Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (84)

Search Parameters:
Keywords = PWM BOOST

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2878 KiB  
Article
A Peak Current Mode Boost DC-DC Converter with Hybrid Spread Spectrum
by Xing Zhong, Jianhai Yu, Yongkang Shen and Jinghu Li
Micromachines 2025, 16(8), 862; https://doi.org/10.3390/mi16080862 - 26 Jul 2025
Viewed by 248
Abstract
The stable operation of micromachine systems relies on reliable power management, where DC-DC converters provide energy with high efficiency to extend operational endurance. However, these converters also constitute significant electromagnetic interference (EMI) sources that may interfere with the normal functioning of micro-electromechanical systems. [...] Read more.
The stable operation of micromachine systems relies on reliable power management, where DC-DC converters provide energy with high efficiency to extend operational endurance. However, these converters also constitute significant electromagnetic interference (EMI) sources that may interfere with the normal functioning of micro-electromechanical systems. This paper proposes a boost converter utilizing Pulse Width Modulation (PWM) with peak current mode control to address the EMI issues inherent in the switching operation of DC-DC converters. The converter incorporates a Hybrid Spread Spectrum (HSS) technique to effectively mitigate EMI noise. The HSS combines a 1.2 MHz pseudo-random spread spectrum with a 9.4 kHz triangular periodic spread spectrum. At a standard switching frequency of 2 MHz, the spread spectrum range is set to ±7.8%. Simulations conducted using a 0.5 μm Bipolar Complementary Metal-Oxide-Semiconductor Double-diffused Metal-Oxide-Semiconductor (BCD) process demonstrate that the HSS technique reduces EMI around the switching frequency by 12.29 dBμV, while the converter’s efficiency decreases by less than 1%. Full article
Show Figures

Figure 1

21 pages, 3711 KiB  
Article
Topology Analysis and Modeling Comparison of SI-SIMO Boost Converter Used in Multiple Output Applications
by Yilin Yan, Honghong Wang, Ping Ma and Jianquan Liao
Energies 2025, 18(13), 3585; https://doi.org/10.3390/en18133585 - 7 Jul 2025
Viewed by 316
Abstract
This paper presents the analysis and modeling of a single-input, single-inductor, multiple-output (SI-SIMO) boost converter to address limitations of conventional SISO converters in distributed power supply applications. Based on switching-state analysis, a sequential PWM modulation strategy is proposed to achieve independent voltage regulation [...] Read more.
This paper presents the analysis and modeling of a single-input, single-inductor, multiple-output (SI-SIMO) boost converter to address limitations of conventional SISO converters in distributed power supply applications. Based on switching-state analysis, a sequential PWM modulation strategy is proposed to achieve independent voltage regulation across multiple outputs using a single inductor. An average circuit model is developed considering steady-state characteristics. Inductor conduction mode boundaries and the critical inductor value are derived. A complete modeling process is introduced, transitioning from nonlinear dynamics to small-signal approximation at the steady-state operating point. PSIM and MATLAB Simulink experiment results validate the proposed control method and confirm the theoretical analysis under various operating conditions. Full article
Show Figures

Figure 1

18 pages, 8267 KiB  
Article
Discontinuous Multilevel Pulse Width Modulation Technique for Grid Voltage Quality Improvement and Inverter Loss Reduction in Photovoltaic Systems
by Juan-Ramon Heredia-Larrubia, Francisco M. Perez-Hidalgo, Antonio Ruiz-Gonzalez and Mario Jesus Meco-Gutierrez
Electronics 2025, 14(13), 2695; https://doi.org/10.3390/electronics14132695 - 3 Jul 2025
Viewed by 223
Abstract
In the last decade, countries have experienced increased solar radiation, leading to an increase in the use of solar photovoltaic (PV) systems to boost renewable energy generation. However, the high solar penetration into these systems can disrupt the normal operation of the distribution [...] Read more.
In the last decade, countries have experienced increased solar radiation, leading to an increase in the use of solar photovoltaic (PV) systems to boost renewable energy generation. However, the high solar penetration into these systems can disrupt the normal operation of the distribution grid. Thus, a major concern is the impact of these units on power quality indices. To improve these units, one approach is to design more efficient power inverters. This study introduces a pulse width modulation (PWM) technique for multilevel power inverters, employing a sine wave as the carrier wave and an amplitude over-modulated triangular wave as the modulator (PSTM-PWM). The proposed technique improves the waveform quality and increases the AC voltage output of the multilevel inverter compared with that from conventional PWM techniques. In addition, it ensures compliance with the EN50160 standard. These improvements are achieved with a lower modulation order than that used in traditional techniques, resulting in reduced losses in multilevel power inverters. The proposed approach is then implemented using a five-level cascaded H-bridge inverter. In addition, a comparative analysis of the efficiency of multilevel power inverters was performed, contrasting classical modulation techniques with the proposed approach for various modulation orders. The results demonstrate a significant improvement in both total harmonic distortion (THD) and power inverter efficiency. Full article
(This article belongs to the Special Issue Advances in Pulsed-Power and High-Power Electronics)
Show Figures

Figure 1

25 pages, 4440 KiB  
Article
PWM–PFM Hybrid Control of Three-Port LLC Resonant Converter for DC Microgrids
by Yi Zhang, Xiangjie Liu, Jiamian Wang, Baojiang Wu, Feilong Liu and Junfeng Xie
Energies 2025, 18(10), 2615; https://doi.org/10.3390/en18102615 - 19 May 2025
Viewed by 519
Abstract
This article proposes a high-efficiency isolated three-port resonant converter for DC microgrids, combining a dual active bridge (DAB)–LLC topology with hybrid Pulse Width Modulat-Pulse Frequency Modulation (PWM-PFM) phase shift control. Specifically, the integration of a dual active bridge and LLC resonant structure with [...] Read more.
This article proposes a high-efficiency isolated three-port resonant converter for DC microgrids, combining a dual active bridge (DAB)–LLC topology with hybrid Pulse Width Modulat-Pulse Frequency Modulation (PWM-PFM) phase shift control. Specifically, the integration of a dual active bridge and LLC resonant structure with interleaved buck/boost stages eliminates cascaded conversion losses. Energy flows bidirectionally between ports via zero-voltage switching, achieving a 97.2% efficiency across 150–300 V input ranges, which is a 15% improvement over conventional cascaded designs. Also, an improved PWM-PFM shift control scheme dynamically allocates power between ports without altering switching frequency. By decoupling power regulation and leveraging resonant tank optimization, this strategy reduces control complexity while maintaining a ±2.5% voltage ripple under 20% load transients. Additionally, a switch-controlled capacitor network and frequency tuning enable resonant parameter adjustment, achieving a 1:2 voltage gain range without auxiliary circuits. It reduces cost penalties compared to dual-transformer solutions, making the topology viable for heterogeneous DC microgrids. Based on a detailed theoretical analysis, simulation and experimental results verify the effectiveness of the proposed concept. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

35 pages, 5603 KiB  
Article
Zero–Average Dynamics Technique Applied to the Buck–Boost Converter: Results on Periodicity, Bifurcations, and Chaotic Behavior
by Diego A. Londoño Patiño, Simeón Casanova Trujillo and Fredy E. Hoyos
Energies 2025, 18(8), 2051; https://doi.org/10.3390/en18082051 - 16 Apr 2025
Viewed by 300
Abstract
This study addresses chaos control in a Buck–Boost converter using ZAD technique and FPIC. The system analysis identified 1-periodic orbits and observed the occurrence of flip bifurcations, indicating chaotic behavior characterized by sensitivity to initial conditions. To mitigate these instabilities, FPIC was successfully [...] Read more.
This study addresses chaos control in a Buck–Boost converter using ZAD technique and FPIC. The system analysis identified 1-periodic orbits and observed the occurrence of flip bifurcations, indicating chaotic behavior characterized by sensitivity to initial conditions. To mitigate these instabilities, FPIC was successfully applied, stabilizing periodic orbits and significantly reducing chaos in the system. Numerical simulations verified the presence of chaos, confirmed by positive Lyapunov exponents, and demonstrated the effectiveness of the applied control methods. Steady-state and transient responses of the open-loop model and experimental system were evaluated, showing a strong correlation between them. Under varying load conditions, the numerical model accurately predicted the converter’s real dynamics, validating the proposed approach. Additionally, closed-loop control with ZAD exhibited robust performance, maintaining stable inductor current even during abrupt load changes, thus achieving effective control in non-minimum phase systems. This work contributes to the design of robust control strategies for power converters, optimizing their stability and dynamic response in applications that require precise management of power under variable conditions. Finally, a comparison was made between the performance of the Buck–Boost converter controlled with ZAD and the one controlled by PID. It was observed that both controllers effectively regulate the current, with a steady-state error of less than 1%. However, the system controlled with ZAD maintains a fixed switching frequency, whereas the PID-controlled system lacks a fixed switching frequency and operates with a very high PWM frequency. This high frequency in the PID-controlled system presents a disadvantage, as it leads to issues such as chattering, duty cycle saturation, and consequently, overheating of the MOSFET. Full article
Show Figures

Figure 1

18 pages, 6346 KiB  
Article
Novel Single-Stage Electrolytic Capacitor-Less Buck-Boost Inverter
by Youn-Ok Choi and Khai M. Nguyen
Energies 2024, 17(23), 6191; https://doi.org/10.3390/en17236191 - 8 Dec 2024
Viewed by 993
Abstract
Nowadays, single-phase, single-stage, buck-boost power inverters are mostly considered to be used for renewable energy source applications due to their wide range of capabilities. This article introduces a novel, single-phase, single-stage, buck-boost inverter with a wide range of input DC voltage. In addition, [...] Read more.
Nowadays, single-phase, single-stage, buck-boost power inverters are mostly considered to be used for renewable energy source applications due to their wide range of capabilities. This article introduces a novel, single-phase, single-stage, buck-boost inverter with a wide range of input DC voltage. In addition, the introduced inverter does not use the electrolytic capacitor, which enhances the lifetime and volume reduction in the inverter, avoids the high equivalent series resistance, and reduces the inrush current of electrolytic capacitors in the introduced inverter. Moreover, the introduced inverter exhibits a reduced switch voltage rating, and the novel PWM control strategy with the half-cycle of the sinusoidal is derived to reduce the switching loss of power switches, thus improving the inverter’s efficiency. The operation states, theoretical analysis, and design of components are fully discussed. A comparative study of the introduced inverter with other buck-boost inverter topologies is also reported. Finally, the 500 W laboratory prototype is set up for simulation and experimental verification. The experimental results verify the correctness of operating analysis and simulation. Full article
(This article belongs to the Special Issue Power Electronics and Power Quality 2024)
Show Figures

Figure 1

18 pages, 8093 KiB  
Article
Quadratic Boost Converter with Optimized Switching Ripple Based on the Selection of Passive Components
by Edgar D. Silva-Vera, Julio C. Rosas-Caro, Jesus E. Valdez-Resendiz, Avelina Alejo-Reyes, Omar F. Ruiz-Martinez, Johnny Posada Contreras and Pedro Martín García-Vite
Electricity 2024, 5(4), 877-894; https://doi.org/10.3390/electricity5040044 - 9 Nov 2024
Cited by 1 | Viewed by 1654
Abstract
This work introduces a boost converter with quadratic gain. Its main advantage compared to well-known similar quadratic boost converters is that it requires capacitors with a relatively small capacitance and inductors with small inductance, leading to a reduction in the size or stored [...] Read more.
This work introduces a boost converter with quadratic gain. Its main advantage compared to well-known similar quadratic boost converters is that it requires capacitors with a relatively small capacitance and inductors with small inductance, leading to a reduction in the size or stored energy while performing a power conversion of similar power rating and the same switching ripples in both the input current and the output voltage. It is inspired by the recently introduced ISB converter and uses a specific PWM method. This results in achieving switching ripple constraints while using smaller energy storage elements (capacitors and inductors). The updated converter offers the same voltage gain compared to the conventional quadratic boost topology with the benefit of compact component sizes. While it has more passive elements, they are of reduced size. An analysis of energy storage revealed that this new converter uses only half the energy in inductors and 14% in capacitors when compared to specific design parameters. Full article
Show Figures

Figure 1

25 pages, 12723 KiB  
Article
A Dynamic Simulation of a Piezoelectric Energy-Harvesting System Integrated with a Closed-Loop Voltage Source Converter for Sustainable Power Generation
by Ahmed K. Ali, Ali Abdulwahhab Abdulrazzaq and Ali H. Mohsin
Processes 2024, 12(10), 2198; https://doi.org/10.3390/pr12102198 - 10 Oct 2024
Cited by 1 | Viewed by 2844
Abstract
Numerous recent studies address the concept of energy harvesting from natural wind excitation vibration to piezoelectric surfaces, aerodynamic losses, and electromagnetic dampers. All these techniques require a connection to an energy-management circuit. However, the simulation model for energy conversion and management dedicated to [...] Read more.
Numerous recent studies address the concept of energy harvesting from natural wind excitation vibration to piezoelectric surfaces, aerodynamic losses, and electromagnetic dampers. All these techniques require a connection to an energy-management circuit. However, the simulation model for energy conversion and management dedicated to this task has not yet been described. This paper presents a model-based simulation for an energy conversion system using piezoelectric energy-harvester system (PEHS) technology. A controlled pulse width modulation (PWM) rectifier, a closed-loop buck-boost converter, and a piezoelectric transducer comprise a dynamic mathematical model of a PEHS. The control blocks of the closed-loop buck-boost converter use the perturbation and observation (P&O) algorithm based on maximum power point tracking (MPPT), which adapts the operational voltage of the piezoelectric source to deliver the maximum power to load. A simulation program is employed to perform mathematical analysis on various wind vibration scenarios, piezoelectric sources without PWM converters, and piezoelectric vibration sources connected to a closed-loop P&O converter. The crucial results of this paper demonstrated that the proposed dynamic PEHS model effectively fed low-power electronic loads by directly adjusting the output voltage level to the set voltage, even under different vibration severity levels. As a result, the proposed PEHS dynamic model serves as a guideline for researchers in the development of self-powered sensors, which contributes to understanding sustainable energy alternatives. Full article
Show Figures

Figure 1

16 pages, 7481 KiB  
Article
Research on the Control and Modulation Scheme for a Novel Five-Switch Current Source Inverter
by Tao Fu, Jihao Gao, Haiyan Liu and Bo Xia
Energies 2024, 17(15), 3640; https://doi.org/10.3390/en17153640 - 24 Jul 2024
Cited by 2 | Viewed by 967
Abstract
Different from the voltage source inverter (VSI), the current source inverter (CSI) can boost the voltage and eliminate the additional passive filter and dead time. However, the DC-side inductor current is not a real current source and is generated by a DC voltage [...] Read more.
Different from the voltage source inverter (VSI), the current source inverter (CSI) can boost the voltage and eliminate the additional passive filter and dead time. However, the DC-side inductor current is not a real current source and is generated by a DC voltage supply and an inductor. Under different switching states, the DC-side inductor will be charged or discharged, which leads to the DC-side inductor current being discontinuous or increasing. To solve the control problem of the DC-side inductor current of the CSI, a novel single-phase CSI topology with five switching tubes for grid-connected applications is proposed. Firstly, the reference calculation method and the hysteresis loop control scheme for the DC-side inductor current are proposed, and the adjustable and constant DC-side inductor current are obtained. Since the PWM signals cannot be directly implemented to the switching tubes, the modulation strategy for the single-phase CSI is proposed in this paper. Then, an active damping method based on the feedback capacitor voltage is presented to suppress the resonance peak caused by the LC filter on the grid side. Finally, the math model of the AC-side structure is established, and the optimal proportional-resonant controller parameters’ design method is explored by the amplitude–frequency characteristic curves. The simulation and experiment are implemented for the proposed CSI topology. The results show that a high-quality power with a good control performance can be obtained with the proposed CSI topology. Full article
Show Figures

Figure 1

14 pages, 1236 KiB  
Article
Utilizing Aerobic Capacity Data for EDSS Score Estimation in Multiple Sclerosis: A Machine Learning Approach
by Seda Arslan Tuncer, Cagla Danacı, Furkan Bilek, Caner Feyzi Demir and Taner Tuncer
Diagnostics 2024, 14(12), 1249; https://doi.org/10.3390/diagnostics14121249 - 13 Jun 2024
Cited by 1 | Viewed by 1184
Abstract
The Expanded Disability Status Scale (EDSS) is the most popular method to assess disease progression and treatment effectiveness in patients with multiple sclerosis (PwMS). One of the main problems with the EDSS method is that different results can be determined by different physicians [...] Read more.
The Expanded Disability Status Scale (EDSS) is the most popular method to assess disease progression and treatment effectiveness in patients with multiple sclerosis (PwMS). One of the main problems with the EDSS method is that different results can be determined by different physicians for the same patient. In this case, it is necessary to produce autonomous solutions that will increase the reliability of the EDSS, which has a decision-making role. This study proposes a machine learning approach to predict EDSS scores using aerobic capacity data from PwMS. The primary goal is to reduce potential complications resulting from incorrect scoring procedures. Cardiovascular and aerobic capacity parameters of individuals, including aerobic capacity, ventilation, respiratory frequency, heart rate, average oxygen density, load, and energy expenditure, were evaluated. These parameters were given as input to CatBoost, gradient boosting (GBM), extreme gradient boosting (XGBoost), and decision tree (DT) machine learning methods. The most significant EDSS results were determined with the XGBoost algorithm. Mean absolute error, root mean square error, mean square error, mean absolute percent error, and R square values were obtained as 0.26, 0.4, 0.26, 16, and 0.68, respectively. The XGBoost based machine learning technique was shown to be effective in predicting EDSS based on aerobic capacity and cardiovascular data in PwMS. Full article
(This article belongs to the Section Machine Learning and Artificial Intelligence in Diagnostics)
Show Figures

Figure 1

17 pages, 14190 KiB  
Article
The Impact of Grid Distortion on the Power Conversion Harmonics of AC/DC Converters in the Supraharmonic Range
by Marwa S. Osheba, Abdellatif M. Aboutaleb, Jan Desmet and Jos Knockaert
Electronics 2024, 13(12), 2244; https://doi.org/10.3390/electronics13122244 - 7 Jun 2024
Cited by 4 | Viewed by 1183
Abstract
AC/DC converters, controlled by pulse width modulation (PWM) and used as power factor correction (PFC), is considered one of the main contributors to emissions in the range 2 kHz–150 kHz, recently known as the supraharmonic (SH) range. This study looks at the impact [...] Read more.
AC/DC converters, controlled by pulse width modulation (PWM) and used as power factor correction (PFC), is considered one of the main contributors to emissions in the range 2 kHz–150 kHz, recently known as the supraharmonic (SH) range. This study looks at the impact of SH grid distortion on the LF (<2 kHz) and HF (>2 kHz) emission of an AC/DC converter. The PFC boost converter is used as a particular case for validation of the results. It is observed that the AC/DC converters emit additional LF interharmonics and subharmonics when the grid voltage contains interharmonic components in the SH range. A mathematical analysis is provided to study and assess the interference between the SH in the background distortion and the AC/DC converters. Experimental studies are then performed for a PFC boost setup based on dSPACE MicroLabBox for the purposes of validating the mathematical analysis. Full article
Show Figures

Figure 1

20 pages, 8084 KiB  
Article
Current-Prediction-Controlled Quasi-Z-Source Cascaded Multilevel Photovoltaic Inverter
by Shanshan Lei, Ningzhi Jin and Jiaxin Jiang
Electronics 2024, 13(10), 1824; https://doi.org/10.3390/electronics13101824 - 8 May 2024
Cited by 2 | Viewed by 1299
Abstract
To address problems that traditional two-stage inverters suffer such as high cost, low efficiency, and complex control, this study adopts a quasi-Z-source cascaded multilevel inverter. Firstly, the quasi-Z-source inverter utilizes a unique impedance network to achieve single-stage boost and inversion without requiring a [...] Read more.
To address problems that traditional two-stage inverters suffer such as high cost, low efficiency, and complex control, this study adopts a quasi-Z-source cascaded multilevel inverter. Firstly, the quasi-Z-source inverter utilizes a unique impedance network to achieve single-stage boost and inversion without requiring a dead zone setting. Additionally, its cascaded multilevel structure enables independent control of each power unit structure without capacitor voltage sharing problems. Secondly, this study proposes a current-predictive control strategy to reduce current harmonics on the grid side. Moreover, the feedback model of current and system state is established, and the fast control of grid-connected current is realized with the deadbeat control weighted by the predicted current deviation. And a grid-side inductance parameter identification is added to improve control accuracy. Also, an improved multi-carrier phase-shifted sinusoidal PWM method is adopted to address the issue of switching frequency doubling, which is caused by the shoot-through zero vector in quasi-Z-source inverters. Finally, the problems of switching frequency doubling and high harmonics on the grid side are solved by the improved deadbeat control strategy with an improved MPSPWM method. And a seven-level simulation model is built in MATLAB (2022b) to verify the correctness and superiority of the above theory. Full article
(This article belongs to the Special Issue Power Electronics in Renewable Systems)
Show Figures

Figure 1

26 pages, 5647 KiB  
Article
An Optimization Algorithm for Embedded Raspberry Pi Pico Controllers for Solar Tree Systems
by K. Punitha, Akhlaqur Rahman, A. S. Radhamani, Ramakrishna S. S. Nuvvula, Sk. A. Shezan, Syed Riyaz Ahammed, Polamarasetty P. Kumar and Md Fatin Ishraque
Sustainability 2024, 16(9), 3788; https://doi.org/10.3390/su16093788 - 30 Apr 2024
Cited by 5 | Viewed by 3046
Abstract
Solar photovoltaic (PV) systems stand out as a promising solution for generating clean, carbon-free energy. However, traditional solar panel installations often require extensive land resources, which could become scarce as the population grows. To address this challenge, innovative approaches are needed to maximize [...] Read more.
Solar photovoltaic (PV) systems stand out as a promising solution for generating clean, carbon-free energy. However, traditional solar panel installations often require extensive land resources, which could become scarce as the population grows. To address this challenge, innovative approaches are needed to maximize solar power generation within limited spaces. One promising concept involves the development of biological tree-like structures housing solar panels. These “solar trees” mimic the arrangement of branches and leaves found in natural trees, following patterns akin to phyllotaxy, which correlates with the Fibonacci sequence and golden ratio. By adopting an alternative 1:3 phyllotaxy pattern, three solar panels can be efficiently arranged along the stem of the solar tree structure, each rotated at a 120-degree displacement. Optimizing the performance of solar trees requires effective maximum power point tracking (MPPT), a crucial process for extracting the maximum available power from solar panels to enhance the overall efficiency. In this study, a novel metaheuristic algorithm called horse herd optimization (HHO) is employed for MPPT in solar tree applications. Moreover, to efficiently manage the generated power, a cascaded buck–boost converter is utilized. This converter is capable of adjusting the DC voltage levels to match the system requirements within a single topology. The algorithm is implemented using MATLAB and embedded within a Raspberry Pi Pico controller, which facilitates the generation of pulse-width modulation (PWM) signals to control the cascaded buck–boost converter. Through extensive validation, this study confirms the effectiveness of the proposed HHO algorithm integrated into the Raspberry Pi Pico controller for optimizing solar trees under various shading conditions. In essence, this research highlights the potential of solar tree structures coupled with advanced MPPT algorithms and power management systems to maximize solar energy utilization, offering a sustainable solution for clean energy generation within limited land resources. Full article
Show Figures

Figure 1

22 pages, 7350 KiB  
Article
A Symmetric Sixth-Order Step-Up Converter with Asymmetric PWM Achieved with Small Energy Storage Components
by Iván Dueñas-García, Julio C. Rosas-Caro, Hector R. Robles-Campos, Johnny Posada, Jesus E. Valdez-Resendiz, Antonio Valderrabano-Gonzalez, Hossam A. Gabbar and Bhanu Babaiahgari
Symmetry 2024, 16(4), 460; https://doi.org/10.3390/sym16040460 - 10 Apr 2024
Cited by 2 | Viewed by 1387
Abstract
This research explores an improved operation of a recently studied converter, the so-called two-phase sixth-order boost converter (2P6OBC). The converter consists of a symmetric design of power stations followed by an LC filter; its improved operation incorporates an asymmetric pulse width modulation (PWM) [...] Read more.
This research explores an improved operation of a recently studied converter, the so-called two-phase sixth-order boost converter (2P6OBC). The converter consists of a symmetric design of power stations followed by an LC filter; its improved operation incorporates an asymmetric pulse width modulation (PWM) scheme for transistor switching, sometimes known as an interleaved PWM approach. The new operation leads to improved performance for the 2P6OBC. Along with studying the 2P6OBC, one of the contributions of this research is providing design equations for the converter and comparing it versus the interleaved (or multiphase) boost converter, known for its competitiveness and advantages; the single-phase boost topology was also included in the comparison. The comparison consisted of a design scenario where all converters must achieve the same power conversion with an established maximum switching ripple, and then the stored energy in passive components is compared. Although the 2P6OBC requires a greater number of components, the total amount of stored energy is smaller. It is known that the stored energy is related to the size of the passive components. Still, the article includes a discussion of this topic. The new operation of the converter offers more streamlined, cost-effective, and efficient alternatives for a range of applications within power electronics. The final design of the 2P6OBC required only 68% of the stored energy in inductors compared to the multiphase boost converter, and 60% of the stored energy in capacitors. This result is outstanding, considering that the multiphase boost converter is a very competitive topology. Experimental results are provided to validate the proposed concept. Full article
Show Figures

Figure 1

17 pages, 42940 KiB  
Article
Enhancing Electric Vehicle Charger Performance with Synchronous Boost and Model Predictive Control for Vehicle-to-Grid Integration
by Youness Hakam, Ahmed Gaga, Mohamed Tabaa and Benachir El hadadi
Energies 2024, 17(7), 1787; https://doi.org/10.3390/en17071787 - 8 Apr 2024
Cited by 9 | Viewed by 1812
Abstract
This paper investigates optimizing the power exchange between electric vehicles (EVs) and the grid, with a specific focus on the DC-DC converters utilized in vehicle-to-grid (V2G) systems. It specifically explores using model predictive control (MPC) in synchronous boost converters to enhance efficiency and [...] Read more.
This paper investigates optimizing the power exchange between electric vehicles (EVs) and the grid, with a specific focus on the DC-DC converters utilized in vehicle-to-grid (V2G) systems. It specifically explores using model predictive control (MPC) in synchronous boost converters to enhance efficiency and performance. Through experiments and simulations, this paper shows that replacing diodes with SIC MOSFETs in boost converters significantly improves efficiency, particularly in synchronous mode, by minimizing the deadtime of SIC MOSFETs during switching. Additionally, this study evaluates MPC’s effectiveness in controlling boost converters, highlighting its advantages over traditional control methods. Real-world validations further validate the robustness and applicability of MPC in V2G systems. This study utilizes TMS320F28379D, one of Texas Instruments’ leading digital signal processors, enabling the implementation of MPC with a high PWM frequency of up to 200 MHz. This processor features dual 32-bit CPUs and a 16-bit ADC, allowing for high-resolution readings from sensors. Leveraging digital signal processing technologies and advanced electronic circuits, this study advances the development of high-performance boost converters, achieving power outputs of up to 48 watts and output voltages of 24 volts. Electronic circuits (PCB boards) have been devised, implemented, and evaluated to showcase their significance in advancing efficient V2G integration. Full article
Show Figures

Figure 1

Back to TopTop