Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (134)

Search Parameters:
Keywords = Pb2+ selective electrode

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 11910 KiB  
Article
Electrochemical Immunosensor Using COOH-Functionalized 3D Graphene Electrodes for Sensitive Detection of Tau-441 Protein
by Sophia Nazir, Muhsin Dogan, Yinghui Wei and Genhua Pan
Biosensors 2025, 15(7), 465; https://doi.org/10.3390/bios15070465 - 19 Jul 2025
Viewed by 500
Abstract
Early diagnosis of Alzheimer’s disease (AD) is essential for effective treatment; however current diagnostic methods are often complex, costly, and unsuitable for point-of-care testing. Graphene-based biosensors offer an alternative due to their affordability, versatility, and high conductivity. However, graphene’s conductivity can be compromised [...] Read more.
Early diagnosis of Alzheimer’s disease (AD) is essential for effective treatment; however current diagnostic methods are often complex, costly, and unsuitable for point-of-care testing. Graphene-based biosensors offer an alternative due to their affordability, versatility, and high conductivity. However, graphene’s conductivity can be compromised when its carbon lattice is oxidized to introduce functional groups for biomolecule immobilization. This study addresses this challenge by developing an electrochemical immunosensor using carboxyl-modified commercial graphene foam (COOH-GF) electrodes. The conductivity of graphene is preserved by enabling efficient COOH modification through π–π non-covalent interactions, while antibody immobilization is optimized via EDC-NHS carbodiimide chemistry. The immunosensor detects tau-441, an AD biomarker, using differential pulse voltammetry (DPV), achieving a detection range of 1 fM–1 nM, with a limit of detection (LOD) of 0.14 fM both in PBS and human serum. It demonstrates high selectivity against other AD-related proteins, including tau-217, tau-181, amyloid beta (Aβ1-40 and Aβ1-42), and 1% BSA. These findings underscore its potential as a highly sensitive, cost-effective tool for early AD diagnosis. Full article
(This article belongs to the Section Biosensor and Bioelectronic Devices)
Show Figures

Figure 1

16 pages, 1636 KiB  
Article
A Solid-State Nafion-Coated Screen-Printed Electrochemical Sensor for Ultrasensitive and Rapid Detection of Copper Ions in Water
by Yusra M. Obeidat
Processes 2025, 13(7), 2178; https://doi.org/10.3390/pr13072178 - 8 Jul 2025
Viewed by 421
Abstract
Copper is essential for various biological functions, but elevated levels in water can pose serious health risks. In this work, we introduce a novel electrochemical sensor designed for the highly sensitive and selective detection of copper ions. The sensor is based on a [...] Read more.
Copper is essential for various biological functions, but elevated levels in water can pose serious health risks. In this work, we introduce a novel electrochemical sensor designed for the highly sensitive and selective detection of copper ions. The sensor is based on a screen-printed platinum working electrode coated with a solid-state Nafion layer. Compared to previous platinum-based sensors, this design demonstrates enhanced sensitivity, a wide linear detection range (1 µM to 10 mM), and an exceptionally low limit of detection (1 nM). It also offers a rapid response time of 3–6 s, strong selectivity, and excellent stability. Interference from common metal ions such as Cr2+, Zn2+, Mn2+, Pb2+, and Fe2+ was minimal, with signal deviations remaining below 2%, and performance remained consistent across varying anion concentrations, showing less than 1% deviation. The use of Nafion as a solid-state electrolyte successfully overcomes challenges typically associated with traditional silver-based reference electrodes. These characteristics make the sensor a reliable and practical tool for the rapid, on-site monitoring of water quality. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

14 pages, 4505 KiB  
Article
Electrochemical Determination of Creatinine Based on Multienzyme Cascade-Modified Nafion/Gold Nanoparticles/Screen-Printed Carbon Composite Biosensors
by Jialin Yang, Ruizhi Yu, Wanxin Zhang, Yijia Wang and Zejun Deng
Sensors 2025, 25(13), 4132; https://doi.org/10.3390/s25134132 - 2 Jul 2025
Viewed by 392
Abstract
Creatinine serves as a crucial diagnostic biomarker for assessing kidney disease. This work developed portable non-enzymatic and multienzyme-modified electrochemical biosensors for the detection of creatinine based on commercial screen-printed carbon electrodes (SPCEs). The non-enzymatic creatinine sensor was constructed by the electrochemical deposition of [...] Read more.
Creatinine serves as a crucial diagnostic biomarker for assessing kidney disease. This work developed portable non-enzymatic and multienzyme-modified electrochemical biosensors for the detection of creatinine based on commercial screen-printed carbon electrodes (SPCEs). The non-enzymatic creatinine sensor was constructed by the electrochemical deposition of AuNPs onto the surface of a pre-activated SPCE by electrochemical activation, followed by the surface modification of a Nafion membrane. The developed AuNPs/SCPE exhibited excellent reproducibility, and the proposed Nafion/AuNPs/SPCE sensor showed excellent detection sensitivity and selectivity toward creatinine. In comparison, the enzymatic creatinine biosensor was gradually established by the electrodeposition of a Prussian blue (PB) membrane on the optimal AuNPs/SCPE surface, followed by multi-enzyme cascade modification (which consisted of creatinine amidohydrolase (CA), creatine oxidase (CI) and sarcosine oxidase (SOx)) and drop-casting the Nafion membrane to stabilize the interface. The introduction of a PB interlayer acted as the redox layer to monitor the generation of hydrogen peroxide (H2O2) produced by the enzymatic reaction, while the Nafion membrane enhanced the detection selectivity toward creatine, and the multi-enzyme cascade modification further increased the detection specificity. Both non-enzymatic and enzymatic creatinine sensors could detect the lowest concentrations of less than or equal to 10 μM. In addition, the efficiency and reproducibility of the proposed composite biosensor were also confirmed by repetitive electrochemical measurements in human serum, which showed a positive linear calibration relation of peak currents versus the logarithm of the concentration between 10 μM and 1000 μM, namely, ip (μA) = −7.06 lgC (μM) −5.30, R2 = 0.996. This work offers a simple and feasible approach to the development of enzymatic and non-enzymatic creatinine biosensors. Full article
Show Figures

Figure 1

15 pages, 4484 KiB  
Article
A Highly Sensitive Electrochemical Immunosensor for Cortisol Detection
by Pritu Parna Sarkar, Ali Ashraf, Ahmed Hasnain Jalal, Fahmida Alam and Nazmul Islam
Biosensors 2025, 15(5), 321; https://doi.org/10.3390/bios15050321 - 17 May 2025
Viewed by 1094
Abstract
In this research, an interdigitated gear-shaped working electrode is presented for cortisol sensing. Overall, the sensor was designed in a three-electrode system and was fabricated using direct laser scribing. A synthesized conductive ink based on graphene and polyaniline was further employed to enhance [...] Read more.
In this research, an interdigitated gear-shaped working electrode is presented for cortisol sensing. Overall, the sensor was designed in a three-electrode system and was fabricated using direct laser scribing. A synthesized conductive ink based on graphene and polyaniline was further employed to enhance the electrochemical performance of the sensor. Scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy were employed for physicochemical characterization of the laser-induced graphene (LIG) sensor. Cortisol, a biomarker essential in detecting stress, was detected both in phosphate-buffered saline (PBS, pH = 7.4) and human serum within a linear range of 100 ng/mL to 100 µg/mL. Ferri/ferrocyanide was employed as the redox probe to detect cortisol in PBS. The electrochemical performance of the developed sensor was assessed via differential pulse voltammetry (DPV), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and chronoamperometry. The electrochemical performance demonstrates high sensitivity and selectivity alongside strong repeatability (relative standard deviation (RSD) = 3.8%, n = 4) and reproducibility (RSD = 5.85%, n = 5). Overall, these results highlight the sensor’s reliability, high sensitivity, and repeatability and reproducibility in the detection of cortisol. The sensor successfully detected cortisol in the complex medium of human serum and effectively distinguished it in a ternary mixture containing cortisol and dopamine. Also, the use of direct laser writing on Kapton film makes the approach cost-effective and thus disposable, making it suitable for chronic stress diagnostics and neurological research applications. Full article
(This article belongs to the Special Issue Innovative Biosensing Technologies for Sustainable Healthcare)
Show Figures

Figure 1

15 pages, 5448 KiB  
Article
Disposable Electrochemical Serotonin Biosensor Based on the Nanocomposite of Carbon Nanotubes
by Ryang-Hyeon Kim, Won-Yong Jeon, Tae-Won Seo and Young-Bong Choi
Chemosensors 2025, 13(5), 185; https://doi.org/10.3390/chemosensors13050185 - 16 May 2025
Viewed by 767
Abstract
A PAAc-PVI(4:1)@MWCNT hybrid was synthesized for the selective electrochemical detection of serotonin. Multi-walled carbon nanotubes (MWCNT) enhanced electrode conductivity, while the hydrophilic polymer Poly(Acrylic Acid-co-Vinyl imidazole) (PAAc-PVI) facilitated serotonin recognition. At pH 7.4, the carboxyl (-COO) groups in PAAc-PVI interacted with [...] Read more.
A PAAc-PVI(4:1)@MWCNT hybrid was synthesized for the selective electrochemical detection of serotonin. Multi-walled carbon nanotubes (MWCNT) enhanced electrode conductivity, while the hydrophilic polymer Poly(Acrylic Acid-co-Vinyl imidazole) (PAAc-PVI) facilitated serotonin recognition. At pH 7.4, the carboxyl (-COO) groups in PAAc-PVI interacted with the amine (-NH3+) groups of serotonin, enabling oxidation and electron transfer for signal detection. Additionally, π-π interactions between vinylimidazole and MWCNT improved dispersion and stability. The hybrid materials enhanced electron transfer efficiency, increasing sensitivity and reliability. Structural and electrochemical properties were characterized using FT-IR, HR-TEM, TGA, Raman spectroscopy, impedance analysis, and differential pulse voltammetry (DPV). Serotonin detection using the fabricated electrode demonstrated high selectivity (LOD 0.077 μM and LOQ 0.26 μM), reproducibility (%RSD 1X PBS condition (4.63%) and human serum condition (4.81%)), and quantitative capability (dynamic range 1.2 μM to 10.07 μM) without interference (potential shift from +0.40 V to −0.15 V) from blood-based substances, confirming its potential for electrochemical biosensing applications. Full article
Show Figures

Figure 1

16 pages, 4073 KiB  
Article
Innovative Molecular Imprinting Sensor for Quick, Non-Invasive Cortisol Monitoring in Fish Welfare
by Hugo G. Santos, Daniela Santos Oliveira and Felismina T. C. Moreira
Biosensors 2025, 15(4), 204; https://doi.org/10.3390/bios15040204 - 21 Mar 2025
Viewed by 959
Abstract
The assessment of fish welfare is crucial to prevent economic losses in aquaculture and ensure reliable results in research. A quick, non-invasive device to measure cortisol levels in fish farm water facilitates welfare evaluation and corrective actions when compromised. To address this need, [...] Read more.
The assessment of fish welfare is crucial to prevent economic losses in aquaculture and ensure reliable results in research. A quick, non-invasive device to measure cortisol levels in fish farm water facilitates welfare evaluation and corrective actions when compromised. To address this need, an innovative sensor was developed using screen-printed carbon electrodes (SPCEs) functionalized with reduced graphene oxide/Prussian blue nanocubes (rGO/PBNCs) for direct selective detection of cortisol. A molecularly imprinted polymer (MIP) was synthesized on rGO/PBNCs/SPCEs by electropolymerization (ELP) of pyrrole in the presence of cortisol. The polymerization solution was prepared by adding cortisol (5 mM) and pyrrole (0.3 M) to a DMF/PBS (1:4) solution (pH 7.4). Following ELP, the electrodes were washed with PBS, and pyrrole overoxidation was used to extract cortisol from the polymer matrix. For comparison purposes, a non-imprinted polymer (NIP) was also fabricated. The electrodes were characterized using scanning electron microscopy (SEM) and Raman spectroscopy to assess their morphological and chemical features. Under optimized conditions, the sensor showed a linear range from 0.1 nM to 0.1 mM in artificial saltwater. This sensor combines simplicity and affordability while providing reliable detection of chemical and biological compounds. Full article
(This article belongs to the Special Issue Biosensing Strategies for Food Safety Applications)
Show Figures

Graphical abstract

14 pages, 2209 KiB  
Article
Development of a Carbon Paste Electrode Modified with Saffron-Conjugated Silver Nanoparticles for the Simultaneous Determination of Cd, Pb, Zn, Cu and Cl in Soils and Plants
by Stella Girousi, Vasiliki Keramari, Ioanna Paraschi, Sophia Karastogianni and Evangelia E. Golia
Chemosensors 2025, 13(3), 91; https://doi.org/10.3390/chemosensors13030091 - 5 Mar 2025
Cited by 1 | Viewed by 905
Abstract
A simple and easily applicable analytical method for the simultaneous determination of Cd2+, Pb2+, Zn2+, Cu2+, and Cl by applying a modified carbon paste electrode with saffron-conjugated silver nanoparticles (AgNPs@Sa) is being presented. The modified [...] Read more.
A simple and easily applicable analytical method for the simultaneous determination of Cd2+, Pb2+, Zn2+, Cu2+, and Cl by applying a modified carbon paste electrode with saffron-conjugated silver nanoparticles (AgNPs@Sa) is being presented. The modified CPE was then used for the simultaneous determination of Cd2+, Pb2+, Zn2+, and Cu2+ as well as chloride ions in soil and plants. The comparative analysis demonstrated a significant enhancement in the applicability of the modified electrode through the incorporation of silver nanoparticles (AgNPs) at the carbon paste electrode (CPE) surface, leading to the development of a poly-Sa-CPE. This newly proposed method offers notably superior qualitative performance compared to other metal nanoparticle-based modifications reported in the literature. The accordingly modified electrode was successfully applied in the development of a chloride ion. A novel sensor is being proposed that makes possible the determination of heavy metals and chlorides in the same solution, in soil and plant samples. The enhanced sensitivity and selectivity of the poly-Sa-CPE system highlights its potential as a more effective alternative for heavy metal and chloride analysis, further demonstrating its advantages in electrochemical applications. The LODs of Cd2+, Pb2+, Zn2+, Cu2+, and Cl for their simultaneous determination are 0.38 μg·L−1, 0.44 μg·L−1, 0.72 μg·L−1, 0.42 μg·L−1, and 0.11 μg·L−1, respectively, with comparably high relative standard deviations of about 8.1%, 9.4%, 8.3%, 7.6%, and 7.9%, respectively. Full article
Show Figures

Figure 1

13 pages, 4063 KiB  
Article
High Sensitivity and Selectivity of PEDOT/Carbon Sphere Composites for Pb2+ Detection
by Lirong Ma, Zhuangzhuang Wang, Xiong Liu, Feng Xu and Tursun Abdiryim
Molecules 2025, 30(4), 798; https://doi.org/10.3390/molecules30040798 - 9 Feb 2025
Cited by 1 | Viewed by 808
Abstract
Heavy metal ions impair human health and irreversibly damage the ecosystem. As a result, it is critical to create an efficient approach for identifying heavy metal ions. The electrochemical sensor method is a type of detection method that is highly sensitive, low in [...] Read more.
Heavy metal ions impair human health and irreversibly damage the ecosystem. As a result, it is critical to create an efficient approach for identifying heavy metal ions. The electrochemical sensor method is a type of detection method that is highly sensitive, low in cost, and allows for real-time monitoring. In this study, solid carbon spheres were made using resorcinol and formaldehyde as raw materials, followed by the formation of PEDOT/carbon sphere composites via in situ oxidative polymerization, and Pb2+ was detected utilizing them as electrode modification materials. The structure of the PEDOT/carbon spherical composites was analyzed using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). To investigate the electrochemical properties of these composites, electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and differential pulse voltammetry (DPV) were employed. In addition, the detection mechanism of the material for Pb2⁺ was studied using CV. The PEDOT/carbon sphere sensor showcased an extensive linear detection range of 7.5 × 10−2 to 1.0 μM for Pb2+ ions, achieving a low limit of detection (LOD) of 3.5 × 10−2 nM and displaying exceptional selectivity. These results can be attributed to its large surface area, superior electrical conductivity, and outstanding electron transport properties. This study offers an effective material for detecting low concentrations of Pb2+, with potential applications in future Pb2+ detection. Full article
Show Figures

Graphical abstract

19 pages, 3520 KiB  
Article
Electrochemical Detection of Diclofenac Using a Screen-Printed Electrode Modified with Graphene Oxide and Phenanthroline
by Ana-Raluca Măghinici, Alexandra-Virginia Bounegru and Constantin Apetrei
Chemosensors 2025, 13(2), 55; https://doi.org/10.3390/chemosensors13020055 - 7 Feb 2025
Viewed by 1442
Abstract
In recent years, interest in screen-printed electrodes (SPEs) has grown due to their wide range of applications. Diclofenac (DCF), a widely used non-steroidal anti-inflammatory drug, is a subject of interest in pharmaceutical research as well as environmental research, primarily due to its environmental [...] Read more.
In recent years, interest in screen-printed electrodes (SPEs) has grown due to their wide range of applications. Diclofenac (DCF), a widely used non-steroidal anti-inflammatory drug, is a subject of interest in pharmaceutical research as well as environmental research, primarily due to its environmental contamination and therapeutic applications. This study describes the development and characterization of an innovative screen-printed sensor based on graphene oxide (GO) and phenanthroline (PHEN) for the rapid and highly sensitive determination of diclofenac. The modified sensor was characterized by Fourier Transform Infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). The electrochemical behavior of the screen-printed electrodes was assessed through cyclic voltammetry (CV) in phosphate buffer solution (PBS) and potassium ferrocyanide/potassium ferricyanide solution. The cyclic voltammograms of the electrodes modified with GO and PHEN revealed peaks in PBS related to redox processes of PHEN immobilized in the carbonaceous matrix. Additionally, the active surface area of the electrodes was found to be larger for the modified carbon screen-printed electrode with GO and PHEN, which also showed improved sensitivity to the detection of DCF. The limit of detection (1.53 nM) and the sensitivity of the novel sensor were promising, and these performance characteristics enabled the sensitive detection of DCF in different pharmaceutical products. The selectivity was confirmed to be appropriate based on recovery studies conducted with the pharmaceutical products, which produced values close to 100%. Full article
(This article belongs to the Special Issue Electrochemical Biosensors and Bioassays Based on Nanomaterials)
Show Figures

Figure 1

13 pages, 7211 KiB  
Article
Electrochemical Sensor for Cu(II) Based on Carbon Nanotubes Functionalized with a Rationally Designed Schiff Base
by Alejandro Tamborelli, Michael López Mujica, Gustavo Servetti, Diego Venegas-Yazigi, Patricio Hermosilla-Ibáñez, Pablo Dalmasso and Gustavo Rivas
Chemosensors 2025, 13(2), 35; https://doi.org/10.3390/chemosensors13020035 - 25 Jan 2025
Cited by 1 | Viewed by 1031
Abstract
This work proposes a new strategy for the electrochemical quantification of Cu(II) using glassy carbon electrodes (GCEs) modified with a nanohybrid of multiwall carbon nanotubes (MWCNTs) non-covalently functionalized with a rationally designed Schiff base containing different groups (SB-dBA). The principle of sensing was [...] Read more.
This work proposes a new strategy for the electrochemical quantification of Cu(II) using glassy carbon electrodes (GCEs) modified with a nanohybrid of multiwall carbon nanotubes (MWCNTs) non-covalently functionalized with a rationally designed Schiff base containing different groups (SB-dBA). The principle of sensing was the complexation of Cu(II) by the Schiff base that supports the MWCNTs at the open-circuit potential, followed by a reduction step at −0.600 V and further linear sweep anodic stripping voltammetry (LSASV) in a 0.200 M acetate buffer solution of pH 5.00. The linear range goes from 10 to 200 μg L−1, with a sensitivity of (0.79 ± 0.07) µA L µg−1 (R2 = 0.991), a detection limit of 3.3 μg L−1, and a reproducibility of 8.0% for the same nanohybrid (nine electrodes) and 9.0% for four different nanohybrids. The proposed sensor was very selective for Cu(II) even in the presence of Pb(II), Fe(II), As(III), Cr(III), Cd(II), and Hg(II), and it was successfully used for the quantification of Cu(II) in different water samples (tap, groundwater, and river) without any pretreatment. Full article
(This article belongs to the Special Issue Carbon Nanotubes for Electrochemical Sensing: Sensors and Platforms)
Show Figures

Figure 1

17 pages, 4209 KiB  
Article
Sensitive Electrochemical Sensor Based on Amino-Functionalized Graphene Oxide/Polypyrrole Composite for Detection of Pb2+ Ions
by Priyanka C. Zine, Vijaykiran N. Narwade, Shubham S. Patil, Masira T. Qureshi, Meng-Lin Tsai, Tibor Hianik and Mahendra D. Shirsat
Chemosensors 2025, 13(2), 34; https://doi.org/10.3390/chemosensors13020034 - 24 Jan 2025
Cited by 3 | Viewed by 1614
Abstract
In this work, an amino-functionalized graphene oxide/polypyrrole (AMGO/PPy) composite-based novel sensing platform was established to monitor lead ions (Pb2+) at high sensitivity. AMGO was synthesized through a hydrothermal process and later formed a composite with PPy at varying concentrations. A physicochemical [...] Read more.
In this work, an amino-functionalized graphene oxide/polypyrrole (AMGO/PPy) composite-based novel sensing platform was established to monitor lead ions (Pb2+) at high sensitivity. AMGO was synthesized through a hydrothermal process and later formed a composite with PPy at varying concentrations. A physicochemical investigation of the synthesized materials was carried out using various characterization tools, while the electrochemical properties were examined by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS) methods. The AMGO/PPy composite was deposited on a glassy carbon electrode (GCE), which was used for the real-time electrochemical detection of Pb2+. The AMGO/PPy sensor exhibited lower limits of detection (LOD) of 0.91 nM. In addition, the developed Pb2+ sensor exhibited excellent reproducibility, repeatability, selectivity, sensitivity, and long-term stability for 25 days. The AMGO/PPy composite emerges as a ground-breaking material for the electrochemical detection of Pb2+, holding significant potential for environmental monitoring and the protection of human health. Full article
(This article belongs to the Special Issue Nanomaterial-Based Sensors: Design, Development and Applications)
Show Figures

Figure 1

11 pages, 3054 KiB  
Article
Ultralow Temperature Sintering of High-Performance Sm-Doped Pb(Zr,Ti)O3-Based Piezoelectric Ceramics
by Zechi Ma, Zixuan Yuan, Zhonghua Yao, Jiangxue Chen, Hua Hao, Minghe Cao and Hanxing Liu
Materials 2025, 18(3), 512; https://doi.org/10.3390/ma18030512 - 23 Jan 2025
Cited by 1 | Viewed by 897
Abstract
Piezoelectric materials (PZTs) enjoy extensive applications in the field of electromechanical sensors due to their sensitive response to external electric fields. The limited piezoelectric response for single-layer piezoceramic pellets drives the use of multilayered technology to increase the electric displacement of a single [...] Read more.
Piezoelectric materials (PZTs) enjoy extensive applications in the field of electromechanical sensors due to their sensitive response to external electric fields. The limited piezoelectric response for single-layer piezoceramic pellets drives the use of multilayered technology to increase the electric displacement of a single piezo device. As is well known, Ag is commonly used as a metal for electrodes in devices based on traditional PZTs, which always densify at a high temperature above 1100 °C, resulting in Ag migration. Here, a high-performance samarium-ion-doped Sm0.01Pb0.99(Zr0.54Ti0.46)O3 ceramic was selected as parent materials to develop a new Ag-cofired ceramic matrix with a sintering temperature of 920 °C by glass flux. The ceramic composition with 2.0 wt% glass addition exhibits the excellent performance of piezoelectric d33~492 pC/N, planar electromechanical coupling coefficient kp~50.1%, mechanical quality factor Qm~68.71, and Curie temperature Tc~356 °C, respectively. The cyclic stability of d33 was measured below 6.6% at 30 kV/cm, which indicates that the piezoceramic has good temperature stability and fatigue resistance. Therefore, this study provides a novel high-performance piezoelectric system to meet the cofired requirement for multilayered piezoelectric devices. Full article
Show Figures

Figure 1

12 pages, 4757 KiB  
Article
Sensitive Competitive Electrochemical Immunosensor for Hg (II) Based on Molybdenum Disulfide/Reduced Graphene Oxide/Gold Nanocomposites
by Yuzhen Wang, Ningna Shi, Xiaoyue Kang, Qiliang Pan, Maozhong Tian, Yanfeng Wang and Yunfeng Bai
Sensors 2025, 25(3), 623; https://doi.org/10.3390/s25030623 - 22 Jan 2025
Cited by 1 | Viewed by 934
Abstract
A sensitive and specific competitive electrochemical immunosensor for the detection of Hg (II) using a modified electrode based on molybdenum disulfide/reduced graphene oxide/gold (MoS2/rGO/Au) nanocomposites was developed in this study. The nanocomposites were characterized and assembled with an antibody against Hg [...] Read more.
A sensitive and specific competitive electrochemical immunosensor for the detection of Hg (II) using a modified electrode based on molybdenum disulfide/reduced graphene oxide/gold (MoS2/rGO/Au) nanocomposites was developed in this study. The nanocomposites were characterized and assembled with an antibody against Hg (II) for the immunosensor, demonstrating good electrical activity, high affinity and high specificity. Free Hg (II) in a solution can be measured by the competitive reaction of the Hg element in the sample and the antigen with the antibody fixed on the electrode. A differential pulse voltammetry (DPV) method was used, and the competitive current changed in accordance with the concentration of Hg (II). Under optimal conditions, the sensor showed a linear relationship from 0.1 to 600 ng/mL, and the limit of detection (LOD) was 63 pg/mL. The proposed immunosensor showed an acceptable recovery from 98.4% to 100.3% in spiked samples. Satisfactory stability and reproducibility were obtained. Competitive species, including Zn (II), Mg (II), Al (III), Cu (II), Pb (II), Ba (II), Cd (II), Ag (I), MNA, CH3Hg (I) and CH3Hg-MNA, were selected and applied according to the procedure of the assay, and their significantly different response compared to Hg (II) indicated that the assay displayed not only high sensitivity but also high selectivity. This immunosensor offers a useful model for the detection of Hg (II). Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

15 pages, 2271 KiB  
Article
Determination of Methotrexate Using an Electrochemical Sensor Based on Carbon Paste Electrode Modified with NiO Nanosheets and Ionic Liquid
by Peyman Mohammadzadeh Jahani, Somayeh Tajik, Hadi Beitollahi, Fariba Garkani Nejad and Zahra Dourandish
Chemosensors 2024, 12(12), 266; https://doi.org/10.3390/chemosensors12120266 - 17 Dec 2024
Cited by 3 | Viewed by 1218
Abstract
In this paper, the application of NiO nanosheets (NiO NSs) for the detection of methotrexate (MTX) is described. The NiO NSs were synthesized using a hydrothermal method. The electrocatalytic activity of two modifiers, ionic liquid (IL) and NiO NSs, was examined on a [...] Read more.
In this paper, the application of NiO nanosheets (NiO NSs) for the detection of methotrexate (MTX) is described. The NiO NSs were synthesized using a hydrothermal method. The electrocatalytic activity of two modifiers, ionic liquid (IL) and NiO NSs, was examined on a carbon paste electrode (CPE) in relation to MTX, utilizing voltammetry methods such as cyclic voltammetry (CV), linear sweep voltammetry (LSV), differential pulse voltammetry (DPV), and chronoamperometry at 0.1 M phosphate buffer solution (PBS) pH = 7.0. The anodic peak currents for MTX on the NiO NSs/IL/CPE were approximately 3.5 times greater than those on unmodified CPE. Based on DPV measurements, the electrochemical sensor demonstrated a linear response in the concentration range (LDR: 0.01 µM to 160.0 µM), with a limit of detection (LOD: 0.003 µM). Moreover, the NiO NSs/IL/CPE sensor demonstrated good stability, repeatability, reproducibility, and selectivity, which were of importance in the electroanalysis of compounds. Lastly, the practicality of the NiO NSs/IL/CPE sensor was assessed by analyzing MTX levels in urine samples and pharmaceutical formulation, yielding satisfactory recovery rates of 97.1% to 103.3%. Full article
(This article belongs to the Special Issue Progress of Photoelectrochemical Analysis and Sensors)
Show Figures

Figure 1

12 pages, 3565 KiB  
Article
Interdigitated Gear-Shaped Screen-Printed Electrode Using G-PANI Ink for Sensitive Electrochemical Detection of Dopamine
by Pritu Parna Sarkar, Ridma Tabassum, Ahmed Hasnain Jalal, Ali Ashraf and Nazmul Islam
J. Sens. Actuator Netw. 2024, 13(6), 84; https://doi.org/10.3390/jsan13060084 - 6 Dec 2024
Cited by 1 | Viewed by 1825
Abstract
In this research, a novel interdigitated gear-shaped, graphene-based electrochemical biosensor was developed for the detection of dopamine (DA). The sensor’s innovative design improves the active surface area by 94.52% and 57% compared to commercially available Metrohm DropSens 110 screen-printed sensors and printed circular [...] Read more.
In this research, a novel interdigitated gear-shaped, graphene-based electrochemical biosensor was developed for the detection of dopamine (DA). The sensor’s innovative design improves the active surface area by 94.52% and 57% compared to commercially available Metrohm DropSens 110 screen-printed sensors and printed circular sensors, respectively. The screen-printed electrode was fabricated using laser processing and modified with graphene polyaniline conductive ink (G-PANI) to enhance its electrochemical properties. Fourier Transform Infrared (FTIR) Spectroscopy and X-ray diffraction (XRD) were employed to characterize the physiochemical properties of the sensor. Dopamine, a neurotransmitter crucial for several body functions, was detected within a linear range of 0.1–100 µM, with a Limit of Detection (LOD) of 0.043 µM (coefficient of determination, R2 = 0.98) in phosphate-buffer saline (PBS) with ferri/ferrocyanide as the redox probe. The performance of the sensor was evaluated using cyclic voltammetry (CV) and Chronoamperometry, demonstrating high sensitivity and selectivity. The interdigitated gear-shaped design exhibited excellent repeatability, with a relative standard deviation (RSD) of 1.2% (n = 4) and reproducibility, with an RSD of 2.3% (n = 4). In addition to detecting dopamine in human serum, the sensor effectively distinguished dopamine in a ternary mixture containing uric acid (UA) and ascorbic acid (AA). Overall, this novel sensor design offers a reliable, disposable, and cost-effective solution for dopamine detection, with potential applications in medical diagnostics and neurological research. Full article
(This article belongs to the Section Actuators, Sensors and Devices)
Show Figures

Graphical abstract

Back to TopTop