Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (358)

Search Parameters:
Keywords = Passive House

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 7297 KiB  
Article
Passive Design for Residential Buildings in Arid Desert Climates: Insights from the Solar Decathlon Middle East
by Esra Trepci and Edwin Rodriguez-Ubinas
Buildings 2025, 15(15), 2731; https://doi.org/10.3390/buildings15152731 - 2 Aug 2025
Viewed by 279
Abstract
This study investigates the effectiveness of passive design in low-rise residential buildings located in arid desert climates, using the Dubai Solar Decathlon Middle East (SDME) competition as a case study. This full-scale experiment offers a unique opportunity to evaluate design solutions under controlled, [...] Read more.
This study investigates the effectiveness of passive design in low-rise residential buildings located in arid desert climates, using the Dubai Solar Decathlon Middle East (SDME) competition as a case study. This full-scale experiment offers a unique opportunity to evaluate design solutions under controlled, realistic conditions; prescriptive, modeled performance; and monitored performance assessments. The prescriptive assessment reviews geometry, orientation, envelope thermal properties, and shading. Most houses adopt compact forms, with envelope-to-volume and envelope-to-floor area ratios averaging 1 and 3.7, respectively, and window-to-wall ratios of approximately 17%, favoring north-facing openings to optimize daylight while reducing heat gain. Shading is strategically applied, horizontal on south façades and vertical on east and west. The thermal properties significantly exceed the local code requirements, with wall performance up to 80% better than that mandated. The modeled assessment uses Building Energy Models (BEMs) to simulate the impact of prescriptive measures on energy performance. Three variations are applied: assigning minimum local code requirements to all the houses to isolate the geometry (baseline); removing shading; and applying actual envelope properties. Geometry alone accounts for up to 60% of the variation in cooling intensity; shading reduces loads by 6.5%, and enhanced envelopes lower demand by 14%. The monitored assessment uses contest-period data. Indoor temperatures remain stable (22–25 °C) despite outdoor fluctuations. Energy use confirms that houses with good designs and airtightness have lower cooling loads. Airtightness varies widely (avg. 14.5 m3/h/m2), with some well-designed houses underperforming due to construction flaws. These findings highlight the critical role of passive design as the first layer for improving the energy performance of the built environment and advancing toward net-zero targets, specifically in arid desert climates. Full article
(This article belongs to the Special Issue Climate-Responsive Architectural and Urban Design)
Show Figures

Figure 1

34 pages, 9378 KiB  
Article
Contribution of Glazed Additions as Passive Elements of the Reduction in Energy Consumption in Detached Houses
by Hristina Krstić, Dušan Ranđelović, Vladan Jovanović, Marko Mančić and Branislava Stoiljković
Buildings 2025, 15(15), 2715; https://doi.org/10.3390/buildings15152715 - 1 Aug 2025
Viewed by 125
Abstract
If implemented properly in architectural design, passive measures can contribute to achieving the desired comfort in a building while reducing its energy consumption. Glazed additions in the form of sunspaces or greenhouses can influence the improvement of building energy efficiency and, at the [...] Read more.
If implemented properly in architectural design, passive measures can contribute to achieving the desired comfort in a building while reducing its energy consumption. Glazed additions in the form of sunspaces or greenhouses can influence the improvement of building energy efficiency and, at the same time, create appealing and pleasant building extensions. Through energy simulations performed using EnergyPlus software, this study aims to analyze the potential contribution of glazed additions to a detached house to reducing energy consumption and creating additional space for living. Research was performed as a case study at the following locations: Niš (Serbia), Berlin (Germany), and Tromsø (Norway). For the purposes of this study, five models (M0–M4) were developed and subjected to analysis across two different scenarios. The results of the conducted research showed that the integration of glazed elements can significantly contribute to energy savings: maximum total annual savings regarding heating and cooling go from 21% for Tromsø, up to 32% for Berlin and 40% for Niš, depending on whether the building to which the glazed element(s) is/are attached is insulated or not and the number and the position of glazed elements. Although glazed additions can create a pleasant microclimate around the house, the overheating observed in the study indicates that proper ventilation and shading are mandatory, especially in more southern locations. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

22 pages, 1556 KiB  
Article
Long-Term Performance of Passive Volatile Organic Compounds (VOCs) Samplers for Indoor Air
by John H. Zimmerman, Brian Schumacher, Christopher C. Lutes, Brian Cosky and Heidi Hayes
Environments 2025, 12(8), 267; https://doi.org/10.3390/environments12080267 - 31 Jul 2025
Viewed by 272
Abstract
The reliability of passive samplers in measuring volatile organic compounds (VOCs) in indoor air depends on whether the uptake rate is constant given the environmental conditions and sampler exposure duration. The first phase of this study evaluated the performance of charcoal-based, solvent-extracted passive [...] Read more.
The reliability of passive samplers in measuring volatile organic compounds (VOCs) in indoor air depends on whether the uptake rate is constant given the environmental conditions and sampler exposure duration. The first phase of this study evaluated the performance of charcoal-based, solvent-extracted passive samplers (e.g., Radiello® 130 passive samplers with white diffusive bodies) over exposure periods ranging from 1 week to 1 year in a test house with known vapor intrusion (VI). Chloroform %Bias values exceeded the ±30% acceptance criterion after 4 weeks exposure. Benzene, hexane, and trichloroethylene (TCE) concentrations were within the acceptance criterion for up to three months. Toluene and tetrachloroethylene (PCE), the two least volatile compounds, demonstrated uniform uptake rates over one year. In the second phase of this study, testing of the longer exposure times of 6 months and 1 year were evaluated with three additional passive samplers: Waterloo Membrane SamplerTM (WMSTM), SKC 575 with secondary diffusive cover, and Radiello® 130 passive samplers with yellow diffusive bodies. The SKC 575 and Radiello® 130 passive samplers produced acceptable results (%Bias ≤ 30%) over the 6-month exposure period, while the WMSTM sampler results favored petroleum hydrocarbon more than chlorinated solvent uptake. After the 1-year exposure period, the passive sampler performances were acceptable under specific conditions of this study. The results suggest that all three samplers can produce acceptable results over exposure time periods beyond 30 days and up to a year for some compounds. Full article
Show Figures

Figure 1

20 pages, 3037 KiB  
Article
An Automated Microfluidic Platform for In Vitro Raman Analysis of Living Cells
by Illya Klyusko, Stefania Scalise, Francesco Guzzi, Luigi Randazzini, Simona Zaccone, Elvira Immacolata Parrotta, Valeria Lucchino, Alessio Merola, Carlo Cosentino, Ulrich Krühne, Isabella Aquila, Giovanni Cuda, Enzo Di Fabrizio, Patrizio Candeloro and Gerardo Perozziello
Biosensors 2025, 15(7), 459; https://doi.org/10.3390/bios15070459 - 16 Jul 2025
Viewed by 392
Abstract
We present a miniaturized, inexpensive, and user-friendly microfluidic platform to support biological applications. The system integrates a mini-incubator providing controlled environmental conditions and housing a microfluidic device for long-term cell culture experiments. The incubator is designed to be compatible with standard inverted optical [...] Read more.
We present a miniaturized, inexpensive, and user-friendly microfluidic platform to support biological applications. The system integrates a mini-incubator providing controlled environmental conditions and housing a microfluidic device for long-term cell culture experiments. The incubator is designed to be compatible with standard inverted optical microscopes and Raman spectrometers, allowing for the non-invasive imaging and spectroscopic analysis of cell cultures in vitro. The microfluidic device, which reproduces a dynamic environment, was optimized to sustain a passive, gravity-driven flow of medium, eliminating the need for an external pumping system and reducing mechanical stress on the cells. The platform was tested using Raman analysis and adherent tumoral cells to assess proliferation prior and subsequent to hydrogen peroxide treatment for oxidative stress induction. The results demonstrated a successful adhesion of cells onto the substrate and their proliferation. Furthermore, the platform is suitable for carrying out optical monitoring of cultures and Raman analysis. In fact, it was possible to discriminate spectra deriving from control and hydrogen peroxide-treated cells in terms of DNA backbone and cellular membrane modification effects provoked by reactive oxygen species (ROS) activity. The 800–1100 cm−1 band highlights the destructive effects of ROS on the DNA backbone’s structure, as its rupture modifies its vibration; moreover, unpaired nucleotides are increased in treated sample, as shown in the 1154–1185 cm−1 band. Protein synthesis deterioration, led by DNA structure damage, is highlighted in the 1257–1341 cm−1, 1440–1450 cm−1, and 1640–1670 cm−1 bands. Furthermore, membrane damage is emphasized in changes in the 1270, 1301, and 1738 cm−1 frequencies, as phospholipid synthesis is accelerated in an attempt to compensate for the membrane damage brought about by the ROS attack. This study highlights the potential use of this platform as an alternative to conventional culturing and analysis procedures, considering that cell culturing, optical imaging, and Raman spectroscopy can be performed simultaneously on living cells with minimal cellular stress and without the need for labeling or fixation. Full article
(This article belongs to the Special Issue Microfluidic Devices for Biological Sample Analysis)
Show Figures

Figure 1

16 pages, 2354 KiB  
Proceeding Paper
Design and Implementation of a Passive Optical Network for a Small Town
by Fatima Sapundzhi, Boyko Zarev, Slavi Georgiev, Snezhinka Zaharieva, Metodi Popstoilov and Meglena Lazarova
Eng. Proc. 2025, 100(1), 40; https://doi.org/10.3390/engproc2025100040 - 15 Jul 2025
Viewed by 248
Abstract
The increasing demand for high-speed internet and advanced digital services necessitates the deployment of robust and scalable broadband infrastructure, particularly in smaller urban and rural areas. This paper presents the design and implementation of a passive optical network (PON) based on a gigabit-capable [...] Read more.
The increasing demand for high-speed internet and advanced digital services necessitates the deployment of robust and scalable broadband infrastructure, particularly in smaller urban and rural areas. This paper presents the design and implementation of a passive optical network (PON) based on a gigabit-capable passive optical network (GPON) standard to deliver fiber-to-the-home (FTTH) services in a small-town setting. The proposed solution prioritizes cost-effectiveness, scalability, and minimal energy consumption by leveraging passive splitters and unpowered network elements. We detail the topology planning, splitter architecture, installation practices, and technical specifications that ensure efficient signal distribution and future network expansion. The results demonstrate the successful implementation of an optical access infrastructure that supports high-speed internet, Internet Protocol television (IPTV), and voice services while maintaining flexibility for diverse urban layouts and housing types. Full article
Show Figures

Figure 1

24 pages, 3345 KiB  
Article
Enhancing Energy Efficiency in Egyptian Middle-Income Housing: A Study of PV System Integration and Building Envelope Optimization in Sakan Masr
by Ehsan Raslan, Samah Elkhateeb and Ramy Ahmed
Buildings 2025, 15(13), 2326; https://doi.org/10.3390/buildings15132326 - 2 Jul 2025
Viewed by 497
Abstract
Facing rapid urbanization, rising temperatures, and a residential sector that accounted for 38% of Egypt’s electricity use in 2022, middle-income housing presents a critical yet underexplored opportunity for energy efficiency improvements. This study investigates how the integration of passive design strategies and rooftop [...] Read more.
Facing rapid urbanization, rising temperatures, and a residential sector that accounted for 38% of Egypt’s electricity use in 2022, middle-income housing presents a critical yet underexplored opportunity for energy efficiency improvements. This study investigates how the integration of passive design strategies and rooftop photovoltaic (PV) systems can enhance energy performance in this segment, using the Sakan Masr housing project in New Cairo as a case study. Addressing a research gap—namely the limited analysis of combined strategies in Egypt’s middle-income housing—the study follows a four-phase methodology: identifying dominant building orientations; simulating electricity demand and thermal comfort using DesignBuilder; optimizing the building envelope with passive measures; and evaluating PV system performance across south-facing and east–west configurations using PV-SOL. Results reveal that passive strategies such as improved glazing and shading can enhance thermal comfort by up to 10% and reduce cooling loads. Also, east–west PV arrays outperform south-facing ones, producing over 14% more electricity, reducing costs by up to 50%, and avoiding up to 168 tons of CO2 emissions annually. The findings highlight that passive improvements with smart PV integration—offer a cost-effective pathway toward Net Zero Energy goals, with significant implications for national housing policy and Egypt’s renewable energy transition. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

26 pages, 5033 KiB  
Article
Laminar Natural Convection in a Square Cavity with a Horizontal Fin on the Heated Wall: A Numerical Study of Fin Position and Thermal Conductivity Effects
by Saleh A. Bawazeer
Energies 2025, 18(13), 3335; https://doi.org/10.3390/en18133335 - 25 Jun 2025
Cited by 1 | Viewed by 320
Abstract
This study numerically examines laminar natural convection within a square cavity that has a horizontally attached adiabatic fin on its heated vertical wall. The analysis employed the finite element method to investigate how fin position, length, thickness, and thermal conductivity affect heat transfer [...] Read more.
This study numerically examines laminar natural convection within a square cavity that has a horizontally attached adiabatic fin on its heated vertical wall. The analysis employed the finite element method to investigate how fin position, length, thickness, and thermal conductivity affect heat transfer behavior over a broad spectrum of Rayleigh numbers (Ra = 10 to 106) and Prandtl numbers (Pr = 0.1 to 10). The findings indicate that the geometric configuration and the properties of the fluid largely influence the thermal disturbances caused by the fin. At lower Ra values, conduction is the primary mechanism, resulting in minimal impact from the fin. However, as Ra rises, convection becomes increasingly significant, with the fin positioned at mid-height (Yfin = 0.5), significantly improving thermal mixing and flow symmetry, especially for high-Pr fluids. Extending the fin complicates vortex dynamics, whereas thickening the fin improves conductive heat transfer, thereby enhancing convection to the fluid. A new fluid-focused metric, the normalized Nusselt ratio (NNR), is introduced to evaluate the true thermal contribution of fin geometry beyond area-based scaling. It exhibits a non-monotonic response to geometric changes, with peak enhancement observed at high Ra and Pr. The findings provide practical guidance for designing passive thermal management systems in sealed enclosures, such as electronics housings, battery modules, and solar thermal collectors, where active cooling is infeasible. This study offers a scalable reference for optimizing natural convection performance in laminar regimes by characterizing the interplay between buoyancy, fluid properties, and fin geometry. Full article
Show Figures

Figure 1

31 pages, 3470 KiB  
Article
Reducing Cooling Energy Demand in Saudi Arabian Residential Buildings Using Passive Design Approaches
by Lucelia Rodrigues, Benjamin Abraham Cherian and Serik Tokbolat
Buildings 2025, 15(11), 1895; https://doi.org/10.3390/buildings15111895 - 30 May 2025
Viewed by 1044
Abstract
In Saudi Arabia’s hot and arid climate, residential buildings account for over half of national electricity consumption, with cooling demands alone responsible for more than 70% of this use. This paper explores the hypothesis that contemporary villa designs are inherently inefficient and that [...] Read more.
In Saudi Arabia’s hot and arid climate, residential buildings account for over half of national electricity consumption, with cooling demands alone responsible for more than 70% of this use. This paper explores the hypothesis that contemporary villa designs are inherently inefficient and that current building regulations fall short of enabling adequate thermal performance. This issue is expected to become increasingly significant in the near future as external temperatures continue to rise. The study aims to assess whether passive design strategies rooted in both engineering and architectural principles can offer substantial reductions in cooling energy demand under current and future climatic conditions. A typical detached villa was simulated using IES-VE to test a range of passive measures, including optimized window-to-wall ratios, enhanced glazing configurations, varied envelope constructions, solar shading devices, and wind-tower-based natural ventilation. Parametric simulations were conducted under current climate data and extended to future weather scenarios. Unlike many prior studies, this work integrates these strategies holistically and evaluates their combined impact, rather than in isolation while assessing the impact of future weather in the region. The findings revealed that individual measures such as insulated ceilings and reduced window-to-wall ratios significantly lowered cooling loads. When applied in combination, these strategies achieved a 68% reduction in cooling energy use compared to the base-case villa. While full passive performance year-round remains unfeasible in such extreme conditions, the study demonstrates a clear pathway toward energy-efficient housing in the Gulf region. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

18 pages, 5282 KiB  
Article
Climate Adaptability Analysis of Traditional Dwellings in Mountain Terraced Areas: A Case Study of ‘Mushroom Houses’ in the Hani Terraces of Yunnan, China
by Luyao Hu, Yinong Liu, Xinkai Li and Pengbo Yan
Atmosphere 2025, 16(5), 608; https://doi.org/10.3390/atmos16050608 - 16 May 2025
Viewed by 496
Abstract
This study examines the climate adaptability of traditional Hani ‘Mushroom Houses’ located in the rice terrace region of Honghe Hani Autonomous Prefecture, Yunnan, China. By analyzing 30 years of meteorological data, the study identifies the local climatic characteristics of high temperatures, high humidity, [...] Read more.
This study examines the climate adaptability of traditional Hani ‘Mushroom Houses’ located in the rice terrace region of Honghe Hani Autonomous Prefecture, Yunnan, China. By analyzing 30 years of meteorological data, the study identifies the local climatic characteristics of high temperatures, high humidity, and significant diurnal temperature variations. The thermal comfort voting method was used to establish a quantitative relationship between the Physiological Equivalent Temperature (PET) index and residents’ subjective thermal perceptions, thereby assessing seasonal variations in thermal comfort. Field measurements of indoor and outdoor temperature, humidity, and wind speed were conducted in May and December 2023 to evaluate thermal interactions between rooms. This study demonstrated: (1) the critical roles of building orientation (e.g., northwest-facing design), functional layout (e.g., multi-story zoning), and structural forms (e.g., thick walls, thatched roofs) in regulating temperature and humidity. (2) Confirmed that Hani ‘Mushroom Houses’ stabilize indoor environments through passive strategies, including material selection (wood, rammed earth), natural ventilation (cross-draft design), and spatial organization (climate-buffering storage layers). (3) Provided empirical evidence for optimizing traditional dwellings (e.g., enhanced insulation, ventilation improvements) and advancing sustainable practices in similar climatic regions. Full article
(This article belongs to the Section Biometeorology and Bioclimatology)
Show Figures

Figure 1

6 pages, 5351 KiB  
Communication
A 3D Printed, Time-Resolved, Settle-Plate Air Sampler
by Jonathan E. Thompson
Hardware 2025, 3(2), 4; https://doi.org/10.3390/hardware3020004 - 16 May 2025
Viewed by 386
Abstract
A novel temporally resolved settle-plate air sampler was developed using 3D printing technology to improve upon traditional passive air sampling methods. Conventional settle plates provide cumulative measurements of particle or microbial loads over an entire sampling period, lacking the temporal resolution necessary to [...] Read more.
A novel temporally resolved settle-plate air sampler was developed using 3D printing technology to improve upon traditional passive air sampling methods. Conventional settle plates provide cumulative measurements of particle or microbial loads over an entire sampling period, lacking the temporal resolution necessary to identify specific contamination events. The described device integrates a petri plate within a 3D-printed housing featuring a narrow slit that exposes only a small portion of the plate to incoming particles. A rotary mechanism, driven by a mechanical clock motor, rotates the petri plate over 12 h, allowing for time-segmented sampling. Validation experiments demonstrated the device’s ability to accurately encode the temporal history of particle deposition using both aerosolized dyes and viable microbial spores. The device effectively correlated bioaerosol deposition with ambient wind conditions during outdoor sampling. The system is inexpensive (under USD 10), requires no specialized skills to assemble, and is compatible with existing settle plate methodologies. This innovation enhances the ability to conduct air quality assessments in critical environments, enabling data-driven decisions to mitigate contamination risks. Full article
Show Figures

Figure 1

10 pages, 5284 KiB  
Article
Reference Values for Postmortem Examination of the Heart in the Macropod (Macropodidae) and Koala (Phascolarctidae)
by Ella Cousins, Lucy Woolford, David McLelland, Sarah Brownrigg and Natasha Speight
Animals 2025, 15(10), 1397; https://doi.org/10.3390/ani15101397 - 12 May 2025
Viewed by 685
Abstract
Morphometric cardiac reference values are reported for macropods and koalas (Phascolarctos cinereus). Body weight (BW), heart weight (HW), left ventricle (LV) wall, interventricular septum (S), right ventricle (RV) wall thickness, and LV+S and RV weights were measured at postmortem examination of [...] Read more.
Morphometric cardiac reference values are reported for macropods and koalas (Phascolarctos cinereus). Body weight (BW), heart weight (HW), left ventricle (LV) wall, interventricular septum (S), right ventricle (RV) wall thickness, and LV+S and RV weights were measured at postmortem examination of 48 macropods and 32 koalas that had no evidence of cardiovascular disease. The HW/BW% (0.43–0.96%) and (LV+S)/RV (2.80–4.22) for macropods were comparable to domestic species. In koalas, the HW/BW% (0.25–0.51%) was lower, and the (LV+S)/RV (3.06–5.41) ranged higher than in macropods and domestic species. The LV:RV of koalas (1.0–10.8) was more variable than in macropods (1.17–4.27). Two macropods with cardiac disease were assessed on postmortem examination against the generated reference values. An adult male common wallaroo (Osphranter robustus) was found dead with copious serous peritoneal effusion, chronic passive hepatic congestion with centrilobular fibrosis, and dilation of the RV, while the LV:RV was elevated, supportive of RV thinning. A 21-year-old female zoo-housed Matschie’s tree kangaroo (Dendrolagus matschiei) had a flaccid thin-walled RV, LV cardiomyocyte hypertrophy, interstitial myocardial fibrosis and myofiber degeneration, pulmonary oedema, and serous pericardial effusion. The (LV+S)/RV and LV:RV were elevated and RV:S decreased, supporting left hypertrophic cardiomyopathy. Species-specific reference values presented in this study facilitate objective and improved postmortem cardiac assessment in macropods and koalas. Full article
(This article belongs to the Special Issue Wildlife Diseases: Pathology and Diagnostic Investigation)
Show Figures

Figure 1

19 pages, 1951 KiB  
Article
Eco-Efficient Thermal Rehabilitation of Residential Buildings in Northeast Brazil Through Thermal Modeling Considering Future Climate Needs
by Guilherme B. A. Coelho, Paulina Faria and Nada Mowafy
Buildings 2025, 15(9), 1497; https://doi.org/10.3390/buildings15091497 - 28 Apr 2025
Viewed by 560
Abstract
The outdoor climate is expected to undergo significant and extreme changes. These changes may lead to increased building requirements depending on their location. This is critical, as human beings tend to spend a large part of their time inside buildings. Accordingly, it is [...] Read more.
The outdoor climate is expected to undergo significant and extreme changes. These changes may lead to increased building requirements depending on their location. This is critical, as human beings tend to spend a large part of their time inside buildings. Accordingly, it is crucial to take future conditions into account to ensure an adequate indoor climate, simultaneously meeting the current drive for decarbonization of the built environment. One avenue is opting for thermally efficient building products and technologies with a lower carbon footprint to guarantee a comfortable indoor climate while minimizing energy consumption. This study focuses on the Northeast region of Brazil, specifically its nine states, given the usage of specific passive thermal strategies in new buildings that have high compensatory energy consumption. This is achieved through developing computational thermal models of a housing unit in a multi-family building, commonly constructed in several cities in this region. This thermal model was employed to analyze indoor thermal comfort, energy consumption, and carbon footprint. To account for future climate projections, the analysis includes scenarios based on Representative Concentration Pathways 4.5 and 8.5. The efficiency of certain sustainable passive rehabilitation is demonstrated in this region, highlighting the importance of adopting passive and efficient thermal measures appropriate to the region’s climate. Full article
Show Figures

Figure 1

29 pages, 6510 KiB  
Article
Energy-Efficient Design of Immigrant Resettlement Housing in Qinghai: Solar Energy Utilization, Sunspace Temperature Control, and Envelope Optimization
by Bo Liu, Yu Liu, Qianlong Xin, Xiaomei Kou and Jie Song
Buildings 2025, 15(9), 1434; https://doi.org/10.3390/buildings15091434 - 24 Apr 2025
Cited by 1 | Viewed by 459
Abstract
Qinghai Province urgently requires the development of adaptive energy-efficient rural housing construction to address resettlement needs arising from hydropower projects, given the region’s characteristic combination of high solar irradiance resources and severe cold climate conditions. This research establishes localized retrofit strategies through systematic [...] Read more.
Qinghai Province urgently requires the development of adaptive energy-efficient rural housing construction to address resettlement needs arising from hydropower projects, given the region’s characteristic combination of high solar irradiance resources and severe cold climate conditions. This research establishes localized retrofit strategies through systematic field investigations and Rhinoceros modeling simulations of five representative rural residences across four villages. The key findings reveal that comprehensive building envelope retrofits achieve an 80% reduction in energy consumption. South-facing sunspaces demonstrate effective thermal buffering capacity, though their spatial depth exhibits negligible correlation with heating energy requirements. An optimized hybrid shading system combining roof overhangs and vertical louvers demonstrates critical efficacy in summer overheating mitigation, with vertical louvers demonstrating superior thermal and luminous regulation precision. Architectural orientation analysis identifies an optimal alignment within ±10° of true south, emphasizing the functional zoning principle of positioning primary living spaces in south-oriented ground floor areas while locating auxiliary functions in northeastern/northwestern zones. The integrated design framework synergizes three core components: passive solar optimization, climate-responsive shading mechanisms, and performance-enhanced envelope systems, achieving simultaneous improvements in energy efficiency and thermal comfort within resettlement housing constraints. This methodology establishes a replicable paradigm for climate-resilient rural architecture in high-altitude, solar-intensive cold regions, effectively reconciling community reconstruction needs with low-carbon development imperatives through context-specific technical solutions. Full article
Show Figures

Figure 1

25 pages, 8348 KiB  
Article
Post-Occupancy Evaluation of a Passive Multi-Unit Residential Building and a Single-Family Passive House
by Anthony Mach, Maria Parra and Hebatallah Teamah
Sustainability 2025, 17(9), 3799; https://doi.org/10.3390/su17093799 - 23 Apr 2025
Cited by 1 | Viewed by 484
Abstract
Passive buildings are increasing in popularity in Canada. This paper examines two passive buildings initially constructed in the past decade: the Peterborough passive multi-unit residential building (MURB) and the Wolfe Island single-family dwelling. A post-occupancy evaluation was performed on the buildings. The buildings [...] Read more.
Passive buildings are increasing in popularity in Canada. This paper examines two passive buildings initially constructed in the past decade: the Peterborough passive multi-unit residential building (MURB) and the Wolfe Island single-family dwelling. A post-occupancy evaluation was performed on the buildings. The buildings were modelled in HOT2000 and the Passive House Planning Package (PHPP) to ensure the validity of the results. The energy bills were collected from the building owners to acquire the real-time consumption of the buildings. The models have shown a good agreement with the collected data. Furthermore, data loggers were installed in both buildings for indoor temperature monitoring to ensure that they adhere to the passive house explicit criteria. Internal gains, shading, and orientation were analyzed to assess their effect on heating and cooling loads. Peterborough MURB has shown more energy-saving potential compared to the Wolfe Island passive house. Heating load reduction has been compared, more than five times, to the cooling load reduction potential. The reduction in GHG emissions can be up to 39% when passive house parameters are applied to the Wolfe Island house. This paper has shown the potential of the passive house in relation to sustainable buildings in Northern climates. Full article
Show Figures

Figure 1

27 pages, 8118 KiB  
Article
Assessment of Winter Indoor Humiture and Spatial Optimization of Rural Residential Buildings in Mengda National Nature Reserve, China
by Yuan Kang, Yingying Cang, Jingru Zhang and Shiyuan Zhou
Buildings 2025, 15(8), 1366; https://doi.org/10.3390/buildings15081366 - 19 Apr 2025
Viewed by 358
Abstract
The development of global nature reserves is currently in a rapid growth phase. One of the key challenges in establishing nature reserves is balancing environmental protection with rural residential development within these areas, where housing plays a crucial role in the built environment. [...] Read more.
The development of global nature reserves is currently in a rapid growth phase. One of the key challenges in establishing nature reserves is balancing environmental protection with rural residential development within these areas, where housing plays a crucial role in the built environment. Successful residential architecture in nature reserves typically meets residents’ diverse needs and environmental protection requirements by considering regional ecology, culture, economic conditions, natural environment, indoor thermal comfort, and energy consumption. This study examines rural residential buildings in the Mengda National Nature Reserve (MNNR) under cold climate conditions in Western China. Through surveys, architectural mapping, and thermal–humidity environment assessment of typical residential buildings across multiple rural communities within the nature reserve, this research explores possibilities for improving indoor thermal comfort in nature reserve residential buildings. Combined with local climate adaptability and architectural design characteristics, this study proposes rational spatial improvement strategies. This study explores climate-adaptive design in the MNNR, integrating passive solar energy and sustainable heating. It proposes spatial strategies to reduce energy use and enhance thermal comfort. The research findings provide a valuable reference for the spatial optimisation of rural residential construction in nature reserves under similar climatic conditions. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

Back to TopTop