Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = Pd nanorods

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 4627 KiB  
Article
Boosting Photoresponse Performance and Stability of Photoelectrochemical Photodetectors by Chemical Bath Depositing Multilayer MoS2 on ZnO Electrode
by Jingyao Ma, Jiawei Wang, Xin Shi, Tianqi Sun and Pengpeng Dai
Nanomaterials 2025, 15(12), 875; https://doi.org/10.3390/nano15120875 - 6 Jun 2025
Viewed by 423
Abstract
ZnO nanorods are promising nanomaterials for photoelectrochemical photodetectors (PEC PDs). However, the weak photocurrent density, delayed response, and low stability of ZnO are major drawbacks for their applications. To address these challenges, we integrated multilayer MoS2 nanosheets with ZnO nanorods using a [...] Read more.
ZnO nanorods are promising nanomaterials for photoelectrochemical photodetectors (PEC PDs). However, the weak photocurrent density, delayed response, and low stability of ZnO are major drawbacks for their applications. To address these challenges, we integrated multilayer MoS2 nanosheets with ZnO nanorods using a chemical bath deposition method. The resulting ZnO/MoS2 heterojunction achieved a photocurrent density of 1.02 mA/cm2 (~20 times higher than that of bare ZnO), ultrafast response times (90/150 ms), and 92% stability retention over 3600 s. These enhancements originated from suppressed charge recombination and accelerated water oxidation kinetics. Our work provides another possible energy-saving route toward developing high-efficiency and stable ZnO-based photoanodes for practical applications in PEC PDs. Full article
Show Figures

Graphical abstract

11 pages, 1901 KiB  
Article
The Fabrication and Characterization of Self-Powered P-I-N Perovskite Photodetectors Using Yttrium-Doped Cuprous Thiocyanate
by Jai-Hao Wang, Bo-Chun Chen and Sheng-Yuan Chu
Micromachines 2025, 16(6), 666; https://doi.org/10.3390/mi16060666 - 31 May 2025
Cited by 1 | Viewed by 636
Abstract
In the first part of this study, Y2O3-doped copper thiocyanate (CuSCN) with different x wt% (named CuSCN-xY, x = 0, 1, 2, and 3) films were synthesized onto ITO substrates using the spin coating method. UV-vis, SEM, AFM, EDS, [...] Read more.
In the first part of this study, Y2O3-doped copper thiocyanate (CuSCN) with different x wt% (named CuSCN-xY, x = 0, 1, 2, and 3) films were synthesized onto ITO substrates using the spin coating method. UV-vis, SEM, AFM, EDS, and cyclic voltammetry were used to investigate the material properties of the proposed films. The conductivity and carrier mobility of the films increased with additional yttrium doping. It was found that the films with 2% Y2O3 (CuSCN-2Y) have the smallest valence band edges (5.28 eV). Meanwhile, CuSCN-2Y films demonstrated the densest surface morphology and the smallest surface roughness (22.8 nm), along with the highest conductivity value of 764 S cm−1. Then, P-I-N self-powered UV photodetectors (PDs) were fabricated using the ITO substrate/ZnO seed layer/ZnO nanorod/CsPbBr3/CuSCN-xY/Ag structure, and the characteristics of the devices were measured. In terms of response time, the rise time and fall time were reduced from 26 ms/22 ms to 9 ms/5 ms; the responsivity was increased from 243 mA/W to 534 mA/W, and the on/off ratio was increased to 2.47 × 106. The results showed that Y2O3 doping also helped improve the P-I-N photodetector’s device performance, and the mechanisms were investigated. Compared with other published P-I-N self-powered photodetectors, our proposed devices show a fairly high on/off ratio, quick response times, and high responsivity and detectivity. Full article
Show Figures

Figure 1

15 pages, 10805 KiB  
Article
DFT-Based Investigation of Pd-Modified WO3/Porous Silicon Composites for NO2 Gas Sensors: Enhanced Synergistic Effect and High-Performance Sensing
by Xiaoyong Qiang, Zhipeng Wang, Yongliang Guo and Weibin Zhou
Coatings 2025, 15(5), 570; https://doi.org/10.3390/coatings15050570 - 9 May 2025
Viewed by 455
Abstract
Pd-WO3 coatings on porous silicon (PSi) substrates are engineered to enhance interfacial charge transfer and surface reactivity through atomic-scale structural tailoring. This study combines first-principles calculations and experimental characterization to elucidate how Pd nanoparticles (NPs) optimize the coating’s electronic structure and environmental [...] Read more.
Pd-WO3 coatings on porous silicon (PSi) substrates are engineered to enhance interfacial charge transfer and surface reactivity through atomic-scale structural tailoring. This study combines first-principles calculations and experimental characterization to elucidate how Pd nanoparticles (NPs) optimize the coating’s electronic structure and environmental stability. The hierarchical PSi framework with uniform nanopores (200–500 nm) serves as a robust substrate for WO3 nanorod growth (50–100 nm diameter), while Pd decoration (15%–20% surface coverage) strengthens Pd–O–W interfacial bonds, amplifying electron density at the Fermi level by 2.22-fold. Systematic computational analysis reveals that Pd-induced d-p orbital hybridization near the Fermi level (−2 to +1 eV) enhances charge delocalization, optimizing interfacial charge transfer. Experimentally, these modifications enhance the coating’s response to environmental degradation, showing less than 3% performance decay over 30 days under cyclic humidity (45 ± 3% RH). Although designed for gas sensing, the coating’s high surface-to-volume ratio and delocalized charge transport channels demonstrate broader applicability in catalytic and high-stress environments. This work provides a paradigm for designing multifunctional coatings through synergistic interface engineering. Full article
Show Figures

Figure 1

16 pages, 6076 KiB  
Article
Facile Synthesis of Palladium Nanorods: Self-Assembly into Thin 2D Layers for SERS Sensing
by Mohammad Navvabpour, Safi Jradi, Pierre-Michel Adam and Suzanna Akil
Chemosensors 2025, 13(2), 47; https://doi.org/10.3390/chemosensors13020047 - 3 Feb 2025
Cited by 1 | Viewed by 1018
Abstract
This study presents a simple, high-throughput synthesis approach for fabricating palladium (Pd) nanomaterials with anisotropic shapes, specifically Pd nanorods, via a self-assembly process. This method avoids the use of reducing agents, surface functionalization, and stabilizing agents. Palladium–poly(methyl methacrylate) (Pd-PMMA) nanocomposites were successfully synthesized [...] Read more.
This study presents a simple, high-throughput synthesis approach for fabricating palladium (Pd) nanomaterials with anisotropic shapes, specifically Pd nanorods, via a self-assembly process. This method avoids the use of reducing agents, surface functionalization, and stabilizing agents. Palladium–poly(methyl methacrylate) (Pd-PMMA) nanocomposites were successfully synthesized using a vapor-induced phase separation (VIPS) method. The formation of Pd nanorods was controlled by tuning key parameters, such as the Pd precursor concentration, choice of solvents, and spin coating speed. Notably, the resulting nanorods exhibited high reproducibility and ultrasensitivity as a surface-enhanced Raman scattering (SERS) platform, achieving an enhancement factor of approximately 1.8 × 105, despite the relatively weak plasmonic properties of Pd. This work represents a novel, facile strategy for Pd nanorod synthesis, offering new potential for the design of Pd-based nanosensors for chemical sensing applications. Full article
(This article belongs to the Special Issue Advanced Surface Plasmon Resonance Sensors)
Show Figures

Figure 1

19 pages, 2712 KiB  
Article
Implementing an Analytical Model to Elucidate the Impacts of Nanostructure Size and Topology of Morphologically Diverse Zinc Oxide on Gas Sensing
by Sanju Gupta and Haiyang Zou
Chemosensors 2025, 13(2), 38; https://doi.org/10.3390/chemosensors13020038 - 26 Jan 2025
Cited by 3 | Viewed by 3027
Abstract
The development of state-of-the-art gas sensors based on metal oxide semiconductors (MOS) to monitor hazardous and greenhouse gas (e.g., methane, CH4, and carbon dioxide, CO2) has been significantly advanced. Moreover, the morphological and topographical structures of MOSs have significantly [...] Read more.
The development of state-of-the-art gas sensors based on metal oxide semiconductors (MOS) to monitor hazardous and greenhouse gas (e.g., methane, CH4, and carbon dioxide, CO2) has been significantly advanced. Moreover, the morphological and topographical structures of MOSs have significantly influenced the gas sensors by means of surface catalytic activities. This work examines the impact of morphological and topological networked assembly of zinc oxide (ZnO) nanostructures, including microparticles and nanoparticles (0D), nanowires and nanorods (1D), nanodisks (2D), and hierarchical networks of tetrapods (3D). Gas sensors consisting of vertically aligned ZnO nanorods (ZnO–NR) and topologically interconnected tetrapods (T–ZnO) of varying diameter and arm thickness synthesized using aqueous phase deposition and flame transport method on interdigitated Pt electrodes are evaluated for methane detection. Smaller-diameter nanorods and tetrapod arms (nanowire-like), having higher surface-to-volume ratios with reasonable porosity, exhibit improved sensing behavior. Interestingly, when the nanorods’ diameter and interconnected tetrapod arm thickness were comparable to the width of the depletion layer, a significant increase in sensitivity (from 2 to 30) and reduction in response/recovery time (from 58 s to 5.9 s) resulted, ascribed to rapid desorption of analyte species. Additionally, nanoparticles surface-catalyzed with Pd (~50 nm) accelerated gas sensing and lowered operating temperature (from 200 °C to 50 °C) when combined with UV photoactivation. We modeled the experimental findings using a modified general formula for ZnO methane sensors derived from the catalytic chemical reaction between methane molecules and oxygen ions and considered the structural surface-to-volume ratios (S/V) and electronic depletion region width (Ld) applicable to other gas sensors (e.g., SnO2, TiO2, MoO3, and WO3). Finally, the effects of UV light excitation reducing detection temperature help to break through the bottleneck of ZnO-based materials as energy-saving chemiresistors and promote applications relevant to environmental and industrial harmful gas detection. Full article
Show Figures

Figure 1

14 pages, 8516 KiB  
Article
A Flexible Multifunctional Sensor Based on an AgNW@ZnONR Composite Material
by Hao Lv, Xue Qi, Yuxin Wang, Yang Ye, Peike Wang, Ao Yin, Jingjing Luo, Zhongqi Ren, Haipeng Liu, Suzhu Yu and Jun Wei
Materials 2024, 17(19), 4788; https://doi.org/10.3390/ma17194788 - 29 Sep 2024
Cited by 1 | Viewed by 889
Abstract
A multifunctional sensor comprising flexible and transparent ultraviolet (UV) photodetectors (PDs) with strain gauges based on Ag nanowire (AgNW)@ZnO nanorods (ZnONRs) was fabricated using a cost-effective, simple, and efficient method. High-aspect ratio silver nanowires were synthesized using the polyol method. An AgNW@ZnONR composite [...] Read more.
A multifunctional sensor comprising flexible and transparent ultraviolet (UV) photodetectors (PDs) with strain gauges based on Ag nanowire (AgNW)@ZnO nanorods (ZnONRs) was fabricated using a cost-effective, simple, and efficient method. High-aspect ratio silver nanowires were synthesized using the polyol method. An AgNW@ZnONR composite was formed via the hydrothermal method to ensure the multifunctional capability of the flexible sensors. After refining the process parameters, the size of the ZnO nanorods was decreased to fabricate pliable multifunctional sensors using AgNW@ZnONRs. At a deposition of 0.207 g of AgNW@ZnONRs, the sensor achieves its maximum switching ratio and fastest response time under conditions of 2000 μW/cm2 UV optical power density. With a ton (rise time) of 2.7 s and a toff (fall time) of 2.3 s, the ratio of Ion to Ioff current is 1151. Additionally, the sensor’s maximum optical current value correlates linearly with UV light’s power density. The maximum response current increased from 222.5 pA to 588.1 pA, an increase of 164.3%, when the bending angle was increased from 15° to 90° for the sensor with a deposition of 0.276 g of AgNW@ZnONRs. There was no degradation in the response of the sensors after 10,000 bending cycles, as they have excellent stability and repeatability, which means they can meet the requirements of wearable sensor applications. Therefore, there is great potential for the practical application of multifunctional AgNW@ZnONRs in flexible sensors. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

12 pages, 5719 KiB  
Article
Enhanced Acetone Sensing Properties Based on Au-Pd Decorated ZnO Nanorod Gas Sensor
by Yinfeng Shen, Yiping Liu, Chao Fan, Qudong Wang, Ming Li, Zhi Yang and Liming Gao
Sensors 2024, 24(7), 2110; https://doi.org/10.3390/s24072110 - 26 Mar 2024
Cited by 10 | Viewed by 2529
Abstract
The mature processes of metal oxide semiconductors (MOS) have attracted considerable interest. However, the low sensitivity of metal oxide semiconductor gas sensors is still challenging, and constrains its practical applications. Bimetallic nanoparticles are of interest owing to their excellent catalytic properties. This excellent [...] Read more.
The mature processes of metal oxide semiconductors (MOS) have attracted considerable interest. However, the low sensitivity of metal oxide semiconductor gas sensors is still challenging, and constrains its practical applications. Bimetallic nanoparticles are of interest owing to their excellent catalytic properties. This excellent feature of bimetallic nanoparticles can solve the problems existing in MOS gas sensors, such as the low response, high operating temperature and slow response time. To enhance acetone sensing performance, we successfully synthesized Au-Pd/ZnO nanorods. In this work, we discovered that Au-Pd nanoparticles modified on ZnO nanorods can remarkably enhance sensor response. The Au-Pd/ZnO gas sensor has long-term stability and an excellent response/recovery process. This excellent sensing performance is attributed to the synergistic catalytic effect of bimetallic AuPd nanoparticles. Moreover, the electronic and chemical sensitization of noble metals also makes a great contribution. This work presents a simple method for preparing Au-Pd/ZnO nanorods and provides a new solution for the detection of acetone based on metal oxide semiconductor. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

19 pages, 5003 KiB  
Article
Surface-Catalyzed Zinc Oxide Nanorods and Interconnected Tetrapods as Efficient Methane Gas Sensing Platforms
by Abbey Knoepfel, Bed Poudel and Sanju Gupta
Chemosensors 2023, 11(9), 506; https://doi.org/10.3390/chemosensors11090506 - 17 Sep 2023
Cited by 3 | Viewed by 2102
Abstract
Nanostructured metal oxide semiconductors have proven to be promising for the gas sensing domain. However, there are challenges associated with the fabrication of high-performance, low-to-room-temperature operation sensors for methane and other gases, including hydrogen sulfide, carbon dioxide, and ammonia. The functional properties of [...] Read more.
Nanostructured metal oxide semiconductors have proven to be promising for the gas sensing domain. However, there are challenges associated with the fabrication of high-performance, low-to-room-temperature operation sensors for methane and other gases, including hydrogen sulfide, carbon dioxide, and ammonia. The functional properties of these semiconducting oxides can be improved by altering the morphology, crystal size, shape, and topology. Zinc oxide (ZnO) is an attractive option for gas sensing, but the need for elevated operating temperatures has limited its practical use as a commercial gas sensor. In this work, we prepared ZnO nanorod (ZnO-NR) arrays and interconnected tetrapod ZnO (T-ZnO) network sensing platforms as chemiresistive methane sensors on silicon substrates with platinum interdigitated electrodes and systematically characterized their methane sensing response in addition to their structural and physical properties. We also conducted surface modification by photochemical-catalyzed palladium, Pd, and Pd-Ag alloy nanoparticles and compared the uniformly distributed Pd decoration versus arrayed dots. The sensing performance was assessed in terms of target gas response magnitude (RM) and response percentage (R) recorded by changes in electrical resistance upon exposure to varying methane concentration (100–10,000 ppm) under thermal (operating temperatures = 175, 200, 230 °C) and optical (UV A, 365 nm illumination) excitations alongside response/recovery times, and limit of detection quantification. Thin film sensing platforms based on T-ZnO exhibited the highest response at 200 °C (RM = 2.98; R = 66.4%) compared to ZnO-NR thin films at 230 °C (RM = 1.34; R = 25.5%), attributed to the interconnected network and effective bandgap and barrier height reduction of the T-ZnO. The Pd-Ag-catalyzed and Pd dot-catalyzed T-ZnO films had the fastest response and recovery rates at 200 °C and room temperature under UV excitation, due to the localized Pd nanoparticles dots resulting in nano Schottky barrier formation, as opposed to the films coated with uniformly distributed Pd nanoparticles. The experimental findings present morphological differences, identify various mechanistic aspects, and discern chemical pathways for methane sensing. Full article
(This article belongs to the Special Issue The State-of-the-Art Gas Sensor)
Show Figures

Graphical abstract

16 pages, 3493 KiB  
Article
Au-Nanorods Supporting Pd and Pt Nanocatalysts for the Hydrogen Evolution Reaction: Pd Is Revealed to Be a Better Catalyst than Pt
by Ayoub Laghrissi and Mohammed Es-Souni
Nanomaterials 2023, 13(13), 2007; https://doi.org/10.3390/nano13132007 - 5 Jul 2023
Cited by 2 | Viewed by 2018
Abstract
Ordered thin films of Au nanorods (NRs) on Ti/Au/Si heterostructure substrates are electrodeposited in thin film aluminum oxide templates and, after template removal, serve as supports for Pd and Pt nanocatalysts. Based on previous work which showed a better electrocatalytic performance for layered [...] Read more.
Ordered thin films of Au nanorods (NRs) on Ti/Au/Si heterostructure substrates are electrodeposited in thin film aluminum oxide templates and, after template removal, serve as supports for Pd and Pt nanocatalysts. Based on previous work which showed a better electrocatalytic performance for layered Au/Pd nanostructures than monolithic Pd, electrodeposited 20 nm Pd discs on Au-NRs are first investigated in terms of their catalytic activity for the hydrogen evolution reaction (HER) and compared to monolithic 20 nm Pd and Pt discs. To further boost performance, the interfacial interaction area between the Au-NRs supports and the active metals (Pt and Pd) was increased via magnetron sputtering an extremely thin layer of Pt and Pd (20 nm overall sputtered thickness) on the Au-NRs after template removal. In this way, the whole NR surface (top and lateral) was covered with Pt and Pd nanoparticles, ensuring a maximum interfacial contact between the support and the active metal. The HER performance obtained was substantially higher than that of the other nanostructures. A Salient result of the present work, however, is the superior activity obtained for sputtered Pd on Au in comparison to that of sputtered Pt on Au. The results also show that increasing the Au-NR length translates in a strong increase in performance. Density functional theory calculations show that the interfacial electronic interactions between Au and Pd lead to suitable values of hydrogen adsorption energy on all possible sites, thus promoting faster (barrier-free diffusion) hydrogen adsorption and its recombination to H2. A Volmer–Heyrovsky mechanism for HER is proposed, and a volcano plot is suggested based on the results of the Tafel plots and the calculated hydrogen adsorption energies. Full article
(This article belongs to the Special Issue 1D and 2D Nanomaterials for Energy Storage and Conversion)
Show Figures

Graphical abstract

17 pages, 2294 KiB  
Article
Cerium End-Deposited Gold Nanorods-Based Photoimmunotherapy for Boosting Tumor Immunogenicity
by Yanlin Feng, Yumei Xu, Zhaoyang Wen, Xin Ning, Jianlin Wang, Deping Wang, Jimin Cao and Xin Zhou
Pharmaceutics 2023, 15(4), 1309; https://doi.org/10.3390/pharmaceutics15041309 - 21 Apr 2023
Cited by 3 | Viewed by 3126
Abstract
Background: Triple-negative breast cancer (TNBC) was closely related to high metastatic risk and mortality and has not yet found a targeted receptor for targeted therapy. Cancer immunotherapy, especially photoimmunotherapy, shows promising potential in TNBC treatment because of great spatiotemporal controllability and non-trauma. However, [...] Read more.
Background: Triple-negative breast cancer (TNBC) was closely related to high metastatic risk and mortality and has not yet found a targeted receptor for targeted therapy. Cancer immunotherapy, especially photoimmunotherapy, shows promising potential in TNBC treatment because of great spatiotemporal controllability and non-trauma. However, the therapeutic effectiveness was limited by insufficient tumor antigen generation and the immunosuppressive microenvironment. Methods: We report on the design of cerium oxide (CeO2) end-deposited gold nanorods (CEG) to achieve excellent near-infrared photoimmunotherapy. CEG was synthesized through hydrolyzing of ceria precursor (cerium acetate, Ce(AC)3) on the surface of Au nanorods (NRs) for cancer therapy. The therapeutic response was first verified in murine mammary carcinoma (4T1) cells and then monitored by analysis of the anti-tumor effect in xenograft mouse models. Results: Under near-infrared (NIR) light irradiation, CEG can efficiently generate hot electrons and avoid hot-electron recombination to release heat and form reactive oxygen species (ROS), triggering immunogenic cell death (ICD) and activating part of the immune response. Simultaneously, combining with PD-1 antibody could further enhance cytotoxic T lymphocyte infiltration. Conclusions: Compared with CBG NRs, CEG NRs showed strong photothermal and photodynamic effects to destroy tumors and activate a part of the immune response. Combining with PD-1 antibody could reverse the immunosuppressive microenvironment and thoroughly activate the immune response. This platform demonstrates the superiority of combination therapy of photoimmunotherapy and PD-1 blockade in TNBC therapy. Full article
Show Figures

Figure 1

18 pages, 5536 KiB  
Article
Synergistic Effect of Pd Co-Catalyst and rGO–TiO2 Hybrid Support for Enhanced Photoreforming of Oxygenates
by Imran Majeed, Ayesha Arif, Afifa Idrees, Hafeez Ullah, Hassan Ali, Arshad Mehmood, Ashi Rashid, Muhammad Arif Nadeem and Muhammad Amtiaz Nadeem
Hydrogen 2023, 4(1), 192-209; https://doi.org/10.3390/hydrogen4010014 - 17 Mar 2023
Cited by 3 | Viewed by 11693
Abstract
Photoreforming biomass-derived waste such as glycerol into hydrogen fuel is a renewable hydrogen generation technology that has the potential to become important due to unavoidable CO2 production during methane steam reforming. Despite tremendous efforts, the challenge of developing highly active photocatalysts at [...] Read more.
Photoreforming biomass-derived waste such as glycerol into hydrogen fuel is a renewable hydrogen generation technology that has the potential to become important due to unavoidable CO2 production during methane steam reforming. Despite tremendous efforts, the challenge of developing highly active photocatalysts at a low cost still remains elusive. Here, we developed a novel photocatalyst with a hybrid support comprising reduced graphene oxide (rGO) and TiO2 nanorods (TNR). rGO in the hybrid support not only performed as an excellent scavenger of electrons from the semiconductor conduction band due to its suitable electrochemical potential, but also acted as an electron transport highway to the metal co-catalyst, which otherwise is not possible by simply increasing metal loading due to the shadowing effect. A series of hybrid supports with different TNR and rGO ratios were prepared by the deposition method. Pd nanoparticles were deposited over hybrid support through the chemical reduction method. Pd/rGO-TNRs photocatalyst containing 4 wt.% rGO contents in the support and 1 wt.% nominal Pd loading demonstrated hydrogen production activity ~41 mmols h−1g−1, which is 4 and 40 times greater than benchmark Au/TiO2 and pristine P25. The findings of this works provide a new strategy in optimizing charge extraction from TiO2, which otherwise has remained impossible due to a fixed tradeoff between metal loading and the detrimental shadowing effect. Full article
Show Figures

Figure 1

22 pages, 7254 KiB  
Article
Multifunctional Mesoporous Silica-Coated Gold Nanorods Mediate Mild Photothermal Heating-Enhanced Gene/Immunotherapy for Colorectal Cancer
by Meirong Li, Jingyu Yang, Xinhuang Yao, Xiang Li, Zhourui Xu, Shiqi Tang, Bangxu Sun, Suxia Lin, Chengbin Yang and Jia Liu
Pharmaceutics 2023, 15(3), 854; https://doi.org/10.3390/pharmaceutics15030854 - 6 Mar 2023
Cited by 12 | Viewed by 2848
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide and the second leading cause of cancer-related deaths in the world. It is urgent to search for safe and effective therapies to address the CRC crisis. The siRNA-based RNA interference targeted silencing of [...] Read more.
Colorectal cancer (CRC) is the third most common cancer worldwide and the second leading cause of cancer-related deaths in the world. It is urgent to search for safe and effective therapies to address the CRC crisis. The siRNA-based RNA interference targeted silencing of PD-L1 has extensive potential in CRC treatment but is limited by the lack of efficient delivery vectors. In this work, the novel cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODNs)/siPD-L1 co-delivery vectors AuNRs@MS/CpG ODN@PEG-bPEI (ASCP) were successfully prepared by two-step surface modification of CpG ODNs-loading and polyethylene glycol-branched polyethyleneimine-coating around mesoporous silica-coated gold nanorods. ASCP promoted dendritic cells (DCs) maturation by delivering CpG ODNs, exhibiting excellent biosafety. Next, mild photothermal therapy (MPTT) mediated by ASCP killed tumor cells and released tumor-associated antigens, further promoting DC maturation. Furthermore, ASCP exhibited mild photothermal heating-enhanced performance as gene vectors, resulting in an increased PD-L1 gene silencing effect. Enhanced DCs maturity and enhanced PD-L1 gene silencing significantly promoted the anti-tumor immune response. Finally, the combination of MPTT and mild photothermal heating-enhanced gene/immunotherapy effectively killed MC38 cells, leading to strong inhibition of CRC. Overall, this work provided new insights into the design of mild photothermal/gene/immune synergies for tumor therapy and may contribute to translational nanomedicine for CRC treatment. Full article
Show Figures

Figure 1

12 pages, 3148 KiB  
Article
Micro-Nanoarchitectonics of Ga2O3/GaN Core-Shell Rod Arrays for High-Performance Broadband Ultraviolet Photodetection
by Ruifan Tang, Guanqi Li, Xun Hu, Na Gao, Jinchai Li, Kai Huang, Junyong Kang and Rong Zhang
Crystals 2023, 13(2), 366; https://doi.org/10.3390/cryst13020366 - 20 Feb 2023
Cited by 9 | Viewed by 3145
Abstract
This study presents broadband ultraviolet photodetectors (BUV PDs) based on Ga2O3/GaN core-shell micro-nanorod arrays with excellent performance. Micro-Nanoarchitectonics of Ga2O3/GaN core-shell rod arrays were fabricated with high-temperature oxidization of GaN micro-nanorod arrays. The PD based [...] Read more.
This study presents broadband ultraviolet photodetectors (BUV PDs) based on Ga2O3/GaN core-shell micro-nanorod arrays with excellent performance. Micro-Nanoarchitectonics of Ga2O3/GaN core-shell rod arrays were fabricated with high-temperature oxidization of GaN micro-nanorod arrays. The PD based on the microrod arrays exhibited an ultrahigh responsivity of 2300 A/W for 280 nm at 7 V, the peak responsivity was approximately 400 times larger than those of the PD based on the planar Ga2O3/GaN film. The responsivity was over 1500 A/W for the 270–360 nm band at 7 V. The external quantum efficiency was up to 1.02 × 106% for 280 nm. Moreover, the responsivity was further increased to 2.65 × 104 A/W for 365 nm and over 1.5 × 104 A/W for 270–360 nm using the nanorod arrays. The physical mechanism may have been attributed to the large surface area of the micro-nanorods coupled with the Ga2O3/GaN heterostructure, which excited more photogenerated holes to be blocked at the Ga2O3 surface and Ga2O3/GaN interface, resulting in a larger internal gain. The overall high performance coupled with large-scale production makes it a promising candidate for practical BUV PD. Full article
(This article belongs to the Special Issue Recent Advances in III-Nitride Semiconductors)
Show Figures

Figure 1

19 pages, 20935 KiB  
Article
Comparing the Variants of Iron Oxide Nanoparticle-Mediated Delivery of miRNA34a for Efficiency in Silencing of PD-L1 Genes in Cancer Cells
by Richa Pandey, Feng-Shuo Yang, Vyshnav Punnath Sivasankaran, Yu-Lun Lo, Yi-Ting Wu, Chia-Yu Chang, Chien-Chih Chiu, Zi-Xian Liao and Li-Fang Wang
Pharmaceutics 2023, 15(1), 215; https://doi.org/10.3390/pharmaceutics15010215 - 8 Jan 2023
Cited by 8 | Viewed by 3842
Abstract
The blocking of programmed death-ligand 1 (PD-L1) in tumor cells represents a powerful strategy in cancer immunotherapy. Using viral vectors to deliver the cargo for inactivating the PD-L1 gene could be associated with host cell genotoxicity and concomitant immune attack. To develop an [...] Read more.
The blocking of programmed death-ligand 1 (PD-L1) in tumor cells represents a powerful strategy in cancer immunotherapy. Using viral vectors to deliver the cargo for inactivating the PD-L1 gene could be associated with host cell genotoxicity and concomitant immune attack. To develop an alternative safe gene delivery method, we designed a unique combination for miRNA34a delivery using a transgene carrier in the form of iron oxide magnetic nanoparticles (IONPs) via magnetofection to downregulate PD-L1 expression in cancer cells. We synthesized IONPs of multiple shapes (IONRs (iron oxide nanorods), IONSs (iron oxide nanospheres), and ITOHs (iron oxide truncated octahedrons)), surface-functionalized with polyethyleneimine (PEI) using the ligand exchange method, as gene delivery systems. Under the guidance of an external magnetic field, PEI@IONPs loaded with plasmid DNA (DNA/PEI@IONPs) encoding GFP showed high transfection efficiency at different weight ratios and time points in A549 and MDA-MB-231 cells. Additionally, the DNA/PEI@IONPs with miRNA34a inserts under a static magnetic field resulted in significant knockdown of the PD-L1 gene, as demonstrated via immunoblotting of the PD-L1 protein. Among the three shapes of IONPs, IONRs showed the highest PD-L1 knockdown efficiency. The genetic expression of miRNA34a was also studied using qPCR and it showed high expression of miRNA in cells treated with PEI@IONRs. Flow cytometry and a live/dead assay confirmed apoptosis after transfection with miRNA34a. To conclude, in this paper, a promising transgene carrier with low cost, negligible cytotoxicity, and high transfection efficiency has been successfully established for miRNA gene delivery in the context of cancer immunotherapy. Full article
(This article belongs to the Special Issue Novel Metal-Based Drugs for Anticancer and Antiviral Applications)
Show Figures

Graphical abstract

15 pages, 4251 KiB  
Article
Solvent-Free Oxidation of Benzyl Alcohol Derivatives by In Situ Generated Redox Couple Pd(0)/PdOx Supported on Ceria Nanorods
by Seyed Sepehr Moeini, Simonetta Tuti, Chiara Battocchio, Igor Luisetto and Daniela Tofani
Catalysts 2023, 13(1), 5; https://doi.org/10.3390/catal13010005 - 21 Dec 2022
Cited by 1 | Viewed by 2731
Abstract
Benzyl alcohol (BnOH) oxidation to benzaldehyde (PhCHO) is a pivotal industrial reaction. The aerobic oxidation of BnOH in solvent-free conditions is highly compatible with the necessity of low environmental impact. In this research work, palladium oxide (PdOx) supported on ceria nanorods [...] Read more.
Benzyl alcohol (BnOH) oxidation to benzaldehyde (PhCHO) is a pivotal industrial reaction. The aerobic oxidation of BnOH in solvent-free conditions is highly compatible with the necessity of low environmental impact. In this research work, palladium oxide (PdOx) supported on ceria nanorods (CeO2-NR), was synthesized, and utilized for aerobic solvent-free oxidation of BnOH derivatives to the corresponding aldehydes. The catalyst, PdOx/CeO2-NR, was characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy/energy-dispersive spectroscopy (FE-SEM/EDS), N2 adsorption-desorption analysis, temperature-programmed reduction with hydrogen (H2-TPR), and X-ray Photoelectron Spectroscopy (XPS), proving that the PdOx (x > 1) particles were highly dispersed on CeO2-NR and have a strong interaction with the support. The PdOx/CeO2-NR catalyst permitted the aerobic oxidation of various benzyl alcohol derivatives with good conversion, and high selectivity towards the corresponding aldehydes. The presence of electron donating groups (EDG) on the benzylic ring enhanced the reactivity as opposed to the electron withdrawing groups (EWG) which were detrimental for the catalytic activity. During the reaction a partial reduction of the metal produced a Pd(0)/PdOx/CeO2-NR redox couple stable in the reaction condition, more reactive and recyclable. Some mechanistic hypotheses are presented. Full article
(This article belongs to the Special Issue Design and Synthesis of Nanostructured Catalysts)
Show Figures

Graphical abstract

Back to TopTop