Iwan, Piotr Behan, Ewa Słowik-Opoka, María Isabel Delgado-Moreira and Lizardo Reyna-Bowen
Forests 2025, 16(8), 1217; https://doi.org/10.3390/f16081217 - 24 Jul 2025
Viewed by 311
Abstract
Climate change has intensified over recent decades, prompting shifts in forest management strategies, particularly in the Sudetes region of Poland, where native species like Norway spruce (Picea abies), European beech (Fagus sylvatica), and silver fir (Abies alba) [...] Read more.
Climate change has intensified over recent decades, prompting shifts in forest management strategies, particularly in the Sudetes region of Poland, where native species like Norway spruce (Picea abies), European beech (Fagus sylvatica), and silver fir (Abies alba) have historically dominated. To address these changes, non-native species such as Douglas fir (Pseudotsuga menziesii) have been introduced as potential alternatives. This study, conducted in the Jugów and Świerki forest districts, compared the soil properties and water retention capacities of Douglas fir (Dg) and Norway spruce (Sw) stands (age classes from 8–127 years) in the Fresh Mountain Mixed Forest Site habitat. Field measurements included temperature, humidity, organic matter content, water capacity, and granulometric composition. Results indicate that, in comparison to Sw stands, Dg stands were consistently linked to soils that were naturally finer textured. The observed hydrological changes were mostly supported by these textural differences: In all investigated circumstances, Dg soils demonstrated greater water retention, displaying a water capacity that was around 5% higher. In addition to texture, Dg stands showed reduced soil water repellency and a substantially greater organic matter content (59.74% compared to 27.91% in Sw), which further enhanced soil structure and moisture retention. Conversely, with increasing climatic stress, Sw soils, with coarser textures and less organic matter, showed decreased water retention. The study highlights the importance of species selection in sustainable forest management, especially under climate change. Future research should explore long-term ecological impacts, including effects on microbial communities, nutrient cycling, and biodiversity, to optimize forest resilience and sustainability. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

15 pages, 27708 KiB  
Article
Defoliation of Norway Spruce by Spruce Budworm (Lepidoptera: Tortricidae) and Protection Using Bacillus thuringiensis
by Alvaro Fuentealba, Richard Berthiaume, Simon Fortier, Louis Morneau and Éric Bauce
Forests 2025, 16(7), 1056; https://doi.org/10.3390/f16071056 - 25 Jun 2025
Viewed by 311
Abstract
Norway spruce (Picea abies (L.) Karst.) has been widely planted beyond its natural range due to its fast growth rate and valuable wood. In Québec, over 200 million seedlings have been planted since 1964. Several of these plantations are now facing a [...] Read more.
Norway spruce (Picea abies (L.) Karst.) has been widely planted beyond its natural range due to its fast growth rate and valuable wood. In Québec, over 200 million seedlings have been planted since 1964. Several of these plantations are now facing a new potential threat, i.e., spruce budworm (Choristoneura fumiferana (Clem.)) infestations. Despite contrasting results, Norway and white spruce (P. glauca [Moench] Voss) apparently sustain a similar degree of budworm defoliation. The main study objective is to quantify defoliation in Norway spruce caused by spruce budworm. We also evaluate the efficacy of Bacillus thuringiensis Berliner spp. kurstaki (Btk) in protecting this exotic host tree. Annual defoliation was assessed in plantations of Norway, white, and black spruce (P. mariana [Mill.] BSP) between 2018 and 2022 in the Bas-Saint-Laurent region. Additional surveys were conducted in Norway and white spruce plantations in the Gaspésie and Côte-Nord to evaluate Btk efficacy. We show that both species exhibit similar defoliation levels, though Norway spruce sometimes sustains greater damage (e.g., 35% vs. 10% in 2019). Btk formulations showed low efficacy in protecting Norway spruce foliage (≥49.32% defoliation in treated plantations). Further studies are needed to understand factors influencing Btk efficacy on this host. Full article
(This article belongs to the Special Issue Monitoring and Control of Forest Pests)
Show Figures

Figure 1

22 pages, 2033 KiB  
Article
The Mechanical Properties of Laminated Veneer Products from Different Stands of Douglas Fir and Norway Spruce in Germany
by Tobias Krenn, Dirk Berthold, Nina Ritter and Carsten Mai
Forests 2025, 16(7), 1040; https://doi.org/10.3390/f16071040 - 21 Jun 2025
Viewed by 288
Abstract
The relationship between silvicultural strategies, manifested in the thinning method and rotation age on sites with different water supply, and the mechanical properties of engineered wood products plywood and laminated veneer lumber has been analyzed. Sample logs from five German sites of Norway [...] Read more.
The relationship between silvicultural strategies, manifested in the thinning method and rotation age on sites with different water supply, and the mechanical properties of engineered wood products plywood and laminated veneer lumber has been analyzed. Sample logs from five German sites of Norway spruce (Picea abies (L.) Karst.) and Douglas fir (Pseudotsuga menziesii (M.) Franco) have been rotary-peeled and processed into boards with a phenol–resorcinol–formaldehyde adhesive to evaluate their performance under flexural, tensile, and compressive loads. Satisfactory coefficients of determination were reached for Norway spruce in regard to the silvicultural framework and the tree characteristics of slenderness and crown base height. Douglas fir products did not achieve comparable determination due to high variance within boards and stands but did achieve significantly better mechanical properties. Norway spruce was observed to be more responsive to thinning measures, while the effect of different thinning regimes was not evident for Douglas fir. The on-site evaluation of Douglas fir stands for veneer product quality based on silvicultural parameters and tree characteristics was shown to be inconclusive, with its naturally higher wood density being the decisive constant. Full article
(This article belongs to the Special Issue Wood Properties: Strength, Density, Hardness)
Show Figures

Figure 1

15 pages, 3602 KiB  
Article
Driving Mechanisms and Changes in Dominant Forest Tree Taxa in Europe Under Climate Change
by Jing Zhou, Qianhong Tang, Yanan Zhao, Xiaokang Hu, Tao Wang and Bingru Wang
Forests 2025, 16(6), 900; https://doi.org/10.3390/f16060900 - 27 May 2025
Viewed by 356
Abstract
Forest ecosystems are crucial for terrestrial ecosystem stability, particularly in carbon sequestration, nutrient cycling, and water conservation. With climate change exacerbating, understanding changes in suitable habitats for the main European tree taxa [Norway spruce (Picea abies), pedunculate oak (Quercus robur [...] Read more.
Forest ecosystems are crucial for terrestrial ecosystem stability, particularly in carbon sequestration, nutrient cycling, and water conservation. With climate change exacerbating, understanding changes in suitable habitats for the main European tree taxa [Norway spruce (Picea abies), pedunculate oak (Quercus robur), and European beech (Fagus sylvatica)] and their drivers is critical for forest conservation in Europe. Here, we analyzed the factors driving the tree taxa distribution and suitable habitats under the current and two future scenarios, namely, optimistic and pessimistic. Based on a species distribution model, climatic, land use, and topographic factors were introduced as variables. This study determined that the main factors driving the tree taxa distributions were temperature, followed by land use. Under the future optimistic scenario, the suitable habitats change for the three tree taxa. Suitable habitats emerge in high-latitude regions and the northern Mediterranean. Meanwhile, suitable habitats are decreasing in Central Europe. Under the pessimistic scenario, more significant changes occurred in these regions. The total suitable habitat area for the three tree taxa did not change consistently under both scenarios. The suitable habitat area for Norway spruce increased, whereas that for pedunculate oak decreased. However, both regions with increasing or decreasing suitable habitats face the potential for forest succession, which will also affect the stability of forest ecosystem functions and should be a key focus. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

2 pages, 523 KiB  
Correction
Correction: Katrevičs et al. Forest Soil Fungal Diversity in Stands of Norway Spruce (Picea abies (L.) Karst.) of Different Ages. Forests 2025, 16, 500
by Juris Katrevičs, Krišs Bitenieks, Āris Jansons, Baiba Jansone and Dainis Edgars Ruņģis
Forests 2025, 16(6), 874; https://doi.org/10.3390/f16060874 - 22 May 2025
Viewed by 226
Abstract
In the original publication [...] Full article
(This article belongs to the Section Forest Soil)
15 pages, 2754 KiB  
Article
The Impact of Seed Treatment with Cold Plasma on Antioxidants, Sugars, and Pigments in Needles of Norway Spruce Is Genotype-Dependent
by Ieva Čėsnienė, Vytautas Čėsna, Vida Mildažienė, Diana Miškelytė, Dorotėja Vaitiekūnaitė and Vaida Sirgedaitė-Šėžienė
Plants 2025, 14(9), 1404; https://doi.org/10.3390/plants14091404 - 7 May 2025
Viewed by 630
Abstract
Forests face increasing threats due to climate change and anthropogenic pressures, exacerbating plant stress and disease susceptibility. Norway spruce (Picea abies (L.) H. Karst.), a key conifer species in European forestry, is particularly vulnerable. Developing innovative seed treatments to enhance tree resilience [...] Read more.
Forests face increasing threats due to climate change and anthropogenic pressures, exacerbating plant stress and disease susceptibility. Norway spruce (Picea abies (L.) H. Karst.), a key conifer species in European forestry, is particularly vulnerable. Developing innovative seed treatments to enhance tree resilience is crucial for sustainable forest management. Despite the growing interest in cold plasma (CP) technology for seed treatment, research on its long-term effects on trees, particularly Norway spruce, remains scarce. This study aimed to investigate the effects of pre-sowing CP treatment on Norway spruce seeds from 10 half-sib families over two vegetation seasons. Results indicate that CP treatment influenced key physiological and biochemical parameters in a genotype-specific and treatment duration-dependent manner (1 or 2 min). In some cases, CP-treated seedlings exhibited increased chlorophyll levels (e.g., increased chlorophyll a by up to 49% in some genotypes treated with CP for 1 min, and by up to 35% in those treated with CP for 2 min), reduced malondialdehyde (MDA) content in second-year samples (by up to 52% in some genotypes), and enhanced production of phenolics (by up to 21% in some genotypes in both treatment groups), suggesting improved stress tolerance. The 541 half-sib family is particularly noteworthy, as first-year seedlings exhibited increased levels of chlorophylls, flavonoids, and total phenols following a 2 min treatment. In contrast, second-year seedlings of the same family showed an increase in flavonoids and a reduction in MDA levels compared to the control, indicating a sustained and possibly age-modulated physiological response to CP exposure (2 min). However, responses varied across genetic backgrounds, highlighting the importance of genotype in determining treatment efficacy. These findings underscore the potential of CP technology as a tool for improving Norway spruce resilience and inform future strategies for seed enhancement in forestry. Full article
(This article belongs to the Special Issue Development of Woody Plants)
Show Figures

Figure 1

26 pages, 7042 KiB  
Article
Thermodynamic Stability of Clay Minerals in Boreal Forest Soil and Its Relationship to the Properties of Soil Organic Matter
by Igor V. Danilin, Yulia G. Izosimova, Ruslan A. Aimaletdinov and Inna I. Tolpeshta
Minerals 2025, 15(4), 430; https://doi.org/10.3390/min15040430 - 20 Apr 2025
Viewed by 435
Abstract
This paper assesses the thermodynamic stability of clay minerals in the upper organo-mineral horizon of podzolic soil, as well as in the rhizosphere of Norway spruce (Picea abies (L.) H. Karst.) and Norway maple (Acer platanoides L.). Moreover, it determines the [...] Read more.
This paper assesses the thermodynamic stability of clay minerals in the upper organo-mineral horizon of podzolic soil, as well as in the rhizosphere of Norway spruce (Picea abies (L.) H. Karst.) and Norway maple (Acer platanoides L.). Moreover, it determines the impact of soil organic matter on the thermodynamic stability of clay minerals. Calculations of ΔGf and the saturation index (SI) for clay minerals in laboratory experiments simulating soil conditions without soil moisture outflow allowed us to find out that the thermodynamic stability of clay minerals decreased in the series kaolinite > illite > vermiculite > chlorite. In the rhizosphere of spruce, kaolinite, vermiculite and illite have the lowest, and in the soil under maple-the highest thermodynamic stability, which is associated with differences in the properties of soil organic matter of rhizospheres of different tree species. Laboratory experiments on the sorption of soil humic acid (HA) on clay minerals demonstrated that sorbed HA decreased the thermodynamic stability of biotite and increased the thermodynamic stability of kaolinite and muscovite. Thermodynamic stability of clay minerals decreased with increased proportion of sorbed thermolabile organic matter. Full article
(This article belongs to the Section Environmental Mineralogy and Biogeochemistry)
Show Figures

Figure 1

16 pages, 5358 KiB  
Article
Impact of Climate on the Growth and Yield of the Main Tree Species from Romania Using Dendrochronological Data
by Marin Gheorghe and Bogdan M. Strimbu
Plants 2025, 14(8), 1234; https://doi.org/10.3390/plants14081234 - 18 Apr 2025
Viewed by 500
Abstract
National Forest Inventories (NFIs) offer a comprehensive and consistent dataset for forest analysis, enabling the refinement of growth and yield models by integrating regional environmental factors. This study investigates the influence of climate on the growth of three dominant tree species in Romania: [...] Read more.
National Forest Inventories (NFIs) offer a comprehensive and consistent dataset for forest analysis, enabling the refinement of growth and yield models by integrating regional environmental factors. This study investigates the influence of climate on the growth of three dominant tree species in Romania: Norway spruce (Picea abies L. Karst), European beech (Fagus sylvatica L.), and Sessile oak (Quercus petraea (Matt.) Liebl). Increment core analysis revealed a general increase in diameter growth since 1960, partially correlated with temperature trends. Repeated measures analysis confirmed significant variations in radial growth across ecoregions. The analysis further explored the impact of climatic variables on diameter at breast height (DBH) and basal area (BA) growth and yield. Among nine climatic attributes and their combinations, total precipitation and average growing season temperature significantly affected DBH and BA growth. However, yield was largely insensitive to precipitation, with only Sessile oak yield showing a temperature dependence. Beyond ecoregion and climate, the growth and yield of DBH and BA exhibited positive correlations with the calendar year, age, and previous growth/yield values. Notably, DBH and BA growth demonstrated a dependence on the preceding four to five years, whereas yield was significantly influenced only by the previous year. The observed influence of both the calendar year and previous years suggests a prolonged environmental memory in tree growth and yield responses. Full article
(This article belongs to the Topic Plant Responses to Environmental Stress)
Show Figures

Figure 1

13 pages, 1978 KiB  
Article
How to Define Spacing Among Forest Trees to Mitigate Competition: A Technical Note
by Khodabakhsh Zabihi, Vivek Vikram Singh, Aleksei Trubin, Nataliya Korolyova and Rastislav Jakuš
Biology 2025, 14(3), 296; https://doi.org/10.3390/biology14030296 - 15 Mar 2025
Cited by 1 | Viewed by 851
Abstract
Establishing an optimum range of inter-species spacing that reduces competition among trees and mitigates the effects of drought is a critical yet complex challenge in forest management. Stand density plays a crucial role in forest functioning by regulating resource allocation within individual trees. [...] Read more.
Establishing an optimum range of inter-species spacing that reduces competition among trees and mitigates the effects of drought is a critical yet complex challenge in forest management. Stand density plays a crucial role in forest functioning by regulating resource allocation within individual trees. Higher stand densities have been shown to reduce sap velocities, indicating intensified competition for water and other resources. However, determining the precise spacing that minimizes competition while maintaining ecosystem balance remains unclear. In this study, conducted in temperate Norway spruce forests at an altitude range of 400–500 m in the Czech Republic, we propose a novel technique to define tree spacing that reduces competitive interactions. We used xylem sap flow residuals of an ordinary least square (OLS) regression model to filter out the effects of elevation and diameter at breast height (DBH) on field-measured sap flow for 101 planted Norway spruce trees with a DBH range of 40 ± 5 cm (≈90–100 years old). The model residuals allowed us to account for the most important driver of sap flow variability: tree density and its underlying effects on individual tree traits. To minimize the confounding effects of temporal and spatial variability, we used twelve consecutive daily measurements of sap flow (6 a.m. to 6 p.m.) taken at the start of the growing season. By constructing an experimental variogram, we quantified sap flow variability as a function of tree spacing. The results showed a steady sap flow pattern at tree densities of 12, 11, and 10 trees per 314 m2 (equivalent to 350 ± 32 trees per hectare), corresponding to inter-tree spacing measurements of 5.12 m, 5.34 m, and 5.60 m, respectively. These findings suggest that when the N number of trees (median) per unit area (A) is in equilibrium with resource availability, increasing or decreasing the n number of trees may not significantly change competition levels (A; f(A) = N ± n). The size or deviation of n depends on the area to define the minimum and maximum thresholds or tolerance capacity for the number of trees allowed to be in the area. This technique—using a variogram of sap flow residuals to determine tree spacing—can be periodically applied, such as every 10–15 years, and adapted for different elevation gradients (e.g., within 100 m intervals). It offers a practical tool for forest managers and policymakers, guiding thinning and planting strategies to enhance forest resilience in the face of water-stress conditions. Full article
(This article belongs to the Special Issue Young Researchers in Plant Sciences)
Show Figures

Figure 1

18 pages, 11054 KiB  
Communication
Forest Soil Fungal Diversity in Stands of Norway Spruce (Picea abies (L.) Karst.) of Different Ages
by Juris Katrevičs, Krišs Bitenieks, Āris Jansons, Baiba Jansone and Dainis Edgars Ruņģis
Forests 2025, 16(3), 500; https://doi.org/10.3390/f16030500 - 12 Mar 2025
Cited by 1 | Viewed by 634 | Correction
Abstract
Fungal communities can be used as indicators of various environmental processes in forest ecosystems. The diversity of these communities is linked to aboveground plants and soil properties. We assessed fungal diversity at four Norway spruce sampling sites that were growing on fertile mineral [...] Read more.
Fungal communities can be used as indicators of various environmental processes in forest ecosystems. The diversity of these communities is linked to aboveground plants and soil properties. We assessed fungal diversity at four Norway spruce sampling sites that were growing on fertile mineral soils (Oxalidosa) in northwestern Latvia. Three sites were managed—a three-year-old clear-cut and fifty- and eighty-five-year-old stands; one site was unmanaged—a naturally regenerated site after wind damage in 1969. For metabarcoding, we used a fungal internal transcribed spacer (ITS2) and high throughput sequencing with the Ion Torrent platform. Our results showed high operational taxonomic unit richness in the samples, with notable variation in community composition between individual plots both within and among sites, with the highest being in managed, middle-aged stands and the lowest in unmanaged. Significant differences in the diversity of soil fungal communities were not detected between the sites. Redundancy analysis indicated that pH, soil organic matter, organic carbon, and nitrogen were the most important soil variables that explained the variation in fungal communities. The unmanaged stand differed notably by community composition. This study highlights the importance of monitoring forest soil environmental parameters and fungal communities to gain a more comprehensive assessment of forestry management regimes. Full article
(This article belongs to the Section Forest Biodiversity)
Show Figures

Figure 1

20 pages, 8296 KiB  
Article
Monitoring the Thermal Degradation of Two Spruce Species, (Picea abies L., Picea rubens Sarg.), Cherry (Prunus avium), and Oak (Quercus spp.) Under the Influence of Radiant Heat
by Iveta Marková, Jana Jaďuďová, Stanislava Gašpercová and Dušan Bóna
Appl. Sci. 2025, 15(4), 2065; https://doi.org/10.3390/app15042065 - 16 Feb 2025
Viewed by 497
Abstract
Wood, in the form of cladding or furniture, is often placed in close proximity to heat radiant sources. This research focused on samples, which are Norway spruce (Picea abies L.), Red spruce (Picea rubens Sarg.), cherry (Prunus avium), and [...] Read more.
Wood, in the form of cladding or furniture, is often placed in close proximity to heat radiant sources. This research focused on samples, which are Norway spruce (Picea abies L.), Red spruce (Picea rubens Sarg.), cherry (Prunus avium), and oak (Quercus spp.). The aim of this paper was to observe the effect of the distance of the selected wood samples from the radiant heat source on the process of thermal degradation of wood. Additionally, this research aimed to identify significant effects of wood species and sample distance on this process. A hot-plate device, an electric plate heated according to a temperature–time curve, was used as the initiating source. Samples were placed directly on the plate, as well as at two different distances from the plate (12 and 32 mm). During the experiment, the temperature history on the heat-exposed side of the sample, its mass loss, and the formation of a charred layer were monitored. Additionally, the progression of thermal degradation and related effects (smell, smoldering, and charring layer) were visually observed. The highest level of degradation was observed in the spruce sample placed directly on the plate, which started to smolder after 540 s of exposure to radiant heat at 291.2 °C. Full article
(This article belongs to the Section Environmental Sciences)
Show Figures

Figure 1

12 pages, 1521 KiB  
Article
Carbon and Nitrogen Content and CO2 Efflux from Coarse Woody Debris of Norway Spruce, Black Alder, and Silver Birch
by Dovilė Čiuldienė, Egidijus Vigricas, Greta Galdikaitė, Vidas Stakėnas, Kęstutis Armolaitis and Iveta Varnagirytė-Kabašinskienė
Forests 2025, 16(2), 293; https://doi.org/10.3390/f16020293 - 8 Feb 2025
Viewed by 667
Abstract
Coarse woody debris (CWD) is an essential component in forest ecosystems, playing a significant role in enhancing biodiversity, soil formation, and nutrient cycling through decomposition processes. CWD also contributes to greenhouse gas fluxes, particularly through CO2 emissions. This study investigated the physical [...] Read more.
Coarse woody debris (CWD) is an essential component in forest ecosystems, playing a significant role in enhancing biodiversity, soil formation, and nutrient cycling through decomposition processes. CWD also contributes to greenhouse gas fluxes, particularly through CO2 emissions. This study investigated the physical and chemical properties of CWD and the CO2 effluxes from CWD of different decay classes. For this study, a range of CWD—from recently dead to highly decomposed wood—of native tree species such as silver birch (Betula pendula Roth), black alder (Alnus glutinosa (L.) Gaertn.), and Norway spruce (Picea abies (L.) H. Karst.) in hemiboreal forests were investigated. The findings showed that CWD properties significantly differed among tree species and CWD decay classes. Significant variations in wood density and total nitrogen (N) were observed in the early stages of CWD decay, with the highest values found for the deciduous tree species. The concentration of organic carbon (C) increased throughout the decomposition. The lowest CO2 efflux from CWD was found for spruce CWD from all decay classes and it was the highest for black alder and silver birch, especially for the 3rd and 4th decay classes. CO2 efflux was mainly influenced by the degree of decomposition, which was represented by the CWD decay class, followed by wood density and C content. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

18 pages, 1576 KiB  
Article
Response of Tree Seedlings to a Combined Treatment of Particulate Matter, Ground-Level Ozone, and Carbon Dioxide: Primary Effects
by Valentinas Černiauskas, Iveta Varnagirytė-Kabašinskienė, Ieva Čėsnienė, Emilis Armoška and Valda Araminienė
Plants 2025, 14(1), 6; https://doi.org/10.3390/plants14010006 - 24 Dec 2024
Viewed by 831
Abstract
Trees growing in urban areas face increasing stress from atmospheric pollutants, with limited attention given to the early responses of young seedlings. This study aimed to address the knowledge gap regarding the effects of simulated pollutant exposure, specifically particulate matter (PM), elevated ozone [...] Read more.
Trees growing in urban areas face increasing stress from atmospheric pollutants, with limited attention given to the early responses of young seedlings. This study aimed to address the knowledge gap regarding the effects of simulated pollutant exposure, specifically particulate matter (PM), elevated ozone (O3), and carbon dioxide (CO2) concentrations, on young seedlings of five tree species: Scots pine (Pinus sylvestris L.); Norway spruce (Picea abies (L.) H.Karst.); silver birch (Betula pendula Roth); small-leaved lime (Tilia cordata Mill.); and Norway maple (Acer platanoides L.). The main objectives of this paper were to evaluate the seedling stem growth response and the biochemical response of seedling foliage to pollutant exposure. Four treatments were performed on two- to three-year-old seedlings of the selected tree species: with PM (0.4 g per seedling) under combined O3 = 180 ppb + CO2 = 650 ppm; without PM under combined O3 = 180 ppb + CO2 = 650 ppm; with PM (0.4 g per seedling) under combined O3 < 40–45 ppb + CO2 < 400 ppm; and without PM under combined O3 < 40–45 ppb + CO2 < 400 ppm. Scots pine and Norway maple showed no changes in growth (stem height and diameter) and biochemical parameters (photosynthetic pigments, total polyphenol content (TPC), total flavonoids content (TFC), and total soluble sugars (TSS)), indicating a neutral response to the combined PM, O3, and CO2 treatment. The chlorophyll response to PM alone and in combination with elevated O3 and CO2 exposure varied, with silver birch increasing, Norway maple—neutral to increasing, Scots pine—neutral to decreasing, and Norway spruce and small-leaved lime—decreasing. The TPC indicated stress responses in Scots pine, small-leaved lime, and Norway maple under increased combined O3 and CO2 and in Norway spruce under single PM treatment. Hence, Scots pine and Norway maple seedlings showed greater resistance to increased PM under combined O3 and CO2 with minimal change in growth, while silver birch seedlings showed adaptation potential with increasing chlorophyll under simulated pollutant stress. Full article
Show Figures

Figure 1

25 pages, 4556 KiB  
Article
Bark Biometry Along the Stem for Three Commercial Tree Species in Romania
by Maria Magdalena Vasilescu
Forests 2024, 15(12), 2264; https://doi.org/10.3390/f15122264 - 23 Dec 2024
Viewed by 862
Abstract
In general, bark serves a protective role for trees and is genetically determined. The quantification of bark based on biometric characteristics is linked to studies on the distribution of forest species across the globe and vegetation fires. In Romania, on the other hand, [...] Read more.
In general, bark serves a protective role for trees and is genetically determined. The quantification of bark based on biometric characteristics is linked to studies on the distribution of forest species across the globe and vegetation fires. In Romania, on the other hand, the improvement of the wood traceability system requires an increase in the accuracy of the estimation of the biometric characteristics of bark and, implicitly, of the volume of wood under the bark. The aim of this study was to develop more precise models for predicting bark thickness along the stem of three key Romanian species, taking into account a comprehensive range of models and stem sections, including those with a diameter over bark smaller than 8 cm, which have been excluded in previous studies. The study is based on two datasets, one containing the national measurements of three commercially valuable forest species, i.e., Norway spruce (Picea abies (L.) Karst), European beech (Fagus sylvatica L.), and pedunculate oak (Quercus robur L.) from 12,186 trees, and a second dataset containing the measurements from 61 logs of the same species at a specific forest site. A set of seven double bark thickness (DBT) estimation models with stem diameter over bark (DOB), DOB and total tree height (H), DOB and relative height along the stem (h/H), and diameter over bark at breast height (DBH) and DOB as predictors were used. The DBT models were evaluated using the coefficient of determination (R2), mean absolute error (MAE), root mean squared error (RMSE), the Akaike information criterion (AIC), and the Bayesian information criterion (BIC). This led to the selection of two more accurate models, Model 2 (based on a third-degree polynomial) and Model 3 (based on a logarithmic function), with DOB as the predictor. Relative double bark thickness (RDBT) and proportion of bark area (PBA) were also estimated using a sixth-degree polynomial and relative height as a predictor variable after stratifying the data by DBH classes to reduce variability. The results of this study indicate that there is a need to complete the database, for all three forest species of commercial value in Romania especially for large trees with DBH greater than 60–70 cm. The models obtained for PBA are of great use to the industry and the economy, in particular in the context of the traceability of wood. This is due to the fact that PBA can be equated with the proportion of bark volume (PBV), which describes the variation in the proportion of bark in the volume of the wood assortments along the stem. For a given DBH, PBA and PBV demonstrate minimal variability in sections from the tree’s base to a relative height of 0.6; however, a pronounced increase is observed at crown level in sections above relative heights of 0.8. Full article
(This article belongs to the Special Issue Forest Biometrics, Inventory, and Modelling of Growth and Yield)
Show Figures

Figure 1

11 pages, 4970 KiB  
Article
Detecting Early Degradation of Wood Ultrastructure with Nonlinear Optical Imaging and Fluorescence Lifetime Analysis
by Alice Dal Fovo, Riccardo Cicchi, Claudia Gagliardi, Enrico Baria, Marco Fioravanti and Raffaella Fontana
Polymers 2024, 16(24), 3590; https://doi.org/10.3390/polym16243590 - 22 Dec 2024
Cited by 1 | Viewed by 1211
Abstract
Understanding the deterioration processes in wooden artefacts is essential for accurately assessing their conservation status and developing effective preservation strategies. Advanced imaging techniques are currently being explored to study the impact of chemical changes on the structural and mechanical properties of wood. Nonlinear [...] Read more.
Understanding the deterioration processes in wooden artefacts is essential for accurately assessing their conservation status and developing effective preservation strategies. Advanced imaging techniques are currently being explored to study the impact of chemical changes on the structural and mechanical properties of wood. Nonlinear optical modalities, including second harmonic generation (SHG) and two-photon excited fluorescence (TPEF), combined with fluorescence lifetime imaging microscopy (FLIM), offer a promising non-destructive diagnostic method for evaluating lignocellulose-based materials. In this study, we employed a nonlinear multimodal approach to examine the effects of artificially induced delignification on samples of Norway spruce (Picea abies) and European beech (Fagus sylvatica) subjected to increasing treatment durations. The integration of SHG/TPEF imaging and multi-component fluorescence lifetime analysis enabled the detection of localized variations in nonlinear signals and τ-phase of key biopolymers within wood cell walls. This methodology provides a powerful tool for early detection of wood deterioration, facilitating proactive conservation efforts of wooden artefacts. Full article
(This article belongs to the Special Issue Advances in Applied Lignin Research)
Show Figures

Figure 1

Back to TopTop