Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,705)

Search Parameters:
Keywords = PV solar

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1650 KB  
Article
Is Solar Panel Adoption a Win–Win Strategy for Chicken Farms? Evidence from Agriculture Census Data
by Tzong-Haw Lee, Yu-You Liou and Hung-Hao Chang
Agriculture 2025, 15(20), 2124; https://doi.org/10.3390/agriculture15202124 (registering DOI) - 13 Oct 2025
Abstract
Concerns over ground-mounted photovoltaics (PVs) on cropland have encouraged a shift toward rooftop PV systems on livestock and poultry farms. Using ex-post observational data and a doubly robust estimation approach, this study examines the determinants and economic effects of PV adoption among chicken [...] Read more.
Concerns over ground-mounted photovoltaics (PVs) on cropland have encouraged a shift toward rooftop PV systems on livestock and poultry farms. Using ex-post observational data and a doubly robust estimation approach, this study examines the determinants and economic effects of PV adoption among chicken farmers in Taiwan. Based on a population-wide agricultural census, we assess how socio-demographic factors, production practices, household composition, and electricity infrastructure influence adoption decisions. The results show that education level, household structure, and access to electricity are key drivers of adoption. PV adopters exhibit a 5.8% higher sales value of chicken products, mainly due to increased production volume rather than quality improvements. These findings highlight the potential dual benefits of integrating solar energy with poultry farming and provide policy-relevant insights for sustainable agricultural development. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

36 pages, 3154 KB  
Article
A Decision Support Framework for Solar PV System Selection in SMMEs Using a Multi-Objective Optimization by Ratio Analysis Technique
by Bonginkosi A. Thango and Fanny Saruchera
Information 2025, 16(10), 889; https://doi.org/10.3390/info16100889 (registering DOI) - 13 Oct 2025
Abstract
South African small, medium and micro enterprises, particularly township-based spaza shops, face barriers to adopting solar photovoltaic systems due to upfront costs, regulatory uncertainty, and limited technical capacity. This article presents a reproducible methodology for evaluating and selecting solar photovoltaic systems that jointly [...] Read more.
South African small, medium and micro enterprises, particularly township-based spaza shops, face barriers to adopting solar photovoltaic systems due to upfront costs, regulatory uncertainty, and limited technical capacity. This article presents a reproducible methodology for evaluating and selecting solar photovoltaic systems that jointly considers economic, technological, and legal/policy criteria for such enterprises. We apply multi-criteria decision making using the Multi-Objective Optimization by the Ratio Analysis method, integrating simulation-derived techno-economic metrics with a formal policy-alignment score that reflects registration requirements, tax incentives, and access to green finance. Ten representative system configurations are assessed across cost and benefit criteria using vector normalization and weighted aggregation to enable transparent, like-for-like comparison. The analysis indicates that configurations aligned with interconnection and incentive frameworks are preferred over non-compliant options, reflecting the practical influence of policy eligibility on investability and risk. The framework is lightweight and auditable, designed so that institutional actors can prepare shared inputs while installers, lenders, and shop owners apply the ranking to guide decisions. Although demonstrated in a South African context, the procedure generalizes by substituting local tariffs, irradiance, load profiles, and jurisdiction-specific rules, providing a portable decision aid for small enterprise energy transitions. Full article
Show Figures

Figure 1

17 pages, 6434 KB  
Article
UAV and 3D Modeling for Automated Rooftop Parameter Analysis and Photovoltaic Performance Estimation
by Wioleta Błaszczak-Bąk, Marcin Pacześniak, Artur Oleksiak and Grzegorz Grunwald
Energies 2025, 18(20), 5358; https://doi.org/10.3390/en18205358 (registering DOI) - 11 Oct 2025
Viewed by 29
Abstract
The global shift towards renewable energy sources necessitates efficient methods for assessing solar potential in urban areas. Rooftop photovoltaic (PV) systems present a sustainable solution for decentralized energy production; however, their effectiveness is influenced by structural and environmental factors, including roof slope, azimuth, [...] Read more.
The global shift towards renewable energy sources necessitates efficient methods for assessing solar potential in urban areas. Rooftop photovoltaic (PV) systems present a sustainable solution for decentralized energy production; however, their effectiveness is influenced by structural and environmental factors, including roof slope, azimuth, and shading. This study aims to develop and validate a UAV-based methodology for assessing rooftop solar potential in urban areas. The authors propose a low-cost, innovative tool that utilizes a commercial unmanned aerial vehicle (UAV), specifically the DJI Air 3, combined with advanced photogrammetry and 3D modeling techniques to analyze rooftop characteristics relevant to PV installations. The methodology includes UAV-based data collection, image processing to generate high-resolution 3D models, calibration and validation against reference objects, and the estimation of solar potential based on rooftop characteristics and solar irradiance data using the proposed Model Analysis Tool (MAT). MAT is a novel solution introduced and described for the first time in this study, representing an original computational framework for the geometric and energetic analysis of rooftops. The innovative aspect of this study lies in combining consumer-grade UAVs with automated photogrammetry and the MAT, creating a low-cost yet accurate framework for rooftop solar assessment that reduces reliance on high-end surveying methods. By being presented in this study for the first time, MAT expands the methodological toolkit for solar potential evaluation, offering new opportunities for urban energy research and practice. The comparison of PVGIS and MAT shows that MAT consistently predicts higher daily energy yields, ranging from 9 to 12.5% across three datasets. The outcomes of this study contribute to facilitating the broader adoption of solar energy, thereby supporting sustainable energy transitions and climate neutrality goals in the face of increasing urban energy demands. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

24 pages, 829 KB  
Article
Transformer with Adaptive Sparse Self-Attention for Short-Term Photovoltaic Power Generation Forecasting
by Xingfa Zi, Feiyi Liu, Mingyang Liu and Yang Wang
Electronics 2025, 14(20), 3981; https://doi.org/10.3390/electronics14203981 (registering DOI) - 11 Oct 2025
Viewed by 36
Abstract
Accurate short-term photovoltaic (PV) power generation forecasting is critical for the stable integration of renewable energy into the grid. This study proposes a Transformer model enhanced with an adaptive sparse self-attention (ASSA) mechanism for PV power forecasting. The ASSA framework employs a dual-branch [...] Read more.
Accurate short-term photovoltaic (PV) power generation forecasting is critical for the stable integration of renewable energy into the grid. This study proposes a Transformer model enhanced with an adaptive sparse self-attention (ASSA) mechanism for PV power forecasting. The ASSA framework employs a dual-branch attention structure that combines sparse and dense attention paths with adaptive weighting to effectively filter noise while preserving essential spatiotemporal features. This design addresses the critical issues of computational redundancy and noise amplification in standard self-attention by adaptively filtering irrelevant interactions while maintaining global dependencies in Transformer-based PV forecasting. In addition, a deep feedforward network and a feature refinement feedforward network (FRFN) adapted from the ASSA–Transformer are incorporated to further improve feature extraction. The proposed algorithms are evaluated using time-series data from the Desert Knowledge Australia Solar Centre (DKASC), with input features including temperature, relative humidity, and other environmental variables. Comprehensive experiments demonstrate that the ASSA models’ accuracy in short-term PV power forecasting increases with longer forecast horizons. For 1 h ahead forecasts, it achieves an R2 of 0.9115, outperforming all other models. Under challenging rainfall conditions, the model maintains a high prediction accuracy, with an R2 of 0.7463, a mean absolute error of 0.4416, and a root mean square error of 0.6767, surpassing all compared models. The ASSA attention mechanism enhances the accuracy and stability in short-term PV power forecasting with minimal computational overhead, increasing the training time by only 1.2% compared to that for the standard Transformer. Full article
Show Figures

Figure 1

29 pages, 5471 KB  
Article
Game Theory-Based Bi-Level Capacity Allocation Strategy for Multi-Agent Combined Power Generation Systems
by Zhiding Chen, Yang Huang, Yi Dong and Ziyue Ni
Energies 2025, 18(20), 5338; https://doi.org/10.3390/en18205338 - 10 Oct 2025
Viewed by 114
Abstract
The wind–solar–storage–thermal combined power generation system is one of the key measures for China’s energy structure transition, and rational capacity planning of each generation entity within the system is of critical importance. First, this paper addresses the uncertainty of wind and photovoltaic (PV) [...] Read more.
The wind–solar–storage–thermal combined power generation system is one of the key measures for China’s energy structure transition, and rational capacity planning of each generation entity within the system is of critical importance. First, this paper addresses the uncertainty of wind and photovoltaic (PV) power outputs through scenario-based analysis. Considering the diversity of generation entities and their complex interest demands, a bi-level capacity optimization framework based on game theory is proposed. In the upper-level framework, a game-theoretic method is designed to analyze the multi-agent decision-making process, and the objective function of capacity allocation for multiple entities is established. In the lower-level framework, multi-objective optimization is performed on utility functions and node voltage deviations. The Nash equilibrium of the non-cooperative game and the Shapley value of the cooperative game are solved to study the differences in the capacity allocation, economic benefits, and power supply stability of the combined power generation system under different game modes. The case study results indicate that under the cooperative game mode, when the four generation entities form a coalition, the overall system achieves the highest supply stability, the lowest carbon emissions at 30,195.29 tons, and the highest renewable energy consumption rate at 53.93%. Moreover, both overall and individual economic and environmental performance are superior to those under the non-cooperative game mode. By investigating the capacity configuration and joint operation strategies of the combined generation system, this study effectively enhances the enthusiasm of each generation entity to participate in the energy market; reduces carbon emissions; and promotes the development of a more efficient, environmentally friendly, and economical power generation model. Full article
Show Figures

Figure 1

17 pages, 1344 KB  
Article
SolarFaultAttentionNet: Dual-Attention Framework for Enhanced Photovoltaic Fault Classification
by Mubarak Alanazi and Yassir A. Alamri
Inventions 2025, 10(5), 91; https://doi.org/10.3390/inventions10050091 - 9 Oct 2025
Viewed by 177
Abstract
Photovoltaic (PV) fault detection faces significant challenges in distinguishing subtle defects from complex backgrounds while maintaining reliability across diverse environmental conditions. Traditional approaches struggle with scalability and accuracy limitations, particularly when detecting electrical damage, physical defects, and environmental soiling in thermal imagery. This [...] Read more.
Photovoltaic (PV) fault detection faces significant challenges in distinguishing subtle defects from complex backgrounds while maintaining reliability across diverse environmental conditions. Traditional approaches struggle with scalability and accuracy limitations, particularly when detecting electrical damage, physical defects, and environmental soiling in thermal imagery. This paper presents SolarFaultAttentionNet, a novel dual-attention deep learning framework that integrates channel-wise and spatial attention mechanisms within a multi-path CNN architecture for enhanced PV fault classification. The approach combines comprehensive data augmentation strategies with targeted attention modules to improve feature discrimination across six fault categories: Electrical-Damage, Physical-Damage, Snow-Covered, Dusty, Bird-Drop, and Clean. Experimental validation on a dataset of 885 images demonstrates that SolarFaultAttentionNet achieves 99.14% classification accuracy, outperforming state-of-the-art models by 5.14%. The framework exhibits perfect detection for dust accumulation (100% across all metrics) and robust electrical damage detection (99.12% F1 score) while maintaining an optimal sensitivity (98.24%) and specificity (99.91%) balance. The computational efficiency (0.0160 s inference time) and systematic performance improvements establish SolarFaultAttentionNet as a practical solution for automated PV monitoring systems, enabling reliable fault detection critical for maximizing energy production and minimizing maintenance costs in large-scale solar installations. Full article
Show Figures

Figure 1

22 pages, 3656 KB  
Article
Design and Experimental Validation of a Cluster-Based Virtual Power Plant with Centralized Management System in Compliance with IEC Standard
by Putu Agus Aditya Pramana, Akhbar Candra Mulyana, Khotimatul Fauziah, Hafsah Halidah, Sriyono Sriyono, Buyung Sofiarto Munir, Yusuf Margowadi, Dionysius Aldion Renata, Adinda Prawitasari, Annisaa Taradini, Arief Kurniawan and Kholid Akhmad
Energies 2025, 18(19), 5300; https://doi.org/10.3390/en18195300 - 7 Oct 2025
Viewed by 368
Abstract
As power systems decentralize, Virtual Power Plants (VPPs) offer a promising approach to coordinate distributed energy resources (DERs) and enhance grid flexibility. However, real-world validation of VPP performance in Indonesia remains limited, especially regarding internationally aligned test standards. This study presents the design [...] Read more.
As power systems decentralize, Virtual Power Plants (VPPs) offer a promising approach to coordinate distributed energy resources (DERs) and enhance grid flexibility. However, real-world validation of VPP performance in Indonesia remains limited, especially regarding internationally aligned test standards. This study presents the design and experimental validation of a cluster-based VPP framework integrated with a centralized VPP Management System (VMS). Each cluster integrates solar photovoltaic (PV) system, battery energy storage system (BESS), and controllable load. A Local Control Unit (LCU) manages cluster operations, while the VMS coordinates power export–import dispatch, cluster-level aggregation, and grid compliance. The framework proposes a scalable VPP architecture and presents the first comprehensive experimental verification of key VPP performance indicators, including response time, adjustment rate, and accuracy, in the Indonesian context. Testing was conducted in alignment with the IEC TS 63189-1:2023 international standard. Results suggest real time responsiveness and indicate that, even at smaller scales, VPPs may contribute effectively to voltage control while exhibiting minimal influence on system frequency in interconnected grids. These findings confirm the capability of the proposed VPP framework to provide reliable real time control, ancillary services, and aggregated energy management. Its cluster-based architecture supports scalability for broader deployment in complex grid environments. Full article
(This article belongs to the Section F2: Distributed Energy System)
Show Figures

Figure 1

22 pages, 5534 KB  
Article
GIS-Based Assessment of Photovoltaic and Green Roof Potential in Iași, Romania
by Otilia Pitulac, Constantin Chirilă, Florian Stătescu and Nicolae Marcoie
Appl. Sci. 2025, 15(19), 10786; https://doi.org/10.3390/app151910786 - 7 Oct 2025
Viewed by 280
Abstract
Urban areas are increasingly challenged by the combined effects of climate change, rapid population growth, and high energy demand. The integration of renewable energy systems, such as photovoltaic (PV) panels, and nature-based solutions, such as green roofs, represents a key strategy for sustainable [...] Read more.
Urban areas are increasingly challenged by the combined effects of climate change, rapid population growth, and high energy demand. The integration of renewable energy systems, such as photovoltaic (PV) panels, and nature-based solutions, such as green roofs, represents a key strategy for sustainable urban development. This study evaluates the spatial potential for PV and green roof implementation in Iași, Romania, using moderate to high-resolution geospatial datasets, including the ALOS AW3D30 Digital Surface Model (DSM) and the Copernicus Urban Atlas 2018, processed in ArcMap 10.8.1 and ArcGIS Pro 2.6.0. Solar radiation was computed using the Area Solar Radiation tool for the average year 2023, while roof typology (flat vs. pitched) was derived from slope analysis. Results show significant spatial heterogeneity. The Copou neighborhood has the highest PV-suitable roof share (73.6%) and also leads in green roof potential (46.6%). Integrating PV and green roofs can provide synergistic benefits, improving energy performance, mitigating urban heat islands, managing stormwater, and enhancing biodiversity. These findings provide actionable insights for urban planners and policymakers aiming to prioritize green infrastructure investments and accelerate the local energy transition. Full article
Show Figures

Figure 1

30 pages, 7188 KB  
Article
Performance Study and Implementation of Accurate Solar PV Power Prediction Methods for the Nagréongo Power Plant in Burkina Faso
by Sami Florent Palm, Aboubakar Gomna, Sani Moussa Kadri, Dominique Bonkoungou, Adélaïde Lareba Ouedraogo, Yrébégnan Moussa Soro and Marie Sawadogo
Energies 2025, 18(19), 5285; https://doi.org/10.3390/en18195285 - 6 Oct 2025
Viewed by 318
Abstract
This study aimed to implement an effective power prediction method to support the optimal management of the 30 MW Nagréongo solar photovoltaic (PV) plant in Burkina Faso. Initially, the performance of the PV plant was assessed by an external consultant based on data [...] Read more.
This study aimed to implement an effective power prediction method to support the optimal management of the 30 MW Nagréongo solar photovoltaic (PV) plant in Burkina Faso. Initially, the performance of the PV plant was assessed by an external consultant based on data recorded in 2023 and 2024, revealing efficiency with a performance ratio (PR) of 73.73% in 2023, which improved to 77.43% in 2024. To forecast the plant’s power output, several deep learning models—namely LSTM, a GRU, LSTM-GRU, and an RNN—were applied using historical power data recorded at five-minute intervals during the 2024 periods of January–February; March–April; and July–August. All the deep learning models achieved accurate short-term forecasting for the 30 MW Nagréongo PV plant, with the seasonal performance shaped by the Sahelian weather regimes. The GRU performed best during the dry season (nRMSE ≈ 4%) and LSTM excelled in the hot months (nRMSE ≈ 2%), while the hybrid LSTM-GRU model proved most robust under rainy-season variability. Overall, the forecasting errors remained within 2–5% of plant capacity, demonstrating the suitability of these architectures for grid integration and operational planning in Sahel PV systems. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

24 pages, 2836 KB  
Article
Investigation of the Optimum Solar Insolation for PV Systems Considering the Effect of Tilt Angle and Ambient Temperature
by Raghed Melhem, Yomna Shaker, Fatma Mazen Ali Mazen and Ali Abou-Elnour
Energies 2025, 18(19), 5257; https://doi.org/10.3390/en18195257 - 3 Oct 2025
Viewed by 351
Abstract
As interest in PV installation has spiked in recent years, the need for optimizing several factors of PV performance has become crucial. These are tilt angle and solar cell temperature (taking into account ambient temperature) and their effect on solar insolation for solar [...] Read more.
As interest in PV installation has spiked in recent years, the need for optimizing several factors of PV performance has become crucial. These are tilt angle and solar cell temperature (taking into account ambient temperature) and their effect on solar insolation for solar photovoltaic (PV) systems. The objective of this study is to achieve the optimal tilt angle and cell temperature accordingly by developing a MATLAB program to reach the target of maximizing the received solar insolation. To achieve this, additional solar angles such as the azimuth, hour, latitude angle, declination angle, hour angle, and azimuth angle need to be calculated. By computing the solar insolation for specific regions of interest, specifically the Gulf Cooperation Council (GCC) countries, the desired results can be obtained. Additionally, the study aims to assess the influence of PV cell temperature on the I–V curves of commercially available PV modules, which will provide insights into the impact of temperature on the performance characteristics of PV cells. By employing a developed model, the study examined the combined collective influences of solar received radiation, tilt angle, and ambient temperature on the output power of PV systems in five different cities. The annual optimal tilt angles were found to be as follows: Mecca (21.4° N)—21.48°, Fujairah (25.13° N)—25.21°, Kuwait (29.3° N)—29.38°, Baghdad (33.3° N)—33.38°, and Mostaganem (35.9° N)—2535.98°. Notably, the estimated yearly optimal tilt angles closely corresponded to the latitudes of the respective cities. Additionally, the study explored the impact of ambient temperature on PV module performance. It was observed that an increase in ambient temperature resulted in a corresponding rise in the temperature of the PV cells, indicating the significant influence of environmental temperature on PV module efficiency. Overall, the findings demonstrate that adjusting the tilt angle of PV modules on a monthly basis led to higher solar power output compared to yearly adjustments. These results underscore the importance of considering both solar radiation and ambient temperature when optimizing PV power generation. Full article
(This article belongs to the Collection Featured Papers in Solar Energy and Photovoltaic Systems Section)
Show Figures

Figure 1

30 pages, 3406 KB  
Article
Analysis of a Sustainable Hybrid Microgrid Based on Solar Energy, Biomass, and Storage for Rural Electrification in Isolated Communities
by Luis Fernando Rico-Riveros, César Leonardo Trujillo-Rodríguez, Nelson Leonardo Díaz-Aldana and Catalina Rus-Casas
Appl. Sci. 2025, 15(19), 10646; https://doi.org/10.3390/app151910646 - 1 Oct 2025
Viewed by 510
Abstract
Rural electrification in isolated communities requires reliable and affordable renewable solutions. This paper analyses a hybrid microgrid case study in a rural area integrating PV–biomass–BESS using mathematical models and simulations in MATLAB/Simulink Version 2025a, characterizing local resources (climate and biomass), and evaluating irradiance, [...] Read more.
Rural electrification in isolated communities requires reliable and affordable renewable solutions. This paper analyses a hybrid microgrid case study in a rural area integrating PV–biomass–BESS using mathematical models and simulations in MATLAB/Simulink Version 2025a, characterizing local resources (climate and biomass), and evaluating irradiance, temperature, and demand profiles. On typical days, the system meets demand with overall efficiencies of 93–103%; solar energy contributes 6.8–8.9 kWh/day (37–42%), biomass 9.5–13.2 kWh/day (54–62%), and BESS ≈ 0.6 kWh/day (≈3%), operating at 60–90% SoC. Between March and June, photovoltaic generation increased from 7.2 to 8.9 kWh/day (+23.6%), raising overall efficiency from 97% to 103%; in October, the contribution was 40% PV, 57% biomass, and 3% BESS. Coordinated operation—prioritizing solar and scheduling biomass at peaks—is robust and replicable. It is recommended to increase photovoltaic collection by ~20% and add ≥2.5 kWh of storage to reduce biomass dependence by 15–20% and improve nighttime autonomy. This integrated approach to solar generation, biomass management, and storage for efficient and sustainable supply is applied and validated in a theoretical case study developed in the rural area of Argelia-Viotá, Cundinamarca, Colombia. Full article
Show Figures

Figure 1

19 pages, 11570 KB  
Article
Impact of Voltage Supraharmonics on Power Supply Units in Low-Voltage Grids
by Primož Sukič, Danilo Dmitrašinović and Gorazd Štumberger
Electronics 2025, 14(19), 3918; https://doi.org/10.3390/electronics14193918 - 1 Oct 2025
Viewed by 180
Abstract
Voltage supraharmonics present in the electrical grid can trigger chain reactions in grid-connected household and industrial power supplies equipped with Power Factor Correction (PFC). A single source of voltage supraharmonics may significantly increase the current in switching devices with PFC, leading to higher-amplitude [...] Read more.
Voltage supraharmonics present in the electrical grid can trigger chain reactions in grid-connected household and industrial power supplies equipped with Power Factor Correction (PFC). A single source of voltage supraharmonics may significantly increase the current in switching devices with PFC, leading to higher-amplitude disturbances throughout the electrical network. When addressing issues in a real low-voltage (LV) grid, it was observed that activation of a single device emitting supraharmonics caused oscillating currents across all feeders connected to the transformer’s busbars, matching the frequency of the supraharmonic source. To investigate this phenomenon further, the grid voltage containing supraharmonics was replicated in a controlled laboratory environment and used to supply various power electronic devices. The laboratory results closely mirrored those observed in the field. Supraharmonics present in the supply voltage caused current oscillations in the power electronic devices at the same frequency. Moreover, the amplitude of the observed current oscillations increased with the amplitude of the injected supply voltage supraharmonics. In some cases, the root mean square (RMS) value of the current drawn by the power electronic devices doubled, indicating a substantial impact on device behaviour and potential implications for grid stability and energy efficiency. Full article
Show Figures

Figure 1

24 pages, 8578 KB  
Article
Electric Vehicle Charging Infrastructure with Hybrid Renewable Energy: A Feasibility Study in Jordan
by Ahmad Salah, Mohammad Shalby, Mohammad Al-Soeidat and Fadi Alhomaidat
World Electr. Veh. J. 2025, 16(10), 557; https://doi.org/10.3390/wevj16100557 - 30 Sep 2025
Viewed by 675
Abstract
Jordan Vision prioritizes the utilization of domestic resources, particularly renewable energy. The transportation sector, responsible for 49% of national energy consumption, remains central to this transition and accounts for around 28% of total greenhouse gas emissions. Electric vehicles (EVs) offer a promising solution [...] Read more.
Jordan Vision prioritizes the utilization of domestic resources, particularly renewable energy. The transportation sector, responsible for 49% of national energy consumption, remains central to this transition and accounts for around 28% of total greenhouse gas emissions. Electric vehicles (EVs) offer a promising solution to reduce waste and pollution, but they also pose challenges for grid stability and charging infrastructure development. This study addresses a critical gap in the planning of renewable-powered EV charging stations along Jordanian highways, where EV infrastructure is still limited and underdeveloped, by optimizing the design of a hybrid energy charging station using HOMER Grid (v1.9.2) Software. Region-specific constraints and multiple operational scenarios, including rooftop PV integration, are assessed to balance cost, performance, and reliability. This study also investigates suitable locations for charging stations along the Sahrawi Highway in Jordan. The proposed station, powered by a hybrid system of 53% wind and 29% solar energy, is projected to generate 1.466 million kWh annually at USD 0.0375/kWh, reducing CO2 emissions by approximately 446 tonnes annually. The findings highlight the potential of hybrid systems to increase renewable energy penetration, support national sustainability targets, and offer viable investment opportunities for policymakers and the private sector in Jordan. Full article
(This article belongs to the Section Charging Infrastructure and Grid Integration)
Show Figures

Figure 1

20 pages, 4132 KB  
Article
Performance Evaluation of a 140 kW Rooftop Grid-Connected Solar PV System in West Virginia
by Rumana Subnom, John James Recktenwald, Bhaskaran Gopalakrishnan, Songgang Qiu, Derek Johnson and Hailin Li
Sustainability 2025, 17(19), 8784; https://doi.org/10.3390/su17198784 - 30 Sep 2025
Viewed by 281
Abstract
This paper presents a performance evaluation of a 140 kW solar array installed on the rooftop of the Mountain Line Transit Authority (MLTA) building in Morgantown, West Virginia (WV), USA, covering the period from 2013 to 2024. The grid-connected photovoltaic (PV) system consists [...] Read more.
This paper presents a performance evaluation of a 140 kW solar array installed on the rooftop of the Mountain Line Transit Authority (MLTA) building in Morgantown, West Virginia (WV), USA, covering the period from 2013 to 2024. The grid-connected photovoltaic (PV) system consists of 572 polycrystalline PV modules, each rated at 245 watts. The study examines key performance parameters, including annual electricity production, average daily and annual capacity utilization hours (CUH), current array efficiency, and performance degradation. Monthly ambient temperature and global tilted irradiance (GTI) data were obtained from the NASA POWER website. During the assessment, observations were made regarding the tilt angles of the panels and corrosion of metal parts. From 2013 to 2024, the total electricity production was 1588 MWh, with an average annual output of 132 MWh. Over this 12-year period, the CO2 emissions reduction attributed to the solar array is estimated at 1,413,497 kg, or approximately 117,791 kg/year, compared to emissions from coal-fired power plants in WV. The average daily CUH was found to be 2.93 h, while the current PV array efficiency in April 2024 was 10.70%, with a maximum efficiency of 14.30% observed at 2:00 PM. Additionally, an analysis of annual average performance degradation indicated a 2.28% decline from 2013 to 2016, followed by a much lower degradation of 0.17% from 2017 to 2023, as electricity production data were unavailable for most summer months of 2024. Full article
(This article belongs to the Special Issue Renewable Energy and Sustainable Energy Systems—2nd Edition)
Show Figures

Figure 1

20 pages, 5298 KB  
Article
Deployment Potential of Concentrating Solar Power Technologies in California
by Chad Augustine, Sarah Awara, Hank Price and Alexander Zolan
Sustainability 2025, 17(19), 8785; https://doi.org/10.3390/su17198785 - 30 Sep 2025
Viewed by 362
Abstract
As states within the United States respond to future grid development goals, there is a growing demand for reliable and resilient nighttime generation that can be addressed by low-cost, long-duration energy storage solutions. This report studies the potential of including concentrating solar power [...] Read more.
As states within the United States respond to future grid development goals, there is a growing demand for reliable and resilient nighttime generation that can be addressed by low-cost, long-duration energy storage solutions. This report studies the potential of including concentrating solar power (CSP) in the technology mix to support California’s goals as defined in Senate Bill 100. A joint agency report study that determined potential pathways to achieve the renewable portfolio standard set by the bill did not include CSP, and our work provides information that could be used as a follow-up. This study uses a capacity expansion model configured to have nodal spatial fidelity in California and balancing-area fidelity in the Western Interconnection outside of California. The authors discovered that by applying current technology cost projections CSP fulfills nearly 15% of the annual load while representing just 6% of total installed capacity in 2045, replacing approximately 30 GWe of wind, solar PV, and standalone batteries compared to a scenario without CSP included. The deployment of CSP in the results is sensitive to the technology’s cost, which highlights the importance of meeting cost targets in 2030 and beyond to enable the technology’s potential contribution to California’s carbon reduction goals. Full article
(This article belongs to the Special Issue Energy, Environmental Policy and Sustainable Development)
Show Figures

Figure 1

Back to TopTop