Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,224)

Search Parameters:
Keywords = PV (photovoltaic) module

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 10990 KiB  
Article
Geospatial Assessment and Economic Analysis of Rooftop Solar Photovoltaic Potential in Thailand
by Linux Farungsang, Alvin Christopher G. Varquez and Koji Tokimatsu
Sustainability 2025, 17(15), 7052; https://doi.org/10.3390/su17157052 - 4 Aug 2025
Viewed by 189
Abstract
Evaluating the renewable energy potential, such as that of solar photovoltaics (PV), is important for developing renewable energy policies. This study investigated rooftop solar PV potential in Thailand based on open-source geographic information system (GIS) building footprints, solar PV power output, and the [...] Read more.
Evaluating the renewable energy potential, such as that of solar photovoltaics (PV), is important for developing renewable energy policies. This study investigated rooftop solar PV potential in Thailand based on open-source geographic information system (GIS) building footprints, solar PV power output, and the most recent land use data (2022). GIS-based overlay analysis, buffering, fishnet modeling, and spatial join operations were applied to assess rooftop availability across various building types, taking into account PV module installation parameters and optimal panel orientation. Economic feasibility and sensitivity analyses were conducted using standard economic metrics, including net present value (NPV), internal rate of return (IRR), payback period, and benefit–cost ratio (BCR). The findings showed a total rooftop solar PV power generation potential of 50.32 TWh/year, equivalent to 25.5% of Thailand’s total electricity demand in 2022. The Central region contributed the highest potential (19.59 TWh/year, 38.94%), followed by the Northeastern (10.49 TWh/year, 20.84%), Eastern (8.16 TWh/year, 16.22%), Northern (8.09 TWh/year, 16.09%), and Southern regions (3.99 TWh/year, 7.92%). Both commercial and industrial sectors reflect the financial viability of rooftop PV installations and significantly contribute to the overall energy output. These results demonstrate the importance of incorporating rooftop solar PV in renewable energy policy development in regions with similar data infrastructure, particularly the availability of detailed and standardized land use data for building type classification. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

20 pages, 5900 KiB  
Article
Experimental Testing and Seasonal Performance Assessment of a Stationary and Sun-Tracked Photovoltaic–Thermal System
by Ewa Kozak-Jagieła, Piotr Cisek, Adam Pawłowski, Jan Taler and Paweł Albrechtowicz
Energies 2025, 18(15), 4064; https://doi.org/10.3390/en18154064 - 31 Jul 2025
Viewed by 307
Abstract
This study presents a comparative analysis of the annual performances of stationary and dual-axis sun-tracked photovoltaic–thermal (PVT) systems. The experimental research was conducted at a demonstration site in Oświęcim, Poland, where both systems were evaluated in terms of electricity and heat production. The [...] Read more.
This study presents a comparative analysis of the annual performances of stationary and dual-axis sun-tracked photovoltaic–thermal (PVT) systems. The experimental research was conducted at a demonstration site in Oświęcim, Poland, where both systems were evaluated in terms of electricity and heat production. The test installation consisted of thirty stationary PVT modules and five dual-axis sun-tracking systems, each equipped with six PV modules. An innovative cooling system was developed for the PVT modules, consisting of a surface-mounted heat sink installed on the rear side of each panel. The system includes embedded tubes through which a cooling fluid circulates, enabling efficient heat recovery. The results indicated that the stationary PVT system outperformed a conventional fixed PV installation, whose expected output was estimated using PVGIS data. Specifically, the stationary PVT system generated 26.1 kWh/m2 more electricity annually, representing a 14.8% increase. The sun-tracked PVT modules yielded even higher gains, producing 42% more electricity than the stationary system, with particularly notable improvements during the autumn and winter seasons. After accounting for the electricity consumed by the tracking mechanisms, the sun-tracked PVT system still delivered a 34% higher net electricity output. Moreover, it enhanced the thermal energy output by 85%. The findings contribute to the ongoing development of high-performance PVT systems and provide valuable insights for their optimal deployment in various climatic conditions, supporting the broader integration of renewable energy technologies in building energy systems. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

15 pages, 4649 KiB  
Article
Defect Detection Algorithm for Photovoltaic Cells Based on SEC-YOLOv8
by Haoyu Xue, Liqun Liu, Qingfeng Wu, Junqiang He and Yamin Fan
Processes 2025, 13(8), 2425; https://doi.org/10.3390/pr13082425 - 31 Jul 2025
Viewed by 225
Abstract
Surface defects of photovoltaic (PV) cells can seriously affect power generation efficiency. Accurately detecting such defects and handling them in a timely manner can effectively improve power generation efficiency. Aiming at the high-precision and real-time requirements for surface defect detection during the use [...] Read more.
Surface defects of photovoltaic (PV) cells can seriously affect power generation efficiency. Accurately detecting such defects and handling them in a timely manner can effectively improve power generation efficiency. Aiming at the high-precision and real-time requirements for surface defect detection during the use of PV cells, this paper proposes a PV cell surface defect detection algorithm based on SEC-YOLOv8. The algorithm first replaces the Spatial Pyramid Pooling Fast module with the SPPELAN pooling module to reduce channel calculations between convolutions. Second, an ECA attention mechanism is added to enable the model to pay more attention to feature extraction in defect areas and avoid target detection interference from complex environments. Finally, the upsampling operator CARAFE is introduced in the Neck part to solve the problem of scale mismatch and enhance detection performance. Experimental results show that the improved model achieves a mean average precision (mAP@0.5) of 69.2% on the PV cell dataset, which is 2.6% higher than the original network, which is designed to achieve a superior balance between the competing demands of accuracy and computational efficiency for PV defect detection. Full article
(This article belongs to the Section AI-Enabled Process Engineering)
Show Figures

Figure 1

21 pages, 2965 KiB  
Article
Inspection Method Enabled by Lightweight Self-Attention for Multi-Fault Detection in Photovoltaic Modules
by Shufeng Meng and Tianxu Xu
Electronics 2025, 14(15), 3019; https://doi.org/10.3390/electronics14153019 - 29 Jul 2025
Viewed by 298
Abstract
Bird-dropping fouling and hotspot anomalies remain the most prevalent and detrimental defects in utility-scale photovoltaic (PV) plants; their co-occurrence on a single module markedly curbs energy yield and accelerates irreversible cell degradation. However, markedly disparate visual–thermal signatures of the two phenomena impede high-fidelity [...] Read more.
Bird-dropping fouling and hotspot anomalies remain the most prevalent and detrimental defects in utility-scale photovoltaic (PV) plants; their co-occurrence on a single module markedly curbs energy yield and accelerates irreversible cell degradation. However, markedly disparate visual–thermal signatures of the two phenomena impede high-fidelity concurrent detection in existing robotic inspection systems, while stringent onboard compute budgets also preclude the adoption of bulky detectors. To resolve this accuracy–efficiency trade-off for dual-defect detection, we present YOLOv8-SG, a lightweight yet powerful framework engineered for mobile PV inspectors. First, a rigorously curated multi-modal dataset—RGB for stains and long-wave infrared for hotspots—is assembled to enforce robust cross-domain representation learning. Second, the HSV color space is leveraged to disentangle chromatic and luminance cues, thereby stabilizing appearance variations across sensors. Third, a single-head self-attention (SHSA) block is embedded in the backbone to harvest long-range dependencies at negligible parameter cost, while a global context (GC) module is grafted onto the detection head to amplify fine-grained semantic cues. Finally, an auxiliary bounding box refinement term is appended to the loss to hasten convergence and tighten localization. Extensive field experiments demonstrate that YOLOv8-SG attains 86.8% mAP@0.5, surpassing the vanilla YOLOv8 by 2.7 pp while trimming 12.6% of parameters (18.8 MB). Grad-CAM saliency maps corroborate that the model’s attention consistently coincides with defect regions, underscoring its interpretability. The proposed method, therefore, furnishes PV operators with a practical low-latency solution for concurrent bird-dropping and hotspot surveillance. Full article
Show Figures

Figure 1

25 pages, 8614 KiB  
Article
Shuffled Puma Optimizer for Parameter Extraction and Sensitivity Analysis in Photovoltaic Models
by En-Jui Liu, Rou-Wen Chen, Qing-An Wang and Wan-Ling Lu
Energies 2025, 18(15), 4008; https://doi.org/10.3390/en18154008 - 28 Jul 2025
Viewed by 264
Abstract
Photovoltaic (PV) systems are the core technology for implementing net-zero carbon emissions by 2050. The performance of PV systems is strongly influenced by environmental factors, including irradiance, temperature, and shading, which makes it difficult to characterize the nonlinear and multi-coupling behavior of the [...] Read more.
Photovoltaic (PV) systems are the core technology for implementing net-zero carbon emissions by 2050. The performance of PV systems is strongly influenced by environmental factors, including irradiance, temperature, and shading, which makes it difficult to characterize the nonlinear and multi-coupling behavior of the systems. Accurate modeling is essential for reliable performance prediction and lifespan estimation. To address this challenge, a novel metaheuristic algorithm called shuffled puma optimizer (SPO) is deployed to perform parameter extraction and optimal configuration identification across four PV models. The robustness and stability of SPO are comprehensively evaluated through comparisons with advanced algorithms based on best fitness, mean fitness, and standard deviation. The root mean square error (RMSE) obtained by SPO for parameter extraction are 8.8180 × 10−4, 8.5513 × 10−4, 8.4900 × 10−4, and 2.3941 × 10−3 for the single diode model (SDM), double diode model (DDM), triple diode model (TDM), and photovoltaic module model (PMM), respectively. A one-factor-at-a-time (OFAT) sensitivity analysis is employed to assess the relative importance of undetermined parameters within each PV model. The SPO-based modeling framework enables high-accuracy PV performance prediction, and its application to sensitivity analysis can accurately identify key factors that lead to reduced computational cost and improved adaptability for integration with energy management systems and intelligent electric grids. Full article
Show Figures

Figure 1

39 pages, 2898 KiB  
Review
Floating Solar Energy Systems: A Review of Economic Feasibility and Cross-Sector Integration with Marine Renewable Energy, Aquaculture and Hydrogen
by Marius Manolache, Alexandra Ionelia Manolache and Gabriel Andrei
J. Mar. Sci. Eng. 2025, 13(8), 1404; https://doi.org/10.3390/jmse13081404 - 23 Jul 2025
Viewed by 737
Abstract
Excessive reliance on traditional energy sources such as coal, petroleum, and gas leads to a decrease in natural resources and contributes to global warming. Consequently, the adoption of renewable energy sources in power systems is experiencing swift expansion worldwide, especially in offshore areas. [...] Read more.
Excessive reliance on traditional energy sources such as coal, petroleum, and gas leads to a decrease in natural resources and contributes to global warming. Consequently, the adoption of renewable energy sources in power systems is experiencing swift expansion worldwide, especially in offshore areas. Floating solar photovoltaic (FPV) technology is gaining recognition as an innovative renewable energy option, presenting benefits like minimized land requirements, improved cooling effects, and possible collaborations with hydropower. This study aims to assess the levelized cost of electricity (LCOE) associated with floating solar initiatives in offshore and onshore environments. Furthermore, the LCOE is assessed for initiatives that utilize floating solar PV modules within aquaculture farms, as well as for the integration of various renewable energy sources, including wind, wave, and hydropower. The LCOE for FPV technology exhibits considerable variation, ranging from 28.47 EUR/MWh to 1737 EUR/MWh, depending on the technologies utilized within the farm as well as its geographical setting. The implementation of FPV technology in aquaculture farms revealed a notable increase in the LCOE, ranging from 138.74 EUR/MWh to 2306 EUR/MWh. Implementation involving additional renewable energy sources results in a reduction in the LCOE, ranging from 3.6 EUR/MWh to 315.33 EUR/MWh. The integration of floating photovoltaic (FPV) systems into green hydrogen production represents an emerging direction that is relatively little explored but has high potential in reducing costs. The conversion of this energy into hydrogen involves high final costs, with the LCOH ranging from 1.06 EUR/kg to over 26.79 EUR/kg depending on the complexity of the system. Full article
(This article belongs to the Special Issue Development and Utilization of Offshore Renewable Energy)
Show Figures

Figure 1

22 pages, 4620 KiB  
Article
Spatial Strategies for the Renewable Energy Transition: Integrating Solar Photovoltaics into Barcelona’s Urban Morphology
by Maryam Roodneshin, Adrian Muros Alcojor and Torsten Masseck
Solar 2025, 5(3), 34; https://doi.org/10.3390/solar5030034 - 23 Jul 2025
Viewed by 516
Abstract
This study investigates strategies for urban-scale renewable energy integration through a photovoltaic-centric approach, with a case study of a district in Barcelona. The methodology integrates spatial and morphological data using a geographic information system (GIS)-based and clustering framework to address challenges of CO [...] Read more.
This study investigates strategies for urban-scale renewable energy integration through a photovoltaic-centric approach, with a case study of a district in Barcelona. The methodology integrates spatial and morphological data using a geographic information system (GIS)-based and clustering framework to address challenges of CO2 emissions, air pollution, and energy inefficiency. Rooftop availability and photovoltaic (PV) design constraints are analysed under current urban regulations. The spatial analysis incorporates building geometry and solar exposure, while an evolutionary optimisation algorithm in Grasshopper refines shading analysis, energy yield, and financial performance. Clustering methods (K-means and 3D proximity) group PV panels by solar irradiance uniformity and spatial coherence to enhance system efficiency. Eight PV deployment scenarios are evaluated, incorporating submodule integrated converter technology under a solar power purchase agreement model. Results show distinct trade-offs among PV scenarios. The standard fixed tilted (31.5° tilt, south-facing) scenario offers a top environmental and performance ratio (PR) = 66.81% but limited financial returns. In contrast, large- and huge-sized modules offer peak financial returns, aligning with private-sector priorities but with moderate energy efficiency. Medium- and large-size scenarios provide balanced outcomes, while a small module and its optimised rotated version scenarios maximise energy output yet suffer from high capital costs. A hybrid strategy combining standard fixed tilted with medium and large modules balances environmental and economic goals. The district’s morphology supports “solar neighbourhoods” and demonstrates how multi-scenario evaluation can guide resilient PV planning in Mediterranean cities. Full article
Show Figures

Figure 1

20 pages, 6510 KiB  
Article
Research on the Operating Performance of a Combined Heat and Power System Integrated with Solar PV/T and Air-Source Heat Pump in Residential Buildings
by Haoran Ning, Fu Liang, Huaxin Wu, Zeguo Qiu, Zhipeng Fan and Bingxin Xu
Buildings 2025, 15(14), 2564; https://doi.org/10.3390/buildings15142564 - 20 Jul 2025
Viewed by 365
Abstract
Global building energy consumption is significantly increasing. Utilizing renewable energy sources may be an effective approach to achieving low-carbon and energy-efficient buildings. A combined system incorporating solar photovoltaic–thermal (PV/T) components with an air-source heat pump (ASHP) was studied for simultaneous heating and power [...] Read more.
Global building energy consumption is significantly increasing. Utilizing renewable energy sources may be an effective approach to achieving low-carbon and energy-efficient buildings. A combined system incorporating solar photovoltaic–thermal (PV/T) components with an air-source heat pump (ASHP) was studied for simultaneous heating and power generation in a real residential building. The back panel of the PV/T component featured a novel polygonal Freon circulation channel design. A prototype of the combined heating and power supply system was constructed and tested in Fuzhou City, China. The results indicate that the average coefficient of performance (COP) of the system is 4.66 when the ASHP operates independently. When the PV/T component is integrated with the ASHP, the average COP increases to 5.37. On sunny days, the daily average thermal output of 32 PV/T components reaches 24 kW, while the daily average electricity generation is 64 kW·h. On cloudy days, the average daily power generation is 15.6 kW·h; however, the residual power stored in the battery from the previous day could be utilized to ensure the energy demand in the system. Compared to conventional photovoltaic (PV) systems, the overall energy utilization efficiency improves from 5.68% to 17.76%. The hot water temperature stored in the tank can reach 46.8 °C, satisfying typical household hot water requirements. In comparison to standard PV modules, the system achieves an average cooling efficiency of 45.02%. The variation rate of the system’s thermal loss coefficient is relatively low at 5.07%. The optimal water tank capacity for the system is determined to be 450 L. This system demonstrates significant potential for providing efficient combined heat and power supply for buildings, offering considerable economic and environmental benefits, thereby serving as a reference for the future development of low-carbon and energy-saving building technologies. Full article
Show Figures

Figure 1

28 pages, 2422 KiB  
Article
Reverse Logistics Network Optimization for Retired BIPV Panels in Smart City Energy Systems
by Cimeng Zhou and Shilong Li
Buildings 2025, 15(14), 2549; https://doi.org/10.3390/buildings15142549 - 19 Jul 2025
Viewed by 314
Abstract
Through the energy conversion of building skins, building-integrated photovoltaic (BIPV) technology, the core carrier of the smart city energy system, encourages the conversion of buildings into energy-generating units. However, the decommissioning of the module faces the challenge of physical dismantling and financial environmental [...] Read more.
Through the energy conversion of building skins, building-integrated photovoltaic (BIPV) technology, the core carrier of the smart city energy system, encourages the conversion of buildings into energy-generating units. However, the decommissioning of the module faces the challenge of physical dismantling and financial environmental damage because of the close coupling with the building itself. As the first tranche of BIPV projects will enter the end of their life cycle, it is urgent to establish a multi-dimensional collaborative recycling mechanism that meets the characteristics of building pv systems. Based on the theory of reverse logistics network, the research focuses on optimizing the reverse logistics network during the decommissioning stage of BIPV modules, and proposes a dual-objective optimization model that considers both cost and carbon emissions for BIPV. Meanwhile, the multi-level recycling network which covers “building points-regional transfer stations-specialized distribution centers” is designed in the research, the Pareto solution set is solved by the improved NSGA-II algorithm, a “1 + 1” du-al-core construction model of distribution center and transfer station is developed, so as to minimize the total cost and life cycle carbon footprint of the logistics network. At the same time, the research also reveals the driving effect of government reward and punishment policies on the collaborative behavior of enterprise recycling, and provides methodological support for the construction of a closed-loop supply chain of “PV-building-environment” symbiosis. The study concludes that in the process of constructing smart city energy system, the systematic control of resource circulation and environmental risks through the optimization of reverse logistics network can provide technical support for the sustainable development of smart city. Full article
(This article belongs to the Special Issue Research on Smart Healthy Cities and Real Estate)
Show Figures

Figure 1

15 pages, 3246 KiB  
Article
Enhanced Parallel Convolution Architecture YOLO Photovoltaic Panel Detection Model for Remote Sensing Images
by Jinsong Li, Xiaokai Meng, Shuai Wang, Zhumao Lu, Hua Yu, Zeng Qu and Jiayun Wang
Sustainability 2025, 17(14), 6476; https://doi.org/10.3390/su17146476 - 15 Jul 2025
Viewed by 264
Abstract
Object detection technology enables the automatic identification of photovoltaic (PV) panel locations and conditions, significantly enhancing operational efficiency for maintenance teams while reducing the time and cost associated with manual inspections. Challenges arise due to the low resolution of remote sensing images combined [...] Read more.
Object detection technology enables the automatic identification of photovoltaic (PV) panel locations and conditions, significantly enhancing operational efficiency for maintenance teams while reducing the time and cost associated with manual inspections. Challenges arise due to the low resolution of remote sensing images combined with small-sized targets—PV panels intertwined with complex urban or natural backgrounds. To address this, a parallel architecture model based on YOLOv5 was designed, substituting traditional residual connections with parallel convolution structures to enhance feature extraction capabilities and information transmission efficiency. Drawing inspiration from the bottleneck design concept, a primary feature extraction module framework was constructed to optimize the model’s deep learning capacity. The improved model achieved a 4.3% increase in mAP, a 0.07 rise in F1 score, a 6.55% enhancement in recall rate, and a 6.2% improvement in precision. Additionally, the study validated the model’s performance and examined the impact of different loss functions on it, explored learning rate adjustment strategies under various scenarios, and analyzed how individual factors affect learning rate decay during its initial stages. This research notably optimizes detection accuracy and efficiency, holding promise for application in large-scale intelligent PV power station maintenance systems and providing reliable technical support for clean energy infrastructure management. Full article
Show Figures

Figure 1

22 pages, 3678 KiB  
Article
Technical and Economic Analysis of a Newly Designed PV System Powering a University Building
by Miroslaw Zukowski and Robert Adam Sobolewski
Energies 2025, 18(14), 3742; https://doi.org/10.3390/en18143742 - 15 Jul 2025
Viewed by 293
Abstract
The use of renewable energy sources on university campuses is crucial for sustainable development, environmental protection by reducing greenhouse gas emissions, improving energy security, and public education. This study addresses technical and economic aspects of the newly designed photovoltaic system on the campus [...] Read more.
The use of renewable energy sources on university campuses is crucial for sustainable development, environmental protection by reducing greenhouse gas emissions, improving energy security, and public education. This study addresses technical and economic aspects of the newly designed photovoltaic system on the campus of the Bialystok University of Technology. The first part of the article presents the results of 9 years of research on an experimental photovoltaic system that is part of a hybrid wind and PV small system. The article proposes five variants of the arrangement of photovoltaic panels on the pergola. A new method was used to determine the energy efficiency of individual options selected for analysis. This method combines energy simulations using DesignBuilder software and regression analysis. The basic economic indicators NPV and IRR were applied to select the most appropriate arrangement of PV panels. In the recommended solution, the panels are arranged in three rows, oriented vertically, and tilted at 37°. The photovoltaic system, consisting of 438 modules, has a peak power of 210 kWp and is able to produce 166,392 kWh of electricity annually. The NPV is 679,506 EUR, and the IRR is over 38% within 30 years of operation. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

27 pages, 3984 KiB  
Article
Spatial and Temporal Expansion of Photovoltaic Sites and Thermal Environmental Effects in Ningxia Based on Remote Sensing and Deep Learning
by Heao Xie, Peixian Li, Fang Shi, Chengting Han, Ximin Cui and Yuling Zhao
Remote Sens. 2025, 17(14), 2440; https://doi.org/10.3390/rs17142440 - 14 Jul 2025
Viewed by 275
Abstract
Ningxia has emerged as a strategic hub for China’s photovoltaic (PV) industry by leveraging abundant solar energy resources and geoclimatic advantages. This study analyzed the spatiotemporal expansion trends and microclimatic impacts of PV installations (2015–2024) using Gaofen-1 (GF-1) and Landsat8 satellite imagery with [...] Read more.
Ningxia has emerged as a strategic hub for China’s photovoltaic (PV) industry by leveraging abundant solar energy resources and geoclimatic advantages. This study analyzed the spatiotemporal expansion trends and microclimatic impacts of PV installations (2015–2024) using Gaofen-1 (GF-1) and Landsat8 satellite imagery with deep learning algorithms and multidimensional environmental metrics. Among semantic segmentation models, DeepLabV3+ had the best performance in PV extraction, and the Mean Intersection over Union, precision, and F1-score were 91.97%, 89.02%, 89.2%, and 89.11%, respectively, with accuracies close to 100% after manual correction. Subsequent land surface temperature inversion and spatial buffer analysis quantified the thermal environmental effects of PV installation. Localized cooling patterns may be influenced by albedo and vegetation dynamics, though further validation is needed. The total PV site area in Ningxia expanded from 59.62 km2 to 410.06 km2 between 2015 and 2024. Yinchuan and Wuzhong cities were primary growth hubs; Yinchuan alone added 99.98 km2 (2022–2023) through localized policy incentives. PV installations induced significant daytime cooling effects within 0–100 m buffers, reducing ambient temperatures by 0.19–1.35 °C on average. The most pronounced cooling occurred in western desert regions during winter (maximum temperature differential = 1.97 °C). Agricultural zones in central Ningxia exhibited weaker thermal modulation due to coupled vegetation–PV interactions. Policy-driven land use optimization was the dominant catalyst for PV proliferation. This study validates “remote sensing + deep learning” framework efficacy in renewable energy monitoring and provides empirical insights into eco-environmental impacts under “PV + ecological restoration” paradigms, offering critical data support for energy–ecology synergy planning in arid regions. Full article
Show Figures

Figure 1

27 pages, 4005 KiB  
Article
Quantum-Enhanced Predictive Degradation Pathway Optimization for PV Storage Systems: A Hybrid Quantum–Classical Approach for Maximizing Longevity and Efficiency
by Dawei Wang, Shuang Zeng, Liyong Wang, Baoqun Zhang, Cheng Gong, Zhengguo Piao and Fuming Zheng
Energies 2025, 18(14), 3708; https://doi.org/10.3390/en18143708 - 14 Jul 2025
Viewed by 264
Abstract
The increasing deployment of photovoltaic and energy storage systems (ESSs) in modern power grids has highlighted the critical challenge of component degradation, which significantly impacts system efficiency, operational costs, and long-term reliability. Conventional energy dispatch and optimization approaches fail to adequately mitigate the [...] Read more.
The increasing deployment of photovoltaic and energy storage systems (ESSs) in modern power grids has highlighted the critical challenge of component degradation, which significantly impacts system efficiency, operational costs, and long-term reliability. Conventional energy dispatch and optimization approaches fail to adequately mitigate the progressive efficiency loss in PV modules and battery storage, leading to suboptimal performance and reduced system longevity. To address these challenges, this paper proposes a quantum-enhanced degradation pathway optimization framework that dynamically adjusts operational strategies to extend the lifespan of PV storage systems while maintaining high efficiency. By leveraging quantum-assisted Monte Carlo simulations and hybrid quantum–classical optimization, the proposed model evaluates degradation pathways in real time and proactively optimizes energy dispatch to minimize efficiency losses due to aging effects. The framework integrates a quantum-inspired predictive maintenance algorithm, which utilizes probabilistic modeling to forecast degradation states and dynamically adjust charge–discharge cycles in storage systems. Unlike conventional optimization methods, which struggle with the complexity and stochastic nature of degradation mechanisms, the proposed approach capitalizes on quantum parallelism to assess multiple degradation scenarios simultaneously, significantly enhancing computational efficiency. A three-layer hierarchical optimization structure is introduced, ensuring real-time degradation risk assessment, periodic dispatch optimization, and long-term predictive adjustments based on PV and battery aging trends. The framework is tested on a 5 MW PV array coupled with a 2.5 MWh lithium-ion battery system, with real-world degradation models applied to reflect light-induced PV degradation (0.7% annual efficiency loss) and battery state-of-health deterioration (1.2% per 100 cycles). A hybrid quantum–classical computing environment, utilizing D-Wave’s Advantage quantum annealer alongside a classical reinforcement learning-based optimization engine, enables large-scale scenario evaluation and real-time operational adjustments. The simulation results demonstrate that the quantum-enhanced degradation optimization framework significantly reduces efficiency losses, extending the PV module’s lifespan by approximately 2.5 years and reducing battery-degradation-induced wear by 25% compared to conventional methods. The quantum-assisted predictive maintenance model ensures optimal dispatch strategies that balance energy demand with system longevity, preventing excessive degradation while maintaining grid reliability. The findings establish a novel paradigm in degradation-aware energy optimization, showcasing the potential of quantum computing in enhancing the sustainability and resilience of PV storage systems. This research paves the way for the broader integration of quantum-based decision-making in renewable energy infrastructure, enabling scalable, high-performance optimization for future energy systems. Full article
Show Figures

Figure 1

24 pages, 3361 KiB  
Article
Numerical Analysis of Bifacial Photovoltaic Systems Under Different Snow Climatic Conditions
by Furkan Dincer and Emre Ozer
Sustainability 2025, 17(14), 6350; https://doi.org/10.3390/su17146350 - 11 Jul 2025
Viewed by 381
Abstract
The reflective property (albedo) of the ground plays an important role in the performance of bifacial photovoltaic modules. Snow, as a natural light-colored surface, reflects most of the light that falls on it. However, snow does not have a fixed albedo value. Therefore, [...] Read more.
The reflective property (albedo) of the ground plays an important role in the performance of bifacial photovoltaic modules. Snow, as a natural light-colored surface, reflects most of the light that falls on it. However, snow does not have a fixed albedo value. Therefore, it is essential to investigate the high albedo provided by snow in bifacial panels, which are becoming increasingly common. The albedo value of snow is influenced by numerous factors, including the precipitation characteristics of the snow, its depth, and the time since the previous snowfall. This study aims to investigate the impact of snow cover and the number of days with snow cover on the energy production of bifacial panels. An innovative dynamic albedo model integrating the snow type, depth, and duration was developed to advance bifacial PV system performance analysis under various snow and climate scenarios. PVsyst simulations were conducted to analyze the annual energy yield of bifacial photovoltaic panels in Erzurum Province under various snow conditions and accumulation levels. Furthermore, the variation in the number of days with snow cover according to different climatic regions and its effect on the energy production were evaluated for seven different provinces located in seven different regions of Turkey. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

16 pages, 2234 KiB  
Article
Multi-Climate Simulation of Temperature-Driven Efficiency Losses in Crystalline Silicon PV Modules with Cost–Benefit Thresholds for Evaluating Cooling Strategies
by Bitian Jiang and Christi Madsen
Energies 2025, 18(14), 3609; https://doi.org/10.3390/en18143609 - 8 Jul 2025
Viewed by 257
Abstract
We explored the impact of high operating temperatures for monocrystalline silicon photovoltaic (PV) modules which dominate the market. Using nine years of hourly climate data with the System Advisor Model (SAM), we examined temperature impacts and cooling potential benefits across three climate zones [...] Read more.
We explored the impact of high operating temperatures for monocrystalline silicon photovoltaic (PV) modules which dominate the market. Using nine years of hourly climate data with the System Advisor Model (SAM), we examined temperature impacts and cooling potential benefits across three climate zones in the United States. Assuming that cooling approaches can achieve a constant temperature decrease of ΔT independent of irradiance and environmental conditions, our simulations show that a ΔT = 10 °C temperature reduction could improve energy yield by almost 3% annually. Cooling technologies have the strongest impact during the hottest months, with even a 5 °C reduction raising efficiency by nearly 10%. When the minimum temperature of the cooled module is constrained to the ambient temperature, ΔT = 20 °C boosts the hottest month energy yield by over 25%. For economically viable cooling systems, the cooling cost should be much less than the break-even cost. We estimate break-even costs of USD 25–40/m2 for 10 °C and USD 40–60/m2 for 20 °C cooling for the locations simulated. For ΔT > 20 °C, the added energy yield shows diminishing returns with minimum increase in break-even costs. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

Back to TopTop