Facile Synthesis of Palladium Nanorods: Self-Assembly into Thin 2D Layers for SERS Sensing
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis Process
2.2. Sample Characterization
2.3. Simulation Conditions
Principle of Extinction Properties
2.4. SERS Measurements
3. Results and Discussion
3.1. PMMA/Pd Solvent-Mediated Self-Assembly Process
3.2. Tuning the Synthetic Product with the Spin-Coating Speed
3.3. SERS Performance Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jana, N.R.; Gearheart, L.; Murphy, C.J. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J. Phys. Chem. B. 2001, 105, 4065–4067. [Google Scholar] [CrossRef]
- Pérez-Juste, J.; Liz-Marzán, L.M.; Carnie, S.; Chan, D.Y.; Mulvaney, P. Electric-field-directed growth of gold nanorods in aqueous surfactant solutions. Adv. Funct. Mater. 2004, 14, 571–579. [Google Scholar] [CrossRef]
- Murphy, C.J.; Sau, T.K.; Gole, A.M.; Orendorff, C.J.; Gao, J.; Gou, L.; Hunyadi, S.E.; Li, T. Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. J. Phys. Chem. B. 2005, 109, 13857–13870. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzán, L.M.; Mulvaney, P. Gold nanorods: Synthesis, characterization and applications. Coord. Chem. Rev. 2005, 249, 1870–1901. [Google Scholar] [CrossRef]
- Kelly, K.L.; Coronado, E.; Zhao, L.L.; Schatz, G.C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B. 2003, 107, 668–677. [Google Scholar] [CrossRef]
- Harris, N.; Ford, M.J.; Mulvaney, P.; Cortie, M.B. Tunable infrared absorption by metal nanoparticles: The case for gold rods and shells. Gold Bull. 2008, 41, 5–14. [Google Scholar] [CrossRef]
- Jain, P.K.; Lee, K.S.; El-Sayed, I.H.; El-Sayed, M.A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. J. Phys. Chem. B. 2006, 110, 7238–7248. [Google Scholar] [CrossRef]
- Ethayaraja, M.; Bandyopadhyaya, R. Mechanism and modeling of nanorod formation from nanodots. Langmuir 2007, 23, 6418–6423. [Google Scholar] [CrossRef]
- Peng, X.; Manna, L.; Yang, W.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A.P. Shape control of CdSe nanocrystals. Nature 2000, 404, 59–61. [Google Scholar] [CrossRef]
- Trügler, A.; Tinguely, J.-C.; Jakopic, G.; Hohenester, U.; Krenn, J.R.; Hohenau, A. Near-field and SERS enhancement from rough plasmonic nanoparticles. Phys. Rev. B 2014, 89, 165409. [Google Scholar] [CrossRef]
- Jakab, A.; Rosman, C.; Khalavka, Y.; Becker, J.; Trugler, A.; Hohenester, U.; Sonnichsen, C. Highly sensitive plasmonic silver nanorods. ACS Nano 2011, 5, 6880–6885. [Google Scholar] [CrossRef] [PubMed]
- McCord, M.A.; Rooks, M.J. Microlithography. In Handbook of Microlithography, Micromachining and Microfabrication, 1st ed.; Rai-Choudhury, P., Ed.; SPIE Optical Engineering: Bellingham, WA, USA; London, UK, 1997; Volume 1, pp. 230–249. [Google Scholar]
- Vigderman, L.; Khanal, B.P.; Zubarev, E.R. Functional gold nanorods: Synthesis, self-assembly, and sensing applications. Adv. Mater. 2012, 24, 4811–4841. [Google Scholar] [CrossRef] [PubMed]
- Grzelczak, M.; Pérez-Juste, J.; Mulvaney, P.; Liz-Marzán, L.M. Shape control in gold nanoparticle synthesis. Chem. Soc. Rev. 2008, 37, 1783–1791. [Google Scholar] [CrossRef] [PubMed]
- Langille, M.R.; Personick, M.L.; Zhang, J.; Mirkin, C.A. Defining rules for the shape evolution of gold nanoparticles. J. Am. Chem. Soc. 2012, 134, 14542–14554. [Google Scholar] [CrossRef] [PubMed]
- Nehl, C.L.; Hafner, J.H. Shape-dependent plasmon resonances of gold nanoparticles. J. Mater. Chem. C 2008, 18, 2415–2419. [Google Scholar] [CrossRef]
- Murphy, C.J.; Gole, A.M.; Hunyadi, S.E.; Orendorff, C.J. One-dimensional colloidal gold and silver nanostructures. Inorg. Chem. 2006, 45, 7544–7554. [Google Scholar] [CrossRef]
- Gou, L.; Murphy, C.J. Fine-tuning the shape of gold nanorods. Chem. Mater. 2005, 17, 3668–3672. [Google Scholar] [CrossRef]
- Ali, M.R.; Snyder, B.; El-Sayed, M.A. Synthesis and optical properties of small Au nanorods using a seedless growth technique. Langmuir 2012, 28, 9807–9815. [Google Scholar] [CrossRef]
- Si, S.; Leduc, C.; Delville, M.H.; Lounis, B. Short gold nanorod growth revisited: The critical role of the bromide counterion. ChemPhysChem 2012, 13, 193–202. [Google Scholar] [CrossRef]
- Novo, C.; Funston, A.M.; Mulvaney, P. Direct observation of chemical reactions on single gold nanocrystals using surface plasmon spectroscopy. Nat. Nanotechnol. 2008, 3, 598–602. [Google Scholar] [CrossRef]
- Guo, D.-J.; Li, H.-L. Electrochemical synthesis of Pd nanoparticles on functional MWNT surfaces. Electrochem. Commun. 2004, 6, 999–1003. [Google Scholar] [CrossRef]
- Pan, W.; Zhang, X.; Ma, H.; Zhang, J. Electrochemical synthesis, voltammetric behavior, and electrocatalytic activity of Pd nanoparticles. J. Phys. Chem. C 2008, 112, 2456–2461. [Google Scholar] [CrossRef]
- Bishnoi, S.W.; Levin, C.S.; Rozell, C.J.; Johnson, B.R.; Johnson, D.H.; Halas, N.J. All-optical nanoscale pH meter: A plasmonic nanodevice with quantifiable output. In Proceedings of the LEOS 2006-19th Annual Meeting of the IEEE Lasers and Electro-Optics Society, Montreal, QC, Canada, 29 October–2 November 2006; pp. 300–301. [Google Scholar]
- Kim, F.; Kwan, S.; Akana, J.; Yang, P. Langmuir−Blodgett nanorod assembly. J. Am. Chem. Soc. 2001, 123, 4360–4361. [Google Scholar] [CrossRef] [PubMed]
- Baranov, D.; Fiore, A.; Van Huis, M.; Giannini, C.; Falqui, A.; Lafont, U.; Zandbergen, H.; Zanella, M.; Cingolani, R.; Manna, L. Assembly of colloidal semiconductor nanorods in solution by depletion attraction. Nano Lett. 2010, 10, 743–749. [Google Scholar] [CrossRef]
- Orendorff, C.J.; Hankins, P.L.; Murphy, C.J. pH-triggered assembly of gold nanorods. Langmuir 2005, 21, 2022–2026. [Google Scholar] [CrossRef]
- Smith, B.D.; Kirby, D.J.; Keating, C.D. Vertical Arrays of Anisotropic Particles by Gravity-Driven Self-Assembly. Small 2011, 7, 781–787. [Google Scholar] [CrossRef]
- Saeedi, E.; Marcheselli, C.; Shum, A.; Parviz, B. Inertially assisted nanoscale self-assembly. Nanotechnology 2010, 21, 375604. [Google Scholar] [CrossRef]
- Nikoobakht, B.; Wang, Z.; El-Sayed, M. Self-assembly of gold nanorods. J. Phys. Chem. B. 2000, 104, 8635–8640. [Google Scholar] [CrossRef]
- Khanafer, M.; Issa, A.; Akil, S.; Hamieh, T.; Adam, P.-M.; Jradi, S. A general strategy to incorporate a wide range of metallic salts into ring-like organized nanostructures via polymer self-assembly. RSC Adv. 2016, 6, 102843–102852. [Google Scholar] [CrossRef]
- Omar, R. New Way of Synthesis of Uniform Gold Nanoparticles for the Detection of Few Molecules. Ph.D. Thesis, Lorraine University, Metz, France, 2017. [Google Scholar]
- Fahes, A.; Naciri, A.E.; Shoker, M.B.; Akil, S. Self-assembly-based integration of Ag@ Au oligomers and core/shell nanoparticles on polymer chips for efficient sensing devices. Soft Matter. 2023, 19, 321–330. [Google Scholar] [CrossRef]
- Fahes, A.; Naciri, A.E.; Navvabpour, M.; Shoker, M.B.; Jradi, S.; Akil, S. Anisotropic Ag@ Au architectures through real-time surface-based strategy of synthesis: Large-area enhanced nanosensors. Sens. Bio-Sens. Res. 2022, 38, 100528. [Google Scholar] [CrossRef]
- Omar, R.; Naciri, A.E.; Jradi, S.; Battie, Y.; Toufaily, J.; Mortada, H.; Akil, S. One-step synthesis of a monolayer of monodisperse gold nanocubes for SERS substrates. J. Mater. Chem. C 2017, 5, 10813–10821. [Google Scholar] [CrossRef]
- Navvabpour, M.; Adam, P.-M.; Jradi, S.; Akil, S. Self-Assembled Pd Nanocomposites into a Monolayer for Enhanced Sensing Performance. Coatings 2024, 14, 934. [Google Scholar] [CrossRef]
- Fahes, A.; En Naciri, A.; Navvabpour, M.; Jradi, S.; Akil, S. Self-assembled Ag nanocomposites into ultra-sensitive and reproducible large-area SERS-Active opaque substrates. Nanomaterials 2021, 11, 2055. [Google Scholar] [CrossRef]
- Chan Lee, S.; Some, S.; Wook Kim, S.; Jun Kim, S.; Seo, J.; Lee, J.; Lee, T.; Ahn, J.-H.; Choi, H.-J.; Chan Jun, S. Efficient direct reduction of graphene oxide by silicon substrate. Sci. Rep. 2015, 5, 12306. [Google Scholar] [CrossRef]
- Jiang, N.; Zhuo, X.; Wang, J. Active plasmonics: Principles, structures, and applications. Chem. Rev. 2017, 118, 3054–3099. [Google Scholar] [CrossRef]
- Li, J.F.; Huang, Y.F.; Ding, Y.; Yang, Z.L.; Li, S.B.; Zhou, X.S.; Fan, F.R.; Zhang, W.; Zhou, Z.Y.; Wu, D.Y. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 2010, 464, 392–395. [Google Scholar] [CrossRef]
- Li, L.; Hutter, T.; Steiner, U.; Mahajan, S. Single molecule SERS and detection of biomolecules with a single gold nanoparticle on a mirror junction. Analyst 2013, 138, 4574–4578. [Google Scholar] [CrossRef]
- Verma, M.; Kedia, A.; Newmai, M.B.; Kumar, P.S. Differential role of PVP on the synthesis of plasmonic gold nanostructures and their catalytic and SERS properties. RSC Adv. 2016, 6, 80342–80353. [Google Scholar] [CrossRef]
- Hong, Y.; Huh, Y.-M.; Yoon, D.S.; Yang, J. Nanobiosensors based on localized surface plasmon resonance for biomarker detection. J. Nanomater. 2012, 2012, 759830. [Google Scholar] [CrossRef]
- Alvarez-Puebla, R.; Liz-Marzán, L.M.; García de Abajo, F.J. Light concentration at the nanometer scale. J. Phys. Chem. Lett. 2010, 1, 2428–2434. [Google Scholar] [CrossRef]
- Alvarez-Puebla, R.A.; Zubarev, E.R.; Kotov, N.A.; Liz-Marzán, L.M. Self-assembled nanorod supercrystals for ultrasensitive SERS diagnostics. Nano Today 2012, 7, 6–9. [Google Scholar] [CrossRef]
- Li, Y.; Lu, G.; Wu, X.; Shi, G. Electrochemical fabrication of two-dimensional palladium nanostructures as substrates for surface enhanced Raman scattering. J. Phys. Chem. B 2006, 110, 24585–24592. [Google Scholar] [CrossRef] [PubMed]
Element Line | Net Counts | Weight% | Weight% Error | Compound% | Norm. Compound% |
---|---|---|---|---|---|
C K | 2971 | 2.7 | ±0.1 | 2.7 | 2.7 |
N K | 274 | 2.1 | ±0.4 | 2.1 | 2.1 |
O K | 330 | 2.2 | ±0.4 | 2.2 | 2.2 |
Si K | 1621 | 2 | ±0.2 | 2 | 2 |
Pd L | 63,618 | 91.0 | ±4.5 | 91.0 | 91.0 |
Total | 100.0 | 100.0 | 100.0 |
Concentration mM | LSPR Wavelength (nm) | ISERS/INormal |
---|---|---|
60 | 465 ± 6 | 34 ± 5 |
80 | 465 ± 5 | 25 ± 3 |
100 | 505 ± 25 | 78 ± 16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navvabpour, M.; Jradi, S.; Adam, P.-M.; Akil, S. Facile Synthesis of Palladium Nanorods: Self-Assembly into Thin 2D Layers for SERS Sensing. Chemosensors 2025, 13, 47. https://doi.org/10.3390/chemosensors13020047
Navvabpour M, Jradi S, Adam P-M, Akil S. Facile Synthesis of Palladium Nanorods: Self-Assembly into Thin 2D Layers for SERS Sensing. Chemosensors. 2025; 13(2):47. https://doi.org/10.3390/chemosensors13020047
Chicago/Turabian StyleNavvabpour, Mohammad, Safi Jradi, Pierre-Michel Adam, and Suzanna Akil. 2025. "Facile Synthesis of Palladium Nanorods: Self-Assembly into Thin 2D Layers for SERS Sensing" Chemosensors 13, no. 2: 47. https://doi.org/10.3390/chemosensors13020047
APA StyleNavvabpour, M., Jradi, S., Adam, P.-M., & Akil, S. (2025). Facile Synthesis of Palladium Nanorods: Self-Assembly into Thin 2D Layers for SERS Sensing. Chemosensors, 13(2), 47. https://doi.org/10.3390/chemosensors13020047