Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = PSBD1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 10977 KiB  
Article
Comparison of EEG Signal Spectral Characteristics Obtained with Consumer- and Research-Grade Devices
by Dmitry Mikhaylov, Muhammad Saeed, Mohamed Husain Alhosani and Yasser F. Al Wahedi
Sensors 2024, 24(24), 8108; https://doi.org/10.3390/s24248108 - 19 Dec 2024
Cited by 1 | Viewed by 2986
Abstract
Electroencephalography (EEG) has emerged as a pivotal tool in both research and clinical practice due to its non-invasive nature, cost-effectiveness, and ability to provide real-time monitoring of brain activity. Wearable EEG technology opens new avenues for consumer applications, such as mental health monitoring, [...] Read more.
Electroencephalography (EEG) has emerged as a pivotal tool in both research and clinical practice due to its non-invasive nature, cost-effectiveness, and ability to provide real-time monitoring of brain activity. Wearable EEG technology opens new avenues for consumer applications, such as mental health monitoring, neurofeedback training, and brain–computer interfaces. However, there is still much to verify and re-examine regarding the functionality of these devices and the quality of the signal they capture, particularly as the field evolves rapidly. In this study, we recorded the resting-state brain activity of healthy volunteers via three consumer-grade EEG devices, namely PSBD Headband Pro, PSBD Headphones Lite, and Muse S Gen 2, and compared the spectral characteristics of the signal obtained with that recorded via the research-grade Brain Product amplifier (BP) with the mirroring montages. The results showed that all devices exhibited higher mean power in the low-frequency bands, which are characteristic of dry-electrode technology. PSBD Headband proved to match BP most precisely among the other examined devices. PSBD Headphones displayed a moderate correspondence with BP and signal quality issues in the central group of electrodes. Muse demonstrated the poorest signal quality, with extremely low alignment with BP. Overall, this study underscores the importance of considering device-specific design constraints and emphasizes the need for further validation to ensure the reliability and accuracy of wearable EEG devices. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

17 pages, 2754 KiB  
Article
Diurnal-Rhythmic Relationships between Physiological Parameters and Photosynthesis- and Antioxidant-Enzyme Genes Expression in the Raphidophyte Chattonella marina Complex
by Koki Mukai, Xuchun Qiu, Yuki Takai, Shinobu Yasuo, Yuji Oshima and Yohei Shimasaki
Antioxidants 2024, 13(7), 781; https://doi.org/10.3390/antiox13070781 - 27 Jun 2024
Cited by 1 | Viewed by 1177
Abstract
Diurnal rhythms in physiological functions contribute to homeostasis in many organisms. Although relationships between molecular biology and diurnal rhythms have been well studied in model organisms like higher plants, those in harmful algal bloom species are poorly understood. Here we measured several physiological [...] Read more.
Diurnal rhythms in physiological functions contribute to homeostasis in many organisms. Although relationships between molecular biology and diurnal rhythms have been well studied in model organisms like higher plants, those in harmful algal bloom species are poorly understood. Here we measured several physiological parameters and the expression patterns of photosynthesis-related and antioxidant-enzyme genes in the Chattonella marina complex to understand the biological meaning of diurnal rhythm. Under a light–dark cycle, Fv/Fm and expression of psbA, psbD, and 2-Cys prx showed significant increases in the light and decreases during the dark. These rhythms remained even under continuous dark conditions. DCMU suppressed the induction of psbA, psbD, and 2-Cys prx expression under both light regimes. Oxidative stress levels and H2O2 scavenging activities were relatively stable, and there was no significant correlation between H2O2 scavenging activities and antioxidant-enzyme gene expression. These results indicate that the Chattonella marina complex has developed mechanisms for efficient photosynthetic energy production in the light. Our results showed that this species has a diurnal rhythm and a biological clock. These phenomena are thought to contribute to the efficiency of physiological activities centered on photosynthesis and cell growth related to the diurnal vertical movement of this species. Full article
Show Figures

Figure 1

12 pages, 3049 KiB  
Article
Potential Candidate Molecule of Photosystem II Inhibitor Herbicide—Brassicanate A Sulfoxide
by Yu Wang, Dong Wang, Baozhu Dong, Jianxiu Hao, Xinyu Jia and Hongyou Zhou
Int. J. Mol. Sci. 2024, 25(4), 2400; https://doi.org/10.3390/ijms25042400 - 18 Feb 2024
Cited by 1 | Viewed by 1940
Abstract
Brassicanate A sulfoxide, a secondary metabolite of broccoli, exhibited the inhibition of weed growth, but its mechanism of action on weeds remains unclear. To elucidate the mechanism by which brassicanate A sulfoxide suppresses weeds, this study explores the interaction between brassicanate A sulfoxide [...] Read more.
Brassicanate A sulfoxide, a secondary metabolite of broccoli, exhibited the inhibition of weed growth, but its mechanism of action on weeds remains unclear. To elucidate the mechanism by which brassicanate A sulfoxide suppresses weeds, this study explores the interaction between brassicanate A sulfoxide and the photosystem II D1 protein through molecular docking and molecular dynamics simulations. This research demonstrates that brassicanate A sulfoxide interacts with the photosystem II D1 protein by forming hydrogen bonds with Phe-261 and His-214. The successful expression of the photosystem II D1 protein in an insect cell/baculovirus system validated the molecular docking and dynamics simulations. Biolayer interferometry experiments elucidated that the affinity constant of brassicanate A sulfoxide with photosystem II was 2.69 × 10−3 M, suggesting that brassicanate A sulfoxide can stably bind to the photosystem II D1 protein. The findings of this study contribute to the understanding of the mode of action of brassicanate A sulfoxide and also aid in the development of natural-product-based photosynthesis-inhibiting herbicides. Full article
Show Figures

Figure 1

18 pages, 15511 KiB  
Article
Modeling the Characteristic Residues of Chlorophyll f Synthase (ChlF) from Halomicronema hongdechloris to Determine Its Reaction Mechanism
by Min Chen, Artur Sawicki and Fanyue Wang
Microorganisms 2023, 11(9), 2305; https://doi.org/10.3390/microorganisms11092305 - 13 Sep 2023
Cited by 3 | Viewed by 1668
Abstract
Photosystem II (PSII) is a quinone-utilizing photosynthetic system that converts light energy into chemical energy and catalyzes water splitting. PsbA (D1) and PsbD (D2) are the core subunits of the reaction center that provide most of the ligands to redox-active cofactors and exhibit [...] Read more.
Photosystem II (PSII) is a quinone-utilizing photosynthetic system that converts light energy into chemical energy and catalyzes water splitting. PsbA (D1) and PsbD (D2) are the core subunits of the reaction center that provide most of the ligands to redox-active cofactors and exhibit photooxidoreductase activities that convert quinone and water into quinol and dioxygen. The performed analysis explored the putative uncoupled electron transfer pathways surrounding P680+ induced by far-red light (FRL) based on photosystem II (PSII) complexes containing substituted D1 subunits in Halomicronema hongdechloris. Chlorophyll f-synthase (ChlF) is a D1 protein paralog. Modeling PSII-ChlF complexes determined several key protein motifs of ChlF. The PSII complexes included a dysfunctional Mn4CaO5 cluster where ChlF replaced the D1 protein. We propose the mechanism of chlorophyll f synthesis from chlorophyll a via free radical chemistry in an oxygenated environment created by over-excited pheophytin a and an inactive water splitting reaction owing to an uncoupled Mn4CaO5 cluster in PSII-ChlF complexes. The role of ChlF in the formation of an inactive PSII reaction center is under debate, and putative mechanisms of chlorophyll f biosynthesis are discussed. Full article
(This article belongs to the Special Issue Phototrophic Bacteria 2.0)
Show Figures

Figure 1

18 pages, 4061 KiB  
Article
Response of Maize Seedlings to Silicon Dioxide Nanoparticles (SiO2NPs) under Drought Stress
by Asmaa A. Sharf-Eldin, Khairiah Mubarak Alwutayd, Ahmed Abou El-Yazied, Hossam S. El-Beltagi, Basmah M. Alharbi, Mohammad A. M. Eisa, Mohammed Alqurashi, Mohamed Sharaf, Nadi Awad Al-Harbi, Salem Mesfir Al-Qahtani and Mohamed F. M. Ibrahim
Plants 2023, 12(14), 2592; https://doi.org/10.3390/plants12142592 - 8 Jul 2023
Cited by 38 | Viewed by 5150
Abstract
Recently, the use of nanofertilizers has received a great deal of attention in managing plants under biotic and abiotic stresses. However, studies that elucidate the role of silicon dioxide nanoparticles (SiO2NPs) in regulating maize tolerance to drought stress are still at [...] Read more.
Recently, the use of nanofertilizers has received a great deal of attention in managing plants under biotic and abiotic stresses. However, studies that elucidate the role of silicon dioxide nanoparticles (SiO2NPs) in regulating maize tolerance to drought stress are still at early stages of development. In this study, plants that were treated with SiO2NPs (0.25 g/L as foliar spray) displayed considerable improvement in the growth indices, despite being subjected to drought stress. In addition, the action of SiO2NPs led to a considerable rise in the levels of chlorophylls, proline, cell membrane integrity, leaf water content, and antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), and guaiacol peroxidase (G-POX)). In contrast, an inverse trend was seen in the oxidative injury, the total amount of soluble sugars, and the activity of ascorbate peroxidase (APX). At the same time, carotenoids were unaffected in SiO2NPs-treated and non-treated plants under drought stress. The results of the molecular investigation that was conducted using qRT-PCR showed that the relative expression of the D2 protein of photosystem II (PsbD) was elevated in SiO2NPs-treated plants in response to drought stress, while the expression of the osmotic-like protein (OSM-34) and aquaporin (AQPs) was downregulated in SiO2NPs-treated plants in response to drought stress. This research could pave the way for further investigations into how SiO2NPs boost plant resistance to drought stress. Full article
(This article belongs to the Special Issue Antioxidants and Antioxidant Enzymes in Higher Plants)
Show Figures

Figure 1

13 pages, 3118 KiB  
Article
Investigation into the Binding Site of (-)-Spirobrassinin for Herbicidal Activity Using Molecular Docking and Molecular Dynamics Simulations
by Yu Wang, Baozhu Dong, Dong Wang, Xinyu Jia, Qian Zhang, Wanyou Liu and Hongyou Zhou
Appl. Sci. 2023, 13(12), 7287; https://doi.org/10.3390/app13127287 - 19 Jun 2023
Cited by 9 | Viewed by 1867
Abstract
(-)-Spirobrassinin, a glucosinolate compound from Brassicaceae plants, has shown inhibitory effects on weeds. However, its specific target sites are not well explored. This study used molecular docking, molecular dynamics simulations, and biological experiments to investigate (-)-Spirobrassinin’s target sites. The inhibitory effects of (-)-Spirobrassinin [...] Read more.
(-)-Spirobrassinin, a glucosinolate compound from Brassicaceae plants, has shown inhibitory effects on weeds. However, its specific target sites are not well explored. This study used molecular docking, molecular dynamics simulations, and biological experiments to investigate (-)-Spirobrassinin’s target sites. The inhibitory effects of (-)-Spirobrassinin were observed on various enzymes crucial for plant metabolic pathways, including dihydroxyacid dehydrogenase, 4-hydroxyphenylpyruvate dioxygenase, protoporphyrinogen oxidase, and acetolactate synthase. Additionally, it disrupts the metabolism of vital phytohormones, namely abscisic acid and gibberellin. Molecular dynamics simulations revealed stable interactions between (-)-Spirobrassinin and specific residues (Phe270 and Phe261) of the photosystem II D1, involving electrostatic, hydrophobic, and van der Waals forces. This study provides valuable insights into (-)-Spirobrassinin’s mode of action, highlighting its potential as a natural herbicide from Brassicaceae plants. Full article
Show Figures

Figure 1

18 pages, 7465 KiB  
Article
Salt Stress Inhibits Photosynthesis and Destroys Chloroplast Structure by Downregulating Chloroplast Development–Related Genes in Robinia pseudoacacia Seedlings
by Chaoxia Lu, Lingyu Li, Xiuling Liu, Min Chen, Shubo Wan and Guowei Li
Plants 2023, 12(6), 1283; https://doi.org/10.3390/plants12061283 - 11 Mar 2023
Cited by 47 | Viewed by 5540
Abstract
Soil salinization is an important factor limiting food security and ecological stability. As a commonly used greening tree species, Robinia pseudoacacia often suffers from salt stress that can manifest as leaf yellowing, decreased photosynthesis, disintegrated chloroplasts, growth stagnation, and even death. To elucidate [...] Read more.
Soil salinization is an important factor limiting food security and ecological stability. As a commonly used greening tree species, Robinia pseudoacacia often suffers from salt stress that can manifest as leaf yellowing, decreased photosynthesis, disintegrated chloroplasts, growth stagnation, and even death. To elucidate how salt stress decreases photosynthesis and damages photosynthetic structures, we treated R. pseudoacacia seedlings with different concentrations of NaCl (0, 50, 100, 150, and 200 mM) for 2 weeks and then measured their biomass, ion content, organic soluble substance content, reactive oxygen species (ROS) content, antioxidant enzyme activity, photosynthetic parameters, chloroplast ultrastructure, and chloroplast development-related gene expression. NaCl treatment significantly decreased biomass and photosynthetic parameters, but increased ion content, organic soluble substances, and ROS content. High NaCl concentrations (100–200 mM) also led to distorted chloroplasts, scattered and deformed grana lamellae, disintegrated thylakoid structures, irregularly swollen starch granules, and larger, more numerous lipid spheres. Compared to control (0 mM NaCl), the 50 mM NaCl treatment significantly increased antioxidant enzyme activity while upregulating the expression of the ion transport-related genes Na+/H+ exchanger 1(NHX 1) and salt overly sensitive 1 (SOS 1) and the chloroplast development-related genes psaA, psbA, psaB, psbD, psaC, psbC, ndhH, ndhE, rps7, and ropA. Additionally, high concentrations of NaCl (100–200 mM) decreased antioxidant enzyme activity and downregulated the expression of ion transport- and chloroplast development-related genes. These results showed that although R. pseudoacacia can tolerate low concentrations of NaCl, high concentrations (100–200 mM) can damage chloroplast structure and disturb metabolic processes by downregulating gene expression. Full article
(This article belongs to the Special Issue Abiotic Stress Signaling and Responses in Plants)
Show Figures

Figure 1

18 pages, 33059 KiB  
Article
Molecular Evolution of Far-Red Light-Acclimated Photosystem II
by Christopher J. Gisriel, Tanai Cardona, Donald A. Bryant and Gary W. Brudvig
Microorganisms 2022, 10(7), 1270; https://doi.org/10.3390/microorganisms10071270 - 22 Jun 2022
Cited by 23 | Viewed by 3892
Abstract
Cyanobacteria are major contributors to global carbon fixation and primarily use visible light (400−700 nm) to drive oxygenic photosynthesis. When shifted into environments where visible light is attenuated, a small, but highly diverse and widespread number of cyanobacteria can express modified pigments and [...] Read more.
Cyanobacteria are major contributors to global carbon fixation and primarily use visible light (400−700 nm) to drive oxygenic photosynthesis. When shifted into environments where visible light is attenuated, a small, but highly diverse and widespread number of cyanobacteria can express modified pigments and paralogous versions of photosystem subunits and phycobiliproteins that confer far-red light (FRL) absorbance (700−800 nm), a process termed far-red light photoacclimation, or FaRLiP. During FaRLiP, alternate photosystem II (PSII) subunits enable the complex to bind chlorophylls d and f, which absorb at lower energy than chlorophyll a but still support water oxidation. How the FaRLiP response arose remains poorly studied. Here, we report ancestral sequence reconstruction and structure-based molecular evolutionary studies of the FRL-specific subunits of FRL-PSII. We show that the duplications leading to the origin of two PsbA (D1) paralogs required to make chlorophyll f and to bind chlorophyll d in water-splitting FRL-PSII are likely the first to have occurred prior to the diversification of extant cyanobacteria. These duplications were followed by those leading to alternative PsbC (CP43) and PsbD (D2) subunits, occurring early during the diversification of cyanobacteria, and culminating with those leading to PsbB (CP47) and PsbH paralogs coincident with the radiation of the major groups. We show that the origin of FRL-PSII required the accumulation of a relatively small number of amino acid changes and that the ancestral FRL-PSII likely contained a chlorophyll d molecule in the electron transfer chain, two chlorophyll f molecules in the antenna subunits at equivalent positions, and three chlorophyll a molecules whose site energies were altered. The results suggest a minimal model for engineering far-red light absorbance into plant PSII for biotechnological applications. Full article
(This article belongs to the Special Issue Phototrophic Bacteria)
Show Figures

Figure 1

16 pages, 10310 KiB  
Article
Alpha Lipoic Acid as a Protective Mediator for Regulating the Defensive Responses of Wheat Plants against Sodic Alkaline Stress: Physiological, Biochemical and Molecular Aspects
by Khaled M. A. Ramadan, Maha Mohammed Alharbi, Asma Massad Alenzi, Hossam S. El-Beltagi, Doaa Bahaa Eldin Darwish, Mohammed I. Aldaej, Tarek A. Shalaby, Abdallah Tageldein Mansour, Yasser Abd El-Gawad El-Gabry and Mohamed F. M. Ibrahim
Plants 2022, 11(6), 787; https://doi.org/10.3390/plants11060787 - 16 Mar 2022
Cited by 26 | Viewed by 4183
Abstract
Recently, exogenous α-Lipoic acid (ALA) has been suggested to improve the tolerance of plants to a wide array of abiotic stresses. However, there is currently no definitive data on the role of ALA in wheat plants exposed to sodic alkaline stress. Therefore, this [...] Read more.
Recently, exogenous α-Lipoic acid (ALA) has been suggested to improve the tolerance of plants to a wide array of abiotic stresses. However, there is currently no definitive data on the role of ALA in wheat plants exposed to sodic alkaline stress. Therefore, this study was designed to evaluate the effects of foliar application by ALA at 0 (distilled water as control) and 20 µM on wheat seedlings grown under sodic alkaline stress (50 mM 1:1 NaHCO3 & Na2CO3; pH 9.7. Under sodic alkaline stress, exogenous ALA significantly (p ≤ 0.05) improved growth (shoot fresh and dry weight), chlorophyll (Chl) a, b and Chl a + b, while Chl a/b ratio was not affected. Moreover, leaf relative water content (RWC), total soluble sugars, carotenoids, total soluble phenols, ascorbic acid, K and Ca were significantly increased in the ALA-treated plants compared to the ALA-untreated plants. This improvement was concomitant with reducing the rate of lipid peroxidation (malondialdehyde, MDA) and H2O2. Superoxide dismutase (SOD) and ascorbate peroxidase (APX) demonstrated greater activity in the ALA-treated plants compared to the non-treated ones. Conversely, proline, catalase (CAT), guaiacol peroxidase (G-POX), Na and Na/K ratio were significantly decreased in the ALA-treated plants. Under sodic alkaline stress, the relative expression of photosystem II (D2 protein; PsbD) was significantly up-regulated in the ALA treatment (67% increase over the ALA-untreated plants); while Δ pyrroline-5-carboxylate synthase (P5CS), plasma membrane Na+/H+ antiporter protein of salt overly sensitive gene (SOS1) and tonoplast-localized Na+/H+ antiporter protein (NHX1) were down-regulated by 21, 37 and 53%, respectively, lower than the ALA-untreated plants. These results reveal that ALA may be involved in several possible mechanisms of alkalinity tolerance in wheat plants. Full article
Show Figures

Figure 1

16 pages, 3651 KiB  
Article
Low Light Alters the Photosynthesis Process in Cigar Tobacco via Modulation of the Chlorophyll Content, Chlorophyll Fluorescence, and Gene Expression
by Xiaoying Wu, Rayyan Khan, Huajun Gao, Haobao Liu, Juan Zhang and Xinghua Ma
Agriculture 2021, 11(8), 755; https://doi.org/10.3390/agriculture11080755 - 9 Aug 2021
Cited by 29 | Viewed by 4553
Abstract
Shading or low light (LL) conditions are a key and necessary cultivation technique in cigar wrapper tobacco production. However, the effect of low light on the photosynthesis in cigar tobacco is not clear. Therefore, this study is designed to know the photosynthesis of [...] Read more.
Shading or low light (LL) conditions are a key and necessary cultivation technique in cigar wrapper tobacco production. However, the effect of low light on the photosynthesis in cigar tobacco is not clear. Therefore, this study is designed to know the photosynthesis of cigar tobacco under different light intensities (T200, T100, and T50 μmol m−2 s−1). The results reveal that under low light, T50 especially improved the light interception and increased carbon utilization, as witnessed by a higher specific leaf area and lower specific leaf weight. Low light intensity caused better light interception and carbon utilization in cigar tobacco leaves, and thus thinner leaves are more able to use low light efficiently. The chlorophyll content is related to the photosynthesis process; thus, LL affected the photosynthesis process by lowering the chlorophyll content. Similarly, LL also altered the photosynthetic efficiency by lowering the QY_Lss, qP_Lss, and Rfd_Lss. Additionally, higher expression of Lhcb4.2, Lhcb6, PsbA, PsbB, and PsbD under low light, especially T50, shows that the PSII and antenna proteins complex efficiently utilized the absorbed energy for photosynthesis. Finally, the lower photosynthesis, particularly in T50, is attributed to the downregulation of genes related to NADPH production (petH) and the rubisco enzyme synthesis-related gene (rbcs) for CO2 fixation in the Calvin cycle. Overall, the results show that the photosynthesis is decreased under LL intensities which might be related to lower chlorophyll content and downregulation of petH and rbcs genes. Full article
(This article belongs to the Section Crop Production)
Show Figures

Graphical abstract

17 pages, 2065 KiB  
Article
At the Edges of Photosynthetic Metabolic Plasticity—On the Rapidity and Extent of Changes Accompanying Salinity Stress-Induced CAM Photosynthesis Withdrawal
by Michał Nosek, Katarzyna Gawrońska, Piotr Rozpądek, Marzena Sujkowska-Rybkowska, Zbigniew Miszalski and Andrzej Kornaś
Int. J. Mol. Sci. 2021, 22(16), 8426; https://doi.org/10.3390/ijms22168426 - 5 Aug 2021
Cited by 14 | Viewed by 3355
Abstract
The common ice plant (Mesembryanthemum crystallinum L.) is a facultative crassulacean acid metabolism (CAM) plant, and its ability to recover from stress-induced CAM has been confirmed. We analysed the photosynthetic metabolism of this plant during the 72-h response period following salinity stress [...] Read more.
The common ice plant (Mesembryanthemum crystallinum L.) is a facultative crassulacean acid metabolism (CAM) plant, and its ability to recover from stress-induced CAM has been confirmed. We analysed the photosynthetic metabolism of this plant during the 72-h response period following salinity stress removal from three perspectives. In plants under salinity stress (CAM) we found a decline of the quantum efficiencies of PSII (Y(II)) and PSI (Y(I)) by 17% and 15%, respectively, and an increase in nonphotochemical quenching (NPQ) by almost 25% in comparison to untreated control. However, 48 h after salinity stress removal, the PSII and PSI efficiencies, specifically Y(II) and Y(I), elevated nonphotochemical quenching (NPQ) and donor side limitation of PSI (YND), were restored to the level observed in control (C3 plants). Swelling of the thylakoid membranes, as well as changes in starch grain quantity and size, have been found to be components of the salinity stress response in CAM plants. Salinity stress induced an over 3-fold increase in average starch area and over 50% decline of average seed number in comparison to untreated control. However, in plants withdrawn from salinity stress, during the first 24 h of recovery, we observed chloroplast ultrastructures closely resembling those found in intact (control) ice plants. Rapid changes in photosystem functionality and chloroplast ultrastructure were accompanied by the induction of the expression (within 24 h) of structural genes related to the PSI and PSII reaction centres, including PSAA, PSAB, PSBA (D1), PSBD (D2) and cp43. Our findings describe one of the most flexible photosynthetic metabolic pathways among facultative CAM plants and reveal the extent of the plasticity of the photosynthetic metabolism and related structures in the common ice plant. Full article
Show Figures

Figure 1

15 pages, 10096 KiB  
Article
Impact of Window to Wall Ratio on Energy Loads in Hot Regions: A Study of Building Energy Performance
by Mamdooh Alwetaishi and Omrane Benjeddou
Energies 2021, 14(4), 1080; https://doi.org/10.3390/en14041080 - 18 Feb 2021
Cited by 22 | Viewed by 4177
Abstract
The concern regarding local responsive building design has gained more attention globally as of late. This is due to the issue of the rapid increase in energy consumption in buildings for the purpose of heating and cooling. This has become a crucial issue [...] Read more.
The concern regarding local responsive building design has gained more attention globally as of late. This is due to the issue of the rapid increase in energy consumption in buildings for the purpose of heating and cooling. This has become a crucial issue in educational buildings and especially in schools. The major issue in school buildings in Saudi Arabia is that they are a form of prototype school building design (PSBD). As a result, if there is any concern in the design stage and in relation to the selection of building materials, this will spread throughout the region. In addition to that, the design is repeated regardless of the climate variation within the kingdom of Saudi Arabia. This research will focus on the influence of the window to wall ratio on the energy load in various orientations and different climatic regions. The research will use the energy computer tool TAS Environmental Design Solution Limited (EDSL) to calculate the energy load as well as solar gain. During the visit to the sample schools, a globe thermometer will be used to monitor the globe temperature in the classrooms. This research introduces a framework to assist architects and engineers in selecting the proper window to wall ratio (WWR) in each direction within the same building based on adequate natural light with a minimum reliance on energy load. For ultimate WWR for energy performance and daylight, the WWR should range from 20% to 30%, depending on orientation, in order to provide the optimal daylight factor combined with building energy efficiency. This ratio can be slightly greater in higher altitude locations. Full article
(This article belongs to the Special Issue Challenges and Research Trends of Building Energy Performance)
Show Figures

Figure 1

10 pages, 2325 KiB  
Article
Sequencing of Organellar Genomes of Nowellia curvifolia (Cephaloziaceae Jungermanniales) Revealed the Smallest Plastome with Complete Gene Set and High Intraspecific Variation Suggesting Cryptic Speciation
by Jakub Sawicki, Katarzyna Krawczyk, Monika Ślipiko and Monika Szczecińska
Diversity 2021, 13(2), 81; https://doi.org/10.3390/d13020081 - 15 Feb 2021
Cited by 5 | Viewed by 3055
Abstract
The leafy liverwort Nowellia curvifolia is a widespread Holarctic species belonging to the family Cephaloziaceae. It is made up of a newly sequenced, assembled and annotated organellar genomes of two European specimens, which revealed the structure typical for liverworts, but also provided new [...] Read more.
The leafy liverwort Nowellia curvifolia is a widespread Holarctic species belonging to the family Cephaloziaceae. It is made up of a newly sequenced, assembled and annotated organellar genomes of two European specimens, which revealed the structure typical for liverworts, but also provided new insights into its microevolution. The plastome of N. curvifolia is the second smallest among photosynthetic liverworts, with the shortest known inverted repeats. Moreover, it is the smallest liverwort genome with a complete gene set, since two smaller genomes of Aneura mirabilis and Cololejeunea lanciloba are missing six and four protein-coding genes respectively. The reduction of plastome size in leafy liverworts seems to be mainly impacted by deletion within specific region between psbA and psbD genes. The comparative intraspecific analysis revealed single SNPs difference among European individuals and a low number of 35 mutations differentiating European and North American specimens. However, the genetic resources of Asian specimen enabled to identify 1335 SNPs in plastic protein-coding genes suggesting an advanced cryptic speciation within N. curvifolia or the presence of undescribed morphospecies in Asia. Newly sequenced mitogenomes from European specimens revealed identical gene content and structure to previously published and low intercontinental differentiation limited to one substitution and three indels. The RNA-seq based RNA editing analysis revealed 17 and 127 edited sites in plastome and mitogenome respectively including one non-canonical editing event in plastid chiL gene. The U to C editing is common in non-seed plants, but in liverwort plastome is reported for the first time. Full article
(This article belongs to the Special Issue Taxonomy, Diversity and Evolution of Bryophytes)
Show Figures

Figure 1

16 pages, 1269 KiB  
Article
Roles of Si and SiNPs in Improving Thermotolerance of Wheat Photosynthetic Machinery via Upregulation of PsbH, PsbB and PsbD Genes Encoding PSII Core Proteins
by Heba Hassan, Aishah Alatawi, Awatif Abdulmajeed, Manal Emam and Hemmat Khattab
Horticulturae 2021, 7(2), 16; https://doi.org/10.3390/horticulturae7020016 - 26 Jan 2021
Cited by 41 | Viewed by 4093
Abstract
Photosystem II is extremely susceptible to environmental alterations, particularly high temperatures. The maintenance of an efficient photosynthetic system under stress conditions is one of the main issues for plants to attain their required energy. Nowadays, searching for stress alleviators is the main goal [...] Read more.
Photosystem II is extremely susceptible to environmental alterations, particularly high temperatures. The maintenance of an efficient photosynthetic system under stress conditions is one of the main issues for plants to attain their required energy. Nowadays, searching for stress alleviators is the main goal for maintaining photosynthetic system productivity and, thereby, crop yield under global climate change. Potassium silicate (K2SiO3, 1.5 mM) and silicon dioxide nanoparticles (SiO2NPs, 1.66 mM) were used to mitigate the negative impacts of heat stress (45 °C, 5 h) on wheat (Triticum aestivum L.) cv. (Shandawelly) seedlings. The results showed that K2SiO3 and SiO2NPs diminished leaf rolling symptoms and electrolyte leakage (EL) of heat-stressed wheat leaves. Furthermore, the maximum quantum yield of photosystem II (Fv/Fm) and the performance index (PIabs), as well as the photosynthetic pigments and organic solutes including soluble sugars, sucrose, and proline accumulation, were increased in K2SiO3 and SiO2NPs stressed leaves. At the molecular level, RT-PCR analysis showed that K2SiO3 and SiO2NPs treatments stimulated the overexpression of PsbH, PsbB, and PsbD genes. Notably, this investigation indicated that K2SiO3 was more effective in improving wheat thermotolerance compared to SiO2NPs. The application of K2SiO3 and SiO2NPs may be one of the proposed approaches to improve crop growth and productivity to tolerate climatic change. Full article
Show Figures

Figure 1

16 pages, 20952 KiB  
Article
Chlorophyll-a Fluorescence Analysis Reveals Differential Response of Photosynthetic Machinery in Melatonin-Treated Oat Plants Exposed to Osmotic Stress
by Onoud Alyammahi and Mayank Anand Gururani
Agronomy 2020, 10(10), 1520; https://doi.org/10.3390/agronomy10101520 - 6 Oct 2020
Cited by 35 | Viewed by 4087
Abstract
In this study, the effects of melatonin-induced enhancement on the principal photosynthetic parameters and antioxidant machinery were investigated in Avena sativa (oat) plants exposed to polyethylene glycol (PEG)-induced osmotic stress. The parameters of growth, chlorophyll content, stomatal conductance, proline accumulation, lipid peroxidation, and [...] Read more.
In this study, the effects of melatonin-induced enhancement on the principal photosynthetic parameters and antioxidant machinery were investigated in Avena sativa (oat) plants exposed to polyethylene glycol (PEG)-induced osmotic stress. The parameters of growth, chlorophyll content, stomatal conductance, proline accumulation, lipid peroxidation, and electrolyte leakage showed noteworthy improvements between the groups. Melatonin treatment caused upregulation of the genes that encode the three major antioxidant enzymes: ascorbate peroxidase (APX), superoxide dismutase (SOD) and catalase (CAT). Chlorophyll-a fluorescence kinetic analyses revealed that melatonin treatment improved performance indices (PIABS and PItotal), quantum yields, and efficiencies of photosystem II (PSII) in oat plants subjected to PEG-induced osmotic stress. Furthermore, upregulation of five genes (PsbA, PsbB, PsbC, PsbD, and PsbO) that encode the core proteins of PSII implied melatonin exerted a positive influence on photosynthesis under conditions of osmotic stress. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

Back to TopTop