Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (202)

Search Parameters:
Keywords = PiN diode

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 8002 KB  
Article
A High-Gain Reconfigurable Beam-Switched Circular Array Antenna Based on Pentagonal Radiating Elements Fed by Mutual Coupling for Sub-6 GHz Wireless Application Systems
by Faouzi Rahmani, Moustapha El Bakkali, Aziz Dkiouak, Naima Amar Touhami, Abdelmounaim Belbachir Kchairi, Bousselham Samoudi and Laurent Canale
Electronics 2025, 14(18), 3701; https://doi.org/10.3390/electronics14183701 - 18 Sep 2025
Cited by 1 | Viewed by 441
Abstract
This paper presents the design and development of a reconfigurable circular array antenna capable of producing ten distinct radiation beams, intended for wireless systems in the sub-6 GHz frequency band. The antenna structure is based on four pentagon-shaped radiating elements arranged symmetrically around [...] Read more.
This paper presents the design and development of a reconfigurable circular array antenna capable of producing ten distinct radiation beams, intended for wireless systems in the sub-6 GHz frequency band. The antenna structure is based on four pentagon-shaped radiating elements arranged symmetrically around a central circular patch, which is excited through a coaxial feed. These radiating elements are linked by four circular segments, ensuring mutual coupling for effective operation. A systematic dimensional analysis has been conducted to optimize electromagnetic performance, resulting in a compact and efficient architecture. The beam reconfiguration is achieved through the control of four PIN diodes, which allow the main radiation beam to switch among ten different orientations in the azimuth plane. Specifically, the antenna supports eight directional states, oriented at 45° intervals, and two additional bidirectional states covering opposite directions. A prototype has been fabricated and experimentally validated, confirming the steering capability of ±40° in both the XZ and YZ planes. Performance evaluation shows a maximum gain of 9.29 dBi and efficiency levels ranging from 91% to 97%. Bandwidth varies across states, with 9.72% for S1–S7, 7.45% for S2–S8, and 4.61% for S9–S10. Overall, the proposed design demonstrates optimized bandwidth, gain, efficiency, and complete azimuthal coverage. Full article
Show Figures

Graphical abstract

12 pages, 9031 KB  
Article
A Novel Wideband 1 × 8 Array Dual-Polarized Reconfigurable Beam-Scanning Antenna
by Jie Wu, Zihan Zhang, Yang Hong and Guoda Xie
Electronics 2025, 14(18), 3689; https://doi.org/10.3390/electronics14183689 - 18 Sep 2025
Viewed by 384
Abstract
A novel polarization-reconfigurable 1 × 8 array beam-scanning antenna based on a switchable vertically crossed balanced feed (VCBF) structure is presented. The designed VCBF structure can provide a stable 180° phase difference by utilizing spatial symmetry, enabling the synthesis of two linear polarizations [...] Read more.
A novel polarization-reconfigurable 1 × 8 array beam-scanning antenna based on a switchable vertically crossed balanced feed (VCBF) structure is presented. The designed VCBF structure can provide a stable 180° phase difference by utilizing spatial symmetry, enabling the synthesis of two linear polarizations (LP). The parasitic patch layer loaded directly above the VCBF can effectively enhance the operating frequency bandwidth of the antenna. In the array design, by controlling the amplitude and phase input at each port, scanning angles of ±45°, ±40°, and ±30° can be achieved under two LP at 3.0, 3.5, and 4.0 GHz. The simulation and measurement results indicate that the designed antenna has a wideband characteristic with a relative bandwidth of 28.6% and stable polarization reconfigurability. Benefiting from the advantages of polarization reconfigurability and beam-scanning capabilities, the antenna is highly suitable for applications in wireless communication systems that require polarization anti-interference. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

20 pages, 4448 KB  
Article
AFSS Wide-Frequency Reconfigurable Design and Electromagnetic Characterization Research
by Lei Gong, Xinru Tian, Ge Zhang, Xuan Liu, Shigeng Song, Jian Song, Haoyang Liu, Liguo Wang and Zhiqiang Yang
Electronics 2025, 14(18), 3628; https://doi.org/10.3390/electronics14183628 - 12 Sep 2025
Viewed by 403
Abstract
In order to solve the dynamic adaptation problem of the working frequency band of the FSS in the complex electromagnetic environment and further expand the frequency tuning range, a reconfigurable AFSS unit model based on PIN and varactor diodes are designed, which can [...] Read more.
In order to solve the dynamic adaptation problem of the working frequency band of the FSS in the complex electromagnetic environment and further expand the frequency tuning range, a reconfigurable AFSS unit model based on PIN and varactor diodes are designed, which can achieve the insertion loss below−1 dB in the wide frequency range of 10.2–15.2 GHz, meet the working-band switching, and allow for flexibly adjusting the working frequency point. In order to verify the accuracy of the design method, a square-ring aperture and notched patch-coupling structure that can exhibit broadband transmission response in the X-Ku band is first proposed based on the equivalent circuit model topology. A numerical simulation and a processing test of the structure are carried out. The measured data are in good agreement with the simulation results. After optimizing the unit structure, different capacitance values and resistance values are added to the diodes in the numerical simulation to control the equivalent PIN diode switch and the capacitance change in the varactor diodes. According to the equivalent circuit model and the electric-field intensity distribution, the AFSS regulation mechanism of the loaded diodes is explored. In this paper, through numerical simulation optimizations and experimental verification, the design method and performance optimization strategy of frequency-tunable FSS in the working range of 2–18 GHz are systematically studied, which provides theoretical support for the design of electromagnetic functional devices in the new generation of communication, radar, and electronic warfare systems. Full article
Show Figures

Figure 1

15 pages, 5466 KB  
Article
Design of Tri-Mode Frequency Reconfigurable UAV Conformal Antenna Based on Frequency Selection Network
by Teng Bao, Mingmin Zhu, Zhifeng He, Yi Zhang, Guoliang Yu, Yang Qiu, Jiawei Wang, Yan Li, Haibin Zhu and Hao-Miao Zhou
J. Low Power Electron. Appl. 2025, 15(3), 51; https://doi.org/10.3390/jlpea15030051 - 10 Sep 2025
Viewed by 380
Abstract
With the rapid growth of unmanned aerial vehicles (UAVs) and IoT users, spectrum resources are becoming increasingly scarce, making cognitive radio (CR) technology a key approach to improving spectrum utilization. However, traditional antennas are difficult to meet the lightweight, compact, and low-drag requirements [...] Read more.
With the rapid growth of unmanned aerial vehicles (UAVs) and IoT users, spectrum resources are becoming increasingly scarce, making cognitive radio (CR) technology a key approach to improving spectrum utilization. However, traditional antennas are difficult to meet the lightweight, compact, and low-drag requirements of small UAVs due to spatial constraints. This paper proposes a tri-mode frequency reconfigurable flexible antenna that can be conformally integrated onto UAV wing arms to enable CR dynamic frequency communication. The antenna uses a polyimide (PI) substrate and has compact dimensions of 31.4 × 58 × 0.05 mm3. A microstrip line-based frequency-selective network is designed, incorporating PIN and varactor diodes to realize three operation modes, dual-band (2.25~3.55 GHz, 5.6~6.75 GHz), single-band (3.35~5.3 GHz), and continuous tuning (4.3~6.1 GHz), covering WLAN, WiMAX, and 5G NR bands. Test results show that the antenna maintains stable performance under conformal conditions, with frequency shifts less than 4%, gain (3.65~4.77 dBi), and radiation efficiency between 67.2% and 82.9%. The tuning ratio reaches 38.8% in the continuous mode. This design offers a new solution for CR communication in compact UAV platforms and shows promising application potential. Full article
Show Figures

Figure 1

13 pages, 7927 KB  
Article
Dual-Mode Reconfigurable Frequency-Selective Surface for Switching Between Narrowband and Wideband Applications
by Batuhan Uslu, Sena Esen Bayer Keskin and Nurhan Türker Tokan
Micromachines 2025, 16(9), 1030; https://doi.org/10.3390/mi16091030 - 8 Sep 2025
Viewed by 492
Abstract
This study presents a reconfigurable frequency-selective surface (R-FSS) designed to dynamically switch between WLAN, WiMAX, and sub-6 GHz band frequencies. The electronic switching mechanism of this R-FSS is controlled in real-time using PIN-diodes. Depending on the activation state of these diodes, the structure [...] Read more.
This study presents a reconfigurable frequency-selective surface (R-FSS) designed to dynamically switch between WLAN, WiMAX, and sub-6 GHz band frequencies. The electronic switching mechanism of this R-FSS is controlled in real-time using PIN-diodes. Depending on the activation state of these diodes, the structure operates in three distinct modes. Among the three modes, one exhibits polarization-stable wideband suppression, whereas the other two demonstrate polarization selectivity by interchanging between the dual-narrow and single-wide stopband regimes under orthogonal polarizations. The design is described with an equivalent-circuit model, corroborated by full-wave electromagnetic simulations, and validated through measurements of a fabricated prototype. This reconfigurability allows the proposed structure to operate across WLAN, sub-6 GHz, and WiMAX frequency ranges either with two narrow stopbands or with a single-wide stopband, while providing polarization selectivity for frequency-selective applications. Full article
(This article belongs to the Special Issue RF MEMS and Microsystems)
Show Figures

Figure 1

22 pages, 7077 KB  
Article
Modeling and Analysis for Estimation of Junction Temperature Under Various Operating Conditions and Optimization of Pin-Fin Heat Sink for Automotive IGBT Modules
by Chuncen Wu, Feng Wang and Yifan Song
Appl. Sci. 2025, 15(17), 9817; https://doi.org/10.3390/app15179817 - 7 Sep 2025
Viewed by 830
Abstract
New energy vehicles (NEVs) rely heavily on Insulated-Gate Bipolar Transistors (IGBTs) to perform frequent battery voltage conversions for operations such as acceleration, deceleration, and hill climbing. Consequently, effective thermal management of the IGBT junction temperature is critically important. This study investigates the junction [...] Read more.
New energy vehicles (NEVs) rely heavily on Insulated-Gate Bipolar Transistors (IGBTs) to perform frequent battery voltage conversions for operations such as acceleration, deceleration, and hill climbing. Consequently, effective thermal management of the IGBT junction temperature is critically important. This study investigates the junction temperature of IGBT modules equipped with pin-fin heat sinks of varying spacings under diverse operating conditions. The effects of the coolant inlet flow velocity and temperature on the junction temperature were examined. Furthermore, the pin-fin heat sink structure was optimized to enhance temperature uniformity across the IGBT chips. The results indicate that (1) IGBT modules with small-spacing pin-fin heat sinks exhibit improved thermal performance and enhanced temperature uniformity under specific conditions; (2) coolant inlet flow velocity is positively correlated with both module cooling efficiency and temperature uniformity; (3) coolant inlet temperature is inversely correlated with module junction temperature and chip junction temperature uniformity; and (4) among the three optimization schemes evaluated, the dual-channel, non-uniformly spaced pin-fin heat sink delivered the optimal performance, reducing the maximum junction temperature difference between IGBT chips to approximately 0.5 °C and that between diode chips to approximately 1.0 °C. Full article
(This article belongs to the Section Applied Thermal Engineering)
Show Figures

Figure 1

13 pages, 3097 KB  
Article
Reconfigurable Microwave Absorption Properties and Principles of Double-Layer Metasurface Absorbers
by Yun He, Zhiming Zhang, Qingyang Wang, Qiyuan Wang, Qin Fu and Yulu Zhang
Molecules 2025, 30(17), 3608; https://doi.org/10.3390/molecules30173608 - 3 Sep 2025
Viewed by 1205
Abstract
A reconfigurable microwave absorber based on double-layer metasurface is proposed for wide microwave band applications spanning 3 to 14 GHz. The absorber consists of two layers with two-dimensional array of four-semi-circular and square-ring metasurface patches loaded impedance devices, two spacers composed of honeycomb [...] Read more.
A reconfigurable microwave absorber based on double-layer metasurface is proposed for wide microwave band applications spanning 3 to 14 GHz. The absorber consists of two layers with two-dimensional array of four-semi-circular and square-ring metasurface patches loaded impedance devices, two spacers composed of honeycomb materials, and a bottom copper substrate. In order to break through the limitation of single-layer absorbers at finite resonant frequencies, a special double-layered metasurface structure is adopted. The layer I of metasurface is designed with two resonant peaks near the X band and transmission performance in the C band. Simultaneously, the layer II of metasurface is designed with a resonant peak near the C band and reflection performance in the X band. To achieve a reconfigurable effect, impedance adjustable device, such as PIN diodes, are connected between patterned metasurface cells of layer I. The simulation results revealed that the double-layer metasurface absorber can not only achieve broadband absorption effect, with the reflection value below −10 dB from 3.1 to 14.2 GHz, but also adjust the electromagnetic absorption rate, with the reflection value below −20 dB covers a bandwidth of 6.6–9 GHz. The good agreement between simulation and measurement validates the proposed absorber. Full article
Show Figures

Figure 1

15 pages, 37613 KB  
Article
Wideband Reconfigurable Reflective Metasurface with 1-Bit Phase Control Based on Polarization Rotation
by Zahid Iqbal, Xiuping Li, Zihang Qi, Wenyu Zhao, Zaid Akram and Muhammad Ishfaq
Telecom 2025, 6(3), 65; https://doi.org/10.3390/telecom6030065 - 3 Sep 2025
Viewed by 828
Abstract
The rapid expansion of broadband wireless communication systems, including 5G, satellite networks, and next-generation IoT platforms, has created a strong demand for antenna architectures capable of real-time beam control, compact integration, and broad frequency coverage. Traditional reflectarrays, while effective for narrowband applications, often [...] Read more.
The rapid expansion of broadband wireless communication systems, including 5G, satellite networks, and next-generation IoT platforms, has created a strong demand for antenna architectures capable of real-time beam control, compact integration, and broad frequency coverage. Traditional reflectarrays, while effective for narrowband applications, often face inherent limitations such as fixed beam direction, high insertion loss, and complex phase-shifting networks, making them less viable for modern adaptive and reconfigurable systems. Addressing these challenges, this work presents a novel wideband planar metasurface that operates as a polarization rotation reflective metasurface (PRRM), combining 90° polarization conversion with 1-bit reconfigurable phase modulation. The metasurface employs a mirror-symmetric unit cell structure, incorporating a cross-shaped patch with fan-shaped stub loading and integrated PIN diodes, connected through vertical interconnect accesses (VIAs). This design enables stable binary phase control with minimal loss across a significantly wide frequency range. Full-wave electromagnetic simulations confirm that the proposed unit cell maintains consistent cross-polarized reflection performance and phase switching from 3.83 GHz to 15.06 GHz, achieving a remarkable fractional bandwidth of 118.89%. To verify its applicability, the full-wave simulation analysis of a 16 × 16 array was conducted, demonstrating dynamic two-dimensional beam steering up to ±60° and maintaining a 3 dB gain bandwidth of 55.3%. These results establish the metasurface’s suitability for advanced beamforming, making it a strong candidate for compact, electronically reconfigurable antennas in high-speed wireless communication, radar imaging, and sensing systems. Full article
Show Figures

Figure 1

9 pages, 2952 KB  
Communication
Interfacial Polarization Mechanism in Image Sticking of Polyimide-Based Flexible OLEDs
by Zhipeng Li, Haowen Li, Dawei Ma, Baojie Zhao and Yanbo Li
Polymers 2025, 17(17), 2333; https://doi.org/10.3390/polym17172333 - 28 Aug 2025
Viewed by 677
Abstract
Organic light-emitting diodes (OLEDs) have emerged as a critical battleground in display technology due to their self-emissive and foldable properties. However, the adoption of polyimide (PI) as a flexible substrate material introduces technical challenges, particularly image sticking. This study proposes an interfacial polarization [...] Read more.
Organic light-emitting diodes (OLEDs) have emerged as a critical battleground in display technology due to their self-emissive and foldable properties. However, the adoption of polyimide (PI) as a flexible substrate material introduces technical challenges, particularly image sticking. This study proposes an interfacial polarization mechanism to explain this phenomenon, confirmed through dielectric and ferroelectric spectroscopy. The results show that introducing an amorphous silicon (α-Si) interlayer significantly improves interface compatibility, increasing the polarization response frequency from 74 Hz to 116 Hz and reducing residual polarization strength from 2.81 nC/cm2 to 1.00 nC/cm2. Practical tests on OLED devices demonstrate that the optimized structure (PI/α-Si/SiO2) lowers the image sticking score from 3.46 to 1.67, validating the proposed mechanism. This research provides both theoretical insights and practical solutions for mitigating image sticking in flexible OLED displays. Full article
(This article belongs to the Section Smart and Functional Polymers)
Show Figures

Figure 1

18 pages, 7955 KB  
Article
A Very Compact Eleven-State Bandpass Filter with Split-Ring Resonators
by Marko Ninić, Branka Jokanović and Milka Potrebić Ivaniš
Electronics 2025, 14(17), 3348; https://doi.org/10.3390/electronics14173348 - 22 Aug 2025
Viewed by 484
Abstract
In this paper, we present an extremely compact eleven-state microwave filter with four concentric split-ring resonators (SRRs). Reconfigurability is achieved by switching off either single or multiple SRRs, thereby obtaining different triple-band, dual-band, and single-band configurations from the initial quad-band topology. Switches are [...] Read more.
In this paper, we present an extremely compact eleven-state microwave filter with four concentric split-ring resonators (SRRs). Reconfigurability is achieved by switching off either single or multiple SRRs, thereby obtaining different triple-band, dual-band, and single-band configurations from the initial quad-band topology. Switches are placed on the vertical branches of SRRs in order to minimize the additional insertion loss. As switching elements, we first use traditional RF switches—PIN diodes—and then examine the integration of non-volatile RF switches—memristors—into filter design. Memristors’ ability to remember previous electrical states makes them a main building block for designing circuits that are both energy-efficient and adaptive, opening a new era in electronics and artificial intelligence. As RF memristors are not commercially available, PIN diodes are used for experimental filter verification. Afterwards, we compare the filter characteristics realized with PIN diodes and memristors to present capabilities of memristor technology. Memristors require no bias, and their parasitic effects are modeled with low resistance for the ON state and low capacitance for the OFF state. Measured performances of all obtained configurations are in good agreement with the simulations. The filter footprint area is 26 mm × 29 mm on DiClad substrate. Full article
(This article belongs to the Special Issue Memristors beyond the Limitations: Novel Methods and Materials)
Show Figures

Figure 1

13 pages, 4732 KB  
Article
A Compact and Wideband Active Asymmetric Transmit Array Unit Cell for Millimeter-Wave Applications
by Fahad Ahmed, Noureddine Melouki, Peyman PourMohammadi, Hassan Naseri and Tayeb A. Denidni
Sensors 2025, 25(16), 5168; https://doi.org/10.3390/s25165168 - 20 Aug 2025
Viewed by 644
Abstract
This study presents a compact reconfigurable asymmetric unit cell designed for millimeter-wave (mm-wave) transmit array (TA) antennas. Despite its compact size, the proposed unit cell achieves a broad bandwidth and low insertion loss. By breaking the symmetry of the unit cell and by [...] Read more.
This study presents a compact reconfigurable asymmetric unit cell designed for millimeter-wave (mm-wave) transmit array (TA) antennas. Despite its compact size, the proposed unit cell achieves a broad bandwidth and low insertion loss. By breaking the symmetry of the unit cell and by implementing two MA4AGP910 pin diodes in the proposed unit cell, a phase difference of 180 degrees (1-bit configuration) is obtained in a wide frequency band. The unit cell is fabricated using an LPKF laser machine and characterized using WR-34 waveguide. Measurement results closely match those obtained by simulations, confirming the design’s accuracy. With these functionalities, the proposed 1-bit unit cell emerges as a promising candidate for mm-wave transmit array antennas. Full article
(This article belongs to the Special Issue Recent Development of Millimeter-Wave Technologies)
Show Figures

Figure 1

11 pages, 1232 KB  
Article
Research on Low-Spurious and High-Threshold Limiter
by Zheng-Bin Wang, Xiang-Ping Ji, Qian Li and Zhi-Hang Wu
Electronics 2025, 14(16), 3283; https://doi.org/10.3390/electronics14163283 - 19 Aug 2025
Viewed by 401
Abstract
In this paper, a low-spurious and high-threshold limiter is proposed for C-band applications, where power dividers and phase shifters are used to improve the threshold and reduce the spurious response, respectively. Through the principles of multipath synthesis and phase cancellation, the enhancement of [...] Read more.
In this paper, a low-spurious and high-threshold limiter is proposed for C-band applications, where power dividers and phase shifters are used to improve the threshold and reduce the spurious response, respectively. Through the principles of multipath synthesis and phase cancellation, the enhancement of fundamental frequency signals and the suppression of harmonic spurs are achieved. The simulated and measured results demonstrate that the presented design can realize a harmonic suppression ratio (HSR) of more than 38.0 dB in the frequency band of 2.6–3.1 GHz. The threshold of the limiter is improved by 3.0 dB, the maximum insertion loss is less than 1.0 dB, and the return loss is more than 13.0 dB. Full article
(This article belongs to the Section Electronic Materials, Devices and Applications)
Show Figures

Figure 1

10 pages, 3553 KB  
Article
A Trench Heterojunction Diode-Integrated 4H-SiC LDMOS with Enhanced Reverse Recovery Characteristics
by Yanjuan Liu, Fangfei Bai and Junpeng Fang
Micromachines 2025, 16(8), 909; https://doi.org/10.3390/mi16080909 - 4 Aug 2025
Viewed by 509
Abstract
In this paper, a novel 4H-SiC LDMOS structure with a trench heterojunction in the source (referred as to THD-LDMOS) is proposed and investigated for the first time, to enhance the reverse recovery performance of its parasitic diode. Compared with 4H-SiC, silicon has a [...] Read more.
In this paper, a novel 4H-SiC LDMOS structure with a trench heterojunction in the source (referred as to THD-LDMOS) is proposed and investigated for the first time, to enhance the reverse recovery performance of its parasitic diode. Compared with 4H-SiC, silicon has a smaller band energy, which results in a lower built-in potential for the junction formed by P+ polysilicon and a 4N-SiC N-drift region. A trench P+ polysilicon is introduced in the source side, forming a heterojunction with the N-drift region, and this heterojunction is unipolar and connected in parallel with the body PiN diode. When the LDMOS operates as a freewheeling diode, the trench heterojunction conducts first, preventing the parasitic PiN from turning on and thereby significantly reducing the number of carriers in the N-drift region. Consequently, THD-LDMOS exhibits superior reverse recovery characteristics. The simulation results indicate that the reverse recovery peak current and reverse recovery charge of THD-LDMOS are reduced by 55.5% and 77.6%, respectively, while the other basic electrical characteristics remains unaffected. Full article
(This article belongs to the Special Issue Advanced Wide Bandgap Semiconductor Materials and Devices)
Show Figures

Figure 1

23 pages, 2295 KB  
Review
Advances in Interfacial Engineering and Structural Optimization for Diamond Schottky Barrier Diodes
by Shihao Lu, Xufang Zhang, Shichao Wang, Mingkun Li, Shuopei Jiao, Yuesong Liang, Wei Wang and Jing Zhang
Materials 2025, 18(15), 3657; https://doi.org/10.3390/ma18153657 - 4 Aug 2025
Viewed by 733
Abstract
Diamond, renowned for its exceptional electrical, physical, and chemical properties, including ultra-wide bandgap, superior hardness, high thermal conductivity, and unparalleled stability, serves as an ideal candidate for next-generation high-power and high-temperature electronic devices. Among diamond-based devices, Schottky barrier diodes (SBDs) have garnered significant [...] Read more.
Diamond, renowned for its exceptional electrical, physical, and chemical properties, including ultra-wide bandgap, superior hardness, high thermal conductivity, and unparalleled stability, serves as an ideal candidate for next-generation high-power and high-temperature electronic devices. Among diamond-based devices, Schottky barrier diodes (SBDs) have garnered significant attention due to their simple architecture and superior rectifying characteristics. This review systematically summarizes recent advances in diamond SBDs, focusing on both metal–semiconductor (MS) and metal–interlayer–semiconductor (MIS) configurations. For MS structures, we critically analyze the roles of single-layer metals (including noble metals, transition metals, and other metals) and multilayer metals in modulating Schottky barrier height (SBH) and enhancing thermal stability. However, the presence of interface-related issues such as high densities of surface states and Fermi level pinning often leads to poor control of the SBH, limiting device performance and reliability. To address these challenges and achieve high-quality metal/diamond interfaces, researchers have proposed various interface engineering strategies. In particular, the introduction of interfacial layers in MIS structures has emerged as a promising approach. For MIS architectures, functional interlayers—including high-k materials (Al2O3, HfO2, SnO2) and low-work-function materials (LaB6, CeB6)—are evaluated for their efficacy in interface passivation, barrier modulation, and electric field control. Terminal engineering strategies, such as field-plate designs and surface termination treatments, are also highlighted for their role in improving breakdown voltage. Furthermore, we emphasize the limitations in current parameter extraction from current–voltage (I–V) properties and call for a unified new method to accurately determine SBH. This comprehensive analysis provides critical insights into interface engineering strategies and evaluation protocols for high-performance diamond SBDs, paving the way for their reliable deployment in extreme conditions. Full article
Show Figures

Graphical abstract

10 pages, 2156 KB  
Article
Highly Linear Loaded-Line Phase Shifter Utilizing Impedance Transformer and PIN Diode
by Farhad Ghorbani, Amir Dayan, Jiafeng Zhou and Yi Huang
Microwave 2025, 1(2), 7; https://doi.org/10.3390/microwave1020007 - 30 Jul 2025
Viewed by 2326
Abstract
This paper presents a highly linear one-bit loaded-line phase shifter that leverages PIN diodes in combination with a coupler-based impedance transformer. The proposed phase shifter adopts a loaded-line topology, where PIN diodes are configured in a parallel-to-ground arrangement to improve linearity performance. To [...] Read more.
This paper presents a highly linear one-bit loaded-line phase shifter that leverages PIN diodes in combination with a coupler-based impedance transformer. The proposed phase shifter adopts a loaded-line topology, where PIN diodes are configured in a parallel-to-ground arrangement to improve linearity performance. To further enhance linearity, a coupler-based impedance transformer is employed to reduce the impedance seen by each PIN diode, thereby minimizing nonlinear behavior. To demonstrate the effectiveness of this design, a one-bit digital phase shifter is developed, simulated, and fabricated to achieve a 45-degree phase shift at 2 GHz. Experimental measurements confirm an input third-order intercept point (IIP3) exceeding 100 dBm under a range of test conditions, validating the proposed architecture’s linearity advantages. Full article
Show Figures

Figure 1

Back to TopTop