Development of a Carbon Paste Electrode Modified with Saffron-Conjugated Silver Nanoparticles for the Simultaneous Determination of Cd, Pb, Zn, Cu and Cl in Soils and Plants
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Apparatus
2.3. Preparation of NP-Modified Electrodes
2.3.1. Synthesis of Saffron-Conjugated Silver Nanoparticles (AgNPs@Sa)
2.3.2. Preparation of Carbon Paste Electrode Surface Modified with Silver Nanoparticles (AgNPs@Sa)
2.3.3. Sample Preparation
2.4. Analytical Determination
3. Results and Discussion
3.1. Comparison of Bare CPE with Modified AgNPs@Sa-CPE
3.2. Development of Analytical Methodology
3.2.1. Simultaneous Determination of Cd2⁺, Pb2⁺, Zn2⁺, and Cu2⁺
3.2.2. Determination of Chloride
3.2.3. Interference Studies
3.3. Analytical Applications
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sawan, S.; Maalouf, R.; Errachid, A.; Jaffrezic-Renault, N. Metal and metal oxide nanoparticles in the voltammetric detection of heavy metals: A review. Trends Anal. Chem. 2020, 131, 116014. [Google Scholar] [CrossRef]
- Kumar, P.; Kim, K.H.; Bansal, V.; Lazarides, T.; Kumar, N. Progress in the sensing techniques for heavy metal ions using nanomaterials. J. Ind. Eng. Chem. 2017, 54, 30–43. [Google Scholar] [CrossRef]
- Cui, L.; Wu, J.; Ju, H. Electrochemical sensing of heavy metal ions with inorganic, organic, and bio-materials. Biosens. Bioelectron. 2015, 63, 276–286. [Google Scholar] [CrossRef]
- Hyder, A.; Buledi, J.A.; Nawaz, M.; Rajpar, D.B.; Shah, Z.H.; Orooji, Y.; Yola, M.L.; Karimi-Maleh, H.; Lin, H.; Solangi, A.R. Identification of heavy metal ions from aqueous environment through gold, silver and copper nanoparticles: An excellent colorimetric approach. Environ. Res. 2022, 205, 112475. [Google Scholar] [CrossRef]
- Barton, J.; García, M.B.G.; Santos, D.H.; Fanjul-Bolado, P.; Ribotti, A.; McCaul, M.; Magni, P. Screen-printed electrodes for environmental monitoring of heavy metal ions: A review. Microchim. Acta 2016, 183, 503–517. [Google Scholar] [CrossRef]
- Ariño, C.; Serrano, N.; Díaz-Cruz, J.M.; Esteban, M. Voltammetric determination of metal ions beyond mercury electrodes: A review. Anal. Chim. Acta 2017, 990, 11–53. [Google Scholar] [CrossRef]
- Verma, N.; Singh, M. Biosensors for heavy metals. Biometals 2005, 18, 121–129. [Google Scholar] [CrossRef]
- Hakonen, A.; Strömberg, N. Fluorescence and naked-eye detection of Pb2+ in drinking water using a low-cost ionophore-based sensing scheme. Chemosensors 2018, 6, 51. [Google Scholar] [CrossRef]
- Massadeh, A.M.; Alomary, A.A.; Mir, S.; Momani, F.A.; Haddad, H.I.; Hadad, Y.A. Analysis of Zn, Cd, As, Cu, Pb, and Fe in snails as bioindicators and soil samples near traffic road by ICP-OES. Environ. Sci. Pollut. Res. 2016, 23, 13424–13431. [Google Scholar] [CrossRef]
- Corr, J.J.; Larsen, E.H. Arsenic speciation by liquid chromatography coupled with ionspray tandem mass spectrometry. J. Anal. At. Spectrom. 1996, 11, 1215. [Google Scholar] [CrossRef]
- Buffle, J.; Tercier-Waeber, M.L. Voltammetric environmental trace-metal analysis and speciation: From laboratory to in situ measurements. Trends Anal. Chem. 2005, 24, 172–191. [Google Scholar] [CrossRef]
- Chen, S.H.; Li, Y.Z.; Li, P.H.; Xiao, X.Y.; Jiang, M.; Li, S.S.; Liu, W.Q. Electrochemical spectral methods for trace detection of heavy metals: A review. Trends Anal. Chem. 2018, 106, 139–150. [Google Scholar] [CrossRef]
- Zhou, L.; Sekar, S.; Chen, J.; Lee, S.; Kim, D.Y.; Manikandan, R. A polyrutin/AgNPs coated GCE for simultaneous anodic stripping voltammetric determination of Pb(II) and Cd(II) ions in environmental samples. Colloids Surf. A Physicochem. Eng. Asp. 2022, 648, 129082. [Google Scholar]
- Lu, Y.; Liang, X.; Niyungeko, C.; Zhou, J.; Xu, J.; Tian, G. A review of the identification and detection of heavy metal ions in the environment by voltammetry. Talanta 2018, 178, 324–338. [Google Scholar] [CrossRef]
- Aragay, G.; Merkoçi, A. Nanomaterials application in electrochemical detection of heavy metals. Electrochim. Acta 2012, 84, 49–61. [Google Scholar] [CrossRef]
- Li, G.; Qi, X.; Zhang, G.; Wang, S.; Li, K.; Wu, J.; Wan, X.; Liu, Y.; Li, Q. Low-cost voltammetric sensors for robust determination of toxic Cd(II) and Pb(II) in environment and food based on shuttle-like α-Fe2O3 nanoparticles decorated β-Bi2O3 microspheres. Microchem. J. 2022, 179, 107515. [Google Scholar] [CrossRef]
- Sharma, P.; Ganguly, M.; Doi, A.; Sahu, M. Recent advances in the application of copper nanocluster and copper nanoparticle in water for heavy metals detection: A review. Environ. Nanotechnol. Monit. Manag. 2024, 22, 100970. [Google Scholar] [CrossRef]
- Kumar, S.; Prasad, S.; Yadav, K.K.; Shrivastava, M.; Gupta, N.; Nagar, S.; Bach, Q.V.; Kamyab, H.; Khan, S.A.; Yadav, S.; et al. Hazardous heavy metals contamination of vegetables and food chain: Role of sustainable remediation approaches—A review. Environ. Res. 2019, 179, 108792. [Google Scholar] [CrossRef]
- Goyal, D.; Yadav, A.; Prasad, M.; Singh, T.B.; Shrivastav, P.; Ali, A.; Dantu, P.K.; Mishra, S. Effect of heavy metals on plant growth: An overview. In Contaminants in Agriculture: Sources, Impacts and Management; Springer: Cham, Switzerland, 2020; pp. 79–101. [Google Scholar]
- Ghori, N.H.; Ghori, T.; Hayat, M.Q.; Imadi, S.R.; Gul, A.; Altay, V.; Ozturk, M. Heavy metal stress and responses in plants. Int. J. Environ. Sci. Technol. 2019, 16, 1807–1828. [Google Scholar] [CrossRef]
- Colmenero-Flores, J.M.; Franco-Navarro, J.D.; Cubero-Font, P.; Peinado-Torrubia, P.; Rosales, M.A. Chloride as a beneficial macronutrient in higher plants: New roles and regulation. Int. J. Mol. Sci. 2019, 20, 4686. [Google Scholar] [CrossRef]
- Geilfus, C.M. Chloride in soil: From nutrient to soil pollutant. Environ. Exp. Bot. 2019, 157, 299–309. [Google Scholar] [CrossRef]
- Liu, J.; Zha, F.; Xu, L.; Yang, C.; Chu, C.; Tan, X. Effect of chloride attack on strength and leaching properties of solidified/stabilized heavy metal contaminated soils. Eng. Geol. 2018, 246, 28–35. [Google Scholar] [CrossRef]
- Mohamed, E.; Ren, J.; Tao, L.; Mala, A. Effectiveness of attapulgite modified by chlorides on speciation and environmental risk of heavy metals in soil. Int. J. Environ. Sci. Technol. 2024, 21, 6713–6732. [Google Scholar] [CrossRef]
- Golia, E.E.; Dimirkou, A.; Floras, S.A. Spatial monitoring of arsenic and heavy metals in the Almyros area, Central Greece. Statistical approach for assessing the sources of contamination. Environ. Monit. Assess. 2015, 187, 399. [Google Scholar] [CrossRef]
- Golia, E.E.; Aslanidis, P.-S.C.; Papadimou, S.G.; Androudi, M.; Tsiropoulos, N.G. Assessment of remediation of soils, moderately contaminated by potentially toxic metals, using different forms of carbon (charcoal, biochar, activated carbon). Impacts on contamination, metals availability and soil indices. Sustain. Chem. Pharm. 2022, 28, 100724. [Google Scholar] [CrossRef]
- Papadimou, S.G.; Barbayiannis, N.; Golia, E.E. Preliminary investigation of the use of Silybum marianum (L.) Gaertn. as a Cd accumulator in contaminated Mediterranean soils: The relationships among cadmium (Cd) soil fractions and plant Cd content. Euro-Mediterr. J. Environ. Integr. 2024, 9, 405–417. [Google Scholar] [CrossRef]
- Huang, Z.; Sun, M.; Zheng, Y.; Han, Y.; Liu, H.; Shen, J. A micro sample pretreatment technique combined with ion chromatography and its application in the determination of polyvinyl chloride. J. Chromatogr. A 2023, 1690, 463778. [Google Scholar] [CrossRef]
- Bujes-Garrido, J.; Izquierdo-Bote, D.; Heras, A.; Colina, A.; Arcos-Martínez, M.J. Determination of halides using Ag nanoparticles-modified disposable electrodes. A first approach to a wearable sensor for quantification of chloride ions. Anal. Chim. Acta 2018, 1012, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.H.; Khan, R.; Andreescu, S. Advances in Electrochemical Detection Methods for Measuring Contaminants of Emerging Concerns. Electrochem. Sci. Adv. 2021, 2, e2100184. [Google Scholar] [CrossRef]
- Ali, Z.; Ullah, R.; Tuzen, M.; Ullah, S.; Rahim, A.; Saleh, T.A. Colorimetric sensing of heavy metals on metal doped metal oxide nanocomposites: A review. Trends Environ. Anal. Chem. 2023, 37, e00187. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, N.; Zhang, L.; Xu, J.; Wang, H.; Wang, C.; Geng, T. Amperometric sensing of hydrogen peroxide using a glassy carbon electrode modified with silver nanoparticles on poly(alizarin yellow R). Microchim. Acta 2011, 173, 135–141. [Google Scholar] [CrossRef]
- Hassan, K.M.; Elhaddad, G.M.; AbdelAzzem, M. Voltammetric determination of cadmium(II), lead(II) and copper(II) with a glassy carbon electrode modified with silver nanoparticles deposited on poly(1,8-diaminonaphthalene). Microchim. Acta 2019, 186, 440. [Google Scholar] [CrossRef] [PubMed]
- Abbas, A.; Amin, H.M.A. Silver nanoparticles modified electrodes for electroanalysis: An updated review and a perspective. Microchem. J. 2022, 175, 107166. [Google Scholar] [CrossRef]
- Bujes-Garrido, J.; Arcos-Martínez, M.J. Disposable sensor for electrochemical determination of chloride ions. Talanta 2016, 155, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Papaioannou, G.C.; Karastogianni, S.; Girousi, S. Development of an Electrochemical Sensor Using a Modified Carbon Paste Electrode with Silver Nanoparticles Capped with Saffron for Monitoring Mephedrone. Sensors 2022, 22, 1625. [Google Scholar] [CrossRef]
- Karastogianni, S.; Paraschi, I.; Girousi, S. Electrochemical sensing of the maple syrup urine disease biomarker valine, using saffron-silver nanoparticles. Biosens. Bioelectron. X 2022, 12, 100275. [Google Scholar] [CrossRef]
- Karastogianni, S.; Girousi, S. A novel electrochemical bioimprinted sensor of butyl paraben on a modified carbon paste electrode with safranine-o capped to silver nanoparticles. Int. J. Curr. Res. 2017, 9, 61118–61124. [Google Scholar]
- Abd El-Aziz, A.R.M.; Gurusamy, A.; Alothman, M.R.; Shehata, S.M.; Hisham, S.M.; Alobathani, A.A. Silver nanoparticles biosynthesis using Saussurea costus root aqueous extract and catalytic degradation efficacy of safranin dye. Saudi J. Biol. Sci. 2021, 28, 1093–1099. [Google Scholar] [CrossRef]
- Sarakatsanou, C.; Karastogianni, S.; Girousi, S. Preparation of a glassy carbon electrode modified with saffron conjugated silver nanoparticles for the sensitive and selective electroanalytical determination of amoxicillin in urine samples. Anal. Methods 2023, 15, 4572–4581. [Google Scholar] [CrossRef]
- ISO/DIS 11465:2020; Sludge, Treated Biowaste, Soil and Waste—Determination of Dry Residue or Water Content and Calculation of the Dry Matter Fraction on a Mass Basis. ISO Standards Compendium: Geneva, Switzerland, 2024.
- Geilfus, C.M.; Ludwig-Müller, J.; Bárdos, G.; Zörb, C. Early response to salt ions in maize (Zea mays L.). J. Plant Physiol. 2018, 220, 173–180. [Google Scholar] [CrossRef]
- Grim, R.J. Catalytic Activity of an Intermetallic Compound of Cadmium and Copper in the Vapor-phase Reduction of Nitrobenzene. J. Phys. Chem. 1942, 46, 464–469. [Google Scholar] [CrossRef]
- Tibbetts, D.F.; Davis, J.; Compton, R.G. Sonoelectroanalytical detection of lead at a bare copper electrode. Fresenius’ J. Anal. Chem. 2000, 368, 412–414. [Google Scholar] [CrossRef] [PubMed]
- Lahari, S.A.; Amreen, K.; Dubey, S.K.; Ponnalagu, R.N.; Goel, S. Optimized porous carbon-fibre microelectrode for multiplexed, highly reproducible and repeatable detection of heavy metals ions in real water samples. Environ. Res. 2023, 220, 115192. [Google Scholar] [CrossRef]
- Lee, P.M.; Chen, Z.; Li, L.L.; Liu, E. Reduced graphene oxide decorated with tin nanoparticles through electrodeposition for simultaneous determination of trace heavy metals. Electrochim. Acta 2015, 174, 207–214. [Google Scholar] [CrossRef]
- Yıldız, C.; Bayraktepe, D.E.; Yazan, Z.; Önal, M. Bismuth nanoparticles decorated on Na-montmorillonite-multiwall carbon nanotube for simultaneous determination of heavy metal ions-electrochemical methods. J. Electroanal. Chem. 2022, 910, 116205. [Google Scholar] [CrossRef]
- Antunović, V.; Ilić, M.; Baošić, R.; Jelić, D.; Lolić, A. Synthesis of MnCo2O4 nanoparticles as modifiers for simultaneous determination of Pb(II) and Cd(II). PLoS ONE 2019, 14, e0210904. [Google Scholar] [CrossRef] [PubMed]
- Lalmalsawmi, J.; Zirlianngura, T.; Tiwari, D.; Lee, S.M.; Kim, D.J. Indigenously synthesized nanocomposite materials: Use of nanocomposite as novel sensing platform for trace detection of Pb+. J. Electroanal. Chem. 2021, 897, 115578. [Google Scholar] [CrossRef]
- Keramari, V.; Papadimou, S.G.; Golia, G.G.; Girousi, S. Bismuth Film along with dsDNA-Modified Electrode Surfaces as Promising (bio)Sensors in the Analysis of Heavy Metals in Soils. Biosensors 2024, 14, 310. [Google Scholar] [CrossRef]
- Cinti, S.; Fiore, L.; Massoud, R.; Cortese, C.; Moscone, D.; Palleschi, G.; Arduini, F. Low-cost and reagent-free paper-based device to detect chloride ions in serum and sweat. Talanta 2018, 179, 186–192. [Google Scholar] [CrossRef]
- Wan, Y.; Hua, Y.; Liu, M.; Li, S.; Yin, M.; Lv, X.; Wang, H. Highly selective electroanalysis for chloride ions by conductance signal outputs of solid-state AgCl electrochemistry using silver-melamine nanowires. Sens. Actuators B Chem. 2019, 300, 127058. [Google Scholar] [CrossRef]
- Chatziathanasiou, E.; Liava, V.; Golia, E.E.; Girousi, S. Analytical Applications of Voltammetry in the Determination of Heavy Metals in Soils, Plant Tissues, and Water—Prospects and Limitations in the Co-Identification of Metal Cations in Environmental Samples. Analytica 2024, 5, 358–383. [Google Scholar] [CrossRef]
Heavy Metal | Detection Limit | ||||||
---|---|---|---|---|---|---|---|
(μgL−1) | |||||||
REF | Cu | Zn | Pb | Cd | sr % | ||
This work | 0.42 | 0.72 | 0.44 | 0.38 | LOD | Agnosia | Nanoparticles (NPs) |
7.6 | 8.3 | 9.4 | 8.1 | sr % | |||
[45] | 61.34 | - | 293.73 | 54.04 | LOD | AuNPs | |
1.22 | - | 1.79 | 2.69 | sr % | |||
[46] | 0.033 | - | 0.124 | 0.005 | LOD | SnNPs | |
2.5 | - | 7.4 | 6.1 | sr % | |||
[47] | 9.96 | 46.17 | 1.66 | 5.24 | LOD | BiNPs | |
0.43 | 7.89 | 2.07 | 5.76 | sr % | |||
[48] | - | - | 163,53 | 345,69 | LOD | MnCO2O4NPs | |
- | - | 7.68 | 3.46 | sr % |
Cu | Pb | Cd | Zn | Heavy Metal | ||||
---|---|---|---|---|---|---|---|---|
S(μA·L/μg·L−1) | R | S(μA·L/μg·L−1) | R | S(μA·L/μg·L−1) | R | S(μA·L/μg·L−1) | R | Range (μg/L) |
0.24 | 0.9755 | 0.14 | 0.9731 | 0.25 | 0.9803 | 0.22 | 0.933 | 0–100 |
R(%) | sr % (%) | Measured Concentration (μg/L) | Added (μg/L) | Metal |
---|---|---|---|---|
110 | 14.5 | 5.5 ± 0.8 | 5 | Cadmium |
101 | 2.6 | 50.4 ± 1.3 | 50 | |
114 | 12.3 | 5.7 ± 0.7 | 5 | Lead |
107 | 5.2 | 53.6 ± 2.8 | 50 | |
114 | 13.8 | 5.7 ± 1.2 | 5 | Zinc |
110.8 | 7.2 | 55.4 ± 4.0 | 50 | |
113.2 | 16.7 | 6.6 ± 1.1 | 5 | Copper |
111.2 | 8.6 | 55.6 ± 4.8 | 50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Girousi, S.; Keramari, V.; Paraschi, I.; Karastogianni, S.; Golia, E.E. Development of a Carbon Paste Electrode Modified with Saffron-Conjugated Silver Nanoparticles for the Simultaneous Determination of Cd, Pb, Zn, Cu and Cl in Soils and Plants. Chemosensors 2025, 13, 91. https://doi.org/10.3390/chemosensors13030091
Girousi S, Keramari V, Paraschi I, Karastogianni S, Golia EE. Development of a Carbon Paste Electrode Modified with Saffron-Conjugated Silver Nanoparticles for the Simultaneous Determination of Cd, Pb, Zn, Cu and Cl in Soils and Plants. Chemosensors. 2025; 13(3):91. https://doi.org/10.3390/chemosensors13030091
Chicago/Turabian StyleGirousi, Stella, Vasiliki Keramari, Ioanna Paraschi, Sophia Karastogianni, and Evangelia E. Golia. 2025. "Development of a Carbon Paste Electrode Modified with Saffron-Conjugated Silver Nanoparticles for the Simultaneous Determination of Cd, Pb, Zn, Cu and Cl in Soils and Plants" Chemosensors 13, no. 3: 91. https://doi.org/10.3390/chemosensors13030091
APA StyleGirousi, S., Keramari, V., Paraschi, I., Karastogianni, S., & Golia, E. E. (2025). Development of a Carbon Paste Electrode Modified with Saffron-Conjugated Silver Nanoparticles for the Simultaneous Determination of Cd, Pb, Zn, Cu and Cl in Soils and Plants. Chemosensors, 13(3), 91. https://doi.org/10.3390/chemosensors13030091