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Abstract: Recently, the use of nanofertilizers has received a great deal of attention in managing
plants under biotic and abiotic stresses. However, studies that elucidate the role of silicon dioxide
nanoparticles (SiO2NPs) in regulating maize tolerance to drought stress are still at early stages
of development. In this study, plants that were treated with SiO2NPs (0.25 g/L as foliar spray)
displayed considerable improvement in the growth indices, despite being subjected to drought stress.
In addition, the action of SiO2NPs led to a considerable rise in the levels of chlorophylls, proline,
cell membrane integrity, leaf water content, and antioxidant enzymes (superoxide dismutase (SOD),
catalase (CAT), and guaiacol peroxidase (G-POX)). In contrast, an inverse trend was seen in the
oxidative injury, the total amount of soluble sugars, and the activity of ascorbate peroxidase (APX). At
the same time, carotenoids were unaffected in SiO2NPs-treated and non-treated plants under drought
stress. The results of the molecular investigation that was conducted using qRT-PCR showed that
the relative expression of the D2 protein of photosystem II (PsbD) was elevated in SiO2NPs-treated
plants in response to drought stress, while the expression of the osmotic-like protein (OSM-34) and
aquaporin (AQPs) was downregulated in SiO2NPs-treated plants in response to drought stress. This
research could pave the way for further investigations into how SiO2NPs boost plant resistance to
drought stress.

Keywords: silicon; water stress; deficit irrigation; nanoparticles; gene expression; antioxidant enzymes

1. Introduction

Fighting climate change has become a global priority in recent years, due to the
destructive consequences of climate change for the environment, the international economy,
and food security [1,2]. In this context, the risk of drought stress has been observed in many
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regions worldwide [3,4]. Annually, drought stress can cause more severe losses in crop
yields than all pathogens [5]. Physiologically, under drought stress, plants consume a great
deal of adenosine triphosphate (ATP), which depletes their energy and results in irreparable
harm or even plant death [6]. Moreover, drought stress causes severe decreases in cell
division [7] and CO2 assimilation [8,9] and disturbs plant–water relations [10]. As the key
organelles that carry out photosynthetic activities, the chloroplasts are expected to undergo
alterations in their physiology and their protein pools as a result of drought-stress-induced
fluctuations in leaf–gas exchanges and the buildup of reactive oxygen species (ROS) [11].
Changes to the expression levels of D2 protein (psbD), osmotin-like protein (Osmotin-34),
and aquaporin (AQPs) seem to be essential regulating steps to induce tolerance mechanisms
to drought stress [12–14].

Zea mays L., commonly known as maize, is the third most important cereal crop
cultivated globally [15]. It is considered a rich energy source for humans and animals,
due to its composition of carbohydrates, protein, fats, and vitamins [16]. Moreover, maize
provides significant raw materials for multiple industries, including those that produce
starch, feed, silage, and biofuels [17–19]. The production of maize in various regions of
the world is significantly constrained by water stress, which is considered one of the most
restrictive factors [8].

Recently, the use of nanoscale agrochemicals, including nano pesticides, nanoherbi-
cides, and nanofertilizers, has received a great deal of attention [20]. It has been noticed
that nanoparticles (NPs) are highly effective at enhancing the efficiency of water usage [21],
controlling plant diseases [22], and combating various abiotic stresses [23]. In addition, the
application of NPs is essential to ensure sustainable agriculture and reduce environmental
pollution, including the treatment of wastewater and the removal of heavy metals [24,25].

The element Silicon (Si) has been found to have a positive impact on the growth
and productivity of cereal crops, such as wheat [26], sugarcane [27], barley [28], and
maize [29,30]. However, Si is an inert element with low solubility; therefore, the uptake
of Si by plants is challenging [31]. The uptake of Si by plants has been enhanced using
nanosilica, which is typically produced from bulk silica [32]. Nanosilica particles (Si-NPs)
have a large surface-to-volume ratio, with a high uptake ability. These properties make
them an optimal alternative to conventional chemical fertilizers [33]. It has been discovered
that applying Si-NPs to plants may improve both their growth and their resistance to biotic
and abiotic stresses [33,34]. Under drought stress, Si-NPs have been found to stimulate
the synthesis of osmolytes and to induce antioxidative defense systems, leading to the
mitigation of the effect of drought stress in barley [35]. In addition, treatment with Si-NPs
can encourage maize plants to uptake more N, K, Cu, Mn, and Si under water deficiency [36].
The positive impacts of applied Si-NPs can also include the improvement of leaf pigments,
photosynthesis, and stomatal conductance under drought stress [37,38].

This study was conducted to evaluate the role of SiO2NPs as a foliar spray in alle-
viating the deleterious effects of drought stress on maize seedlings, by observing a wide
spectrum of aspects which SiO2NPs can induce tolerance to drought stress at morphological,
physiological, biochemical, and molecular levels.

2. Results and Discussion
2.1. Characterization of SiO2
2.1.1. XRD Patterns

The bare SiO2 nanoparticle X-ray diffraction patterns are seen in (Figure 1). The
characteristic peak at 23◦ (2θ) for the NPs sample may be used to prove the amorphous
nature of the substance [39].
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Figure 1. X-ray diffraction patterns of SiO2 nanoparticles. 

2.1.2. Surface Morphology by TEM 
In this study, we described the creation of SiO2 nanoparticles using the sol–gel 

method and investigated their morphological structure using TEM. The results are dis-
played in Figure 2A,B. The TEM image and particle size distribution of the SiO2 nano-
particles produced under various sol–gel conditions are shown in Figure 2A. The ho-
mogeneous size distribution and spherical shape of the SiO2 nanoparticles can be seen in 
the image. Additionally, TEM analysis showed that the nanoparticles had negligible ag-
glomeration. The particle size range was determined to be approximately ~126 nm in 
Figure 2B, which virtually indicated a tight size distribution [40,41]. Therefore, the optical 
and structural properties of SiO2 nanoparticles can be tailored by using synthesis process 
parameters for the plant stress application. 

 
Figure 2. Surface morphology of SiO2 nanoparticles (A) TEM image, (B) particle size distribution. 

2.2. Effect of SiO2NPs Application on Growth 
The results in Figure 3 indicate that the shoot and root fresh weights have decreased 

significantly due to drought stress compared to normal irrigation conditions. Further-
more, the application of SiO2NPs has resulted in a noteworthy augmentation in the shoot 
fresh weight of maize seedlings in comparison to the seedlings that were not subjected to 
treatment under standard or drought conditions (Figure 3B). Under normal conditions, 
the application of SiO2NPs has no effect on root fresh weight; under drought conditions, 
SiO2NPs application improved root fresh weight (Figure 3C). 

Figure 1. X-ray diffraction patterns of SiO2 nanoparticles.

2.1.2. Surface Morphology by TEM

In this study, we described the creation of SiO2 nanoparticles using the sol–gel method
and investigated their morphological structure using TEM. The results are displayed
in Figure 2A,B. The TEM image and particle size distribution of the SiO2 nanoparticles
produced under various sol–gel conditions are shown in Figure 2A. The homogeneous
size distribution and spherical shape of the SiO2 nanoparticles can be seen in the image.
Additionally, TEM analysis showed that the nanoparticles had negligible agglomeration.
The particle size range was determined to be approximately ~126 nm in Figure 2B, which
virtually indicated a tight size distribution [40,41]. Therefore, the optical and structural
properties of SiO2 nanoparticles can be tailored by using synthesis process parameters for
the plant stress application.
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Figure 2. Surface morphology of SiO2 nanoparticles (A) TEM image, (B) particle size distribution.

2.2. Effect of SiO2NPs Application on Growth

The results in Figure 3 indicate that the shoot and root fresh weights have decreased
significantly due to drought stress compared to normal irrigation conditions. Furthermore,
the application of SiO2NPs has resulted in a noteworthy augmentation in the shoot fresh
weight of maize seedlings in comparison to the seedlings that were not subjected to
treatment under standard or drought conditions (Figure 3B). Under normal conditions,
the application of SiO2NPs has no effect on root fresh weight; under drought conditions,
SiO2NPs application improved root fresh weight (Figure 3C).
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fresh weight (C) of maize seedlings under normal irrigation and drought stress. The data that have 
been presented with a ± SD notation represent the mean values of three separate replicates. Signif-
icant variations were observed based on Duncan’s multiple range test at a significance level of p ≤ 
0.05, as indicated by the distinct lowercase letters. 

The most serious abiotic stress on crops is drought, which is brought on by insuffi-
cient rainfall and/or irregular precipitation patterns. The role of Si in improving vegeta-
tive growth has been reported in previous works such as that of Gong et al. [42] on wheat 
and that of Shen et al. [43] on soybean. Also, our results indicate that SiO2NPs improved 
shoot fresh weight under stress conditions or normal conditions (Figure 3B). In accord-
ance with our results in Figure 3C, previous works reported the enhancement of root 

Figure 3. Effect of applied SiO2-NPs on the vegetative growth (A), shoot fresh weight (B) and root
fresh weight (C) of maize seedlings under normal irrigation and drought stress. The data that have
been presented with a±SD notation represent the mean values of three separate replicates. Significant
variations were observed based on Duncan’s multiple range test at a significance level of p ≤ 0.05, as
indicated by the distinct lowercase letters.

The most serious abiotic stress on crops is drought, which is brought on by insufficient
rainfall and/or irregular precipitation patterns. The role of Si in improving vegetative
growth has been reported in previous works such as that of Gong et al. [42] on wheat
and that of Shen et al. [43] on soybean. Also, our results indicate that SiO2NPs improved
shoot fresh weight under stress conditions or normal conditions (Figure 3B). In accordance
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with our results in Figure 3C, previous works reported the enhancement of root growth
and weight by SiO2 application in Sorghum under drought stress [44,45]. This result
could be due to the role of SiO2 in promoting water uptake under drought stress by
controlling osmotic adjustment and modifying the expression proteins controlling the
water channel [46]. In addition, the role of Si in increasing root length to recover from water
stress was reported [47]. The role of SiO2NPs in improving the shoot and root growth of
maize seedlings may be due to the role of Si in stimulating the process of photosynthesis,
which leads to an increase in growth [48] or decreasing stomatal transpiration [49]. Also,
Si treatment under drought stress could increase the fresh weight of maize seedlings
by increasing water and osmotic potential and maintaining higher turgor pressure in
plants [50].

2.3. Effect of SiO2NPs Application on Photosynthesis Pigments

The results in Figure 4 indicate that the content of photosynthesis pigments in the
maize seedlings was higher in the control treatment (non-water stress) compared with the
drought stress condition. In addition, the treatment of maize seedlings with SiO2NPs has
led to a significant increase in all previous compounds (except carotenoids) compared to
seedlings that have not been treated. Under conditions of water stress, the application
of SiO2NPs resulted in a noteworthy augmentation of chlorophyll a, chlorophyll b, and
total chlorophyll in maize seedlings (Figure 4A–C). The study found that there was no
statistically significant disparity in the carotenoid composition of seedlings subjected to
SiO2NPs treatment and those that were not treated (as illustrated in Figure 4D), in the
presence of water stress conditions. Reduced photosynthesis is one of the main effects of
drought, which results from decreased leaf growth, damaged photosynthetic machinery,
early leaf senescence, and a corresponding decline in food production [51]. This study
confirms that drought stress reduces photosynthetic pigments (Figure 4A–D). This result
could be due to stomatal and non-stomatal photosynthetic limitations under drought stress
conditions [52]. Epstein [31] has reported an elevation in the enzymatic activity responsible
for chlorophyll degradation, while Mafakheri et al. [53] have highlighted the adverse
impact of ROS on chloroplast. Since chlorophyll content is positively correlated with the
rate at which plants produce biomass through photosynthesis, it significantly determines
plant productivity [54]. In harmony with our findings, Si treatment has been found to
improve the photosynthetic rate under abiotic stress and increase chlorophyll pigments
in wheat [44] and soybean [43]. It is well known that Si regulates the stomatal function
and might affect photosynthetic efficacy by affecting the relations of gas exchange [55].
Also, Si application often enhances stomatal conductance (Kang et al., 2016) and leads to an
increase in photosynthetic rates [56].

2.4. Effect of SiO2NPs Application on RWC, Proline and Total Soluble Sugars

The data depicted in Figure 5 indicate that when subjected to drought stress, there
was a notable reduction in relative water content (RWC). Conversely, there was a marked
and statistically significant increase in proline and total soluble sugars levels in comparison
to plants that were adequately watered. In contrast, the RWC and proline levels of the
treated plants were much higher than those of the control plants. However, total soluble
sugars displayed an opposite trend compared to the untreated plants under drought stress.
Nanosilica was able to stimulate the antioxidative defense system and osmolyte accumu-
lation, which reduced the severity of drought stress in barley [35], wheat [57], and [36]
maize. It is well known that Si plays an important role in decreasing the transpiration rate
under drought stress [58]. Moreover, Si deposits in the cell walls, particularly the xylem
tissue, may be able to stop any compression that occurs in these vessels under drought
stress [59]. The findings of this investigation suggest that the application of SiO2 nanoparti-
cles may have a significant impact on the tolerance of maize seedlings to drought stress.
Specifically, the observed increase in proline levels and decrease in total soluble sugars
following SiO2NPs treatment can play a crucial role in this regard. These results highlight
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the potential of SiO2NPs to facilitate osmotic adjustment, with particular emphasis on the
modulation of proline accumulation over the accumulation of soluble sugars.
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indicated by the distinct lowercase letters.
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2.5. Effect of SiO2NPs Application on H2O2, MDA, and CMSI

The results in Figure 6A,B show that the content of H2O2 in maize seedlings has
significantly increased under drought conditions compared with seedlings grown under
normal irrigation conditions. In addition, the treatment with SiO2NPs did not affect the
H2O2 content of the seedlings under normal irrigation conditions. On the other hand, a
discernible beneficial impact was observed in mitigating the concentration of hydrogen
peroxide (H2O2) in plants treated with silicon dioxide nanoparticles (SiO2NPs) during
instances of water stress. The results in Figure 6C indicate that the malondialdehyde
(MDA) content in maize seedlings increased when seedlings were subjected to drought
conditions compared to normal irrigation conditions. Furthermore, the application of SiO2
nanoparticles resulted in a noteworthy reduction in malondialdehyde levels in comparison
to non-treated vegetation exposed to drought conditions. As expected, the percentage of
CMSI decreased in maize seedlings grown under normal irrigation conditions compared to
those under drought stress Figure 6D. The SiO2NPs application increased the percentage of
CMSI under both water conditions.
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the mean values of three separate replicates. Significant variations were observed based on Duncan’s
multiple range test at a significance level of p ≤ 0.05, as indicated by the distinct lowercase letters.
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Hydrogen peroxide is a signaling agent that crosses cell membranes, especially for
stress adaptation and antioxidant defense [60]. According to our findings, other studies
have also indicated that Si can lower MDA and H2O2 levels [42,61,62]. Si’s role in mitigat-
ing stress conditions such as drought could be due to its role in controlling the expression
of genes such as TaSOD, TaCAT, and TaAPX137 that are involved in synthesizing and
activating antioxidant enzymes [63]. Several factors, such as time of occurrence, duration,
and severity, influence the harmful effect of drought on crops. An important physiological
guide for assessing drought tolerance is CMSI, which is inversely correlated with cell mem-
brane damage [64]. Furthermore, the findings depicted in Figure 3C indicate a reduction
in CMSI in response to water stress. Similarly, Maghsoudi et al. [65] reported decreased
CMSI in wheat plants under drought stress. Additionally, they found that Si application
enhanced the CMSI under both irrigation conditions.

2.6. Impact of SiO2NPs Administration on Antioxidant Enzymes

As anticipated, the enzymatic activities of SOD, CAT, G-POX, and APX have exhibited
a rise in response to water stress conditions in contrast with the standard irrigation condi-
tions, as depicted in Figure 7A–D. The application of SiO2NPs resulted in an increase in the
activity of all enzymes studied, with the exception of APX, when subjected to water stress
conditions. Conversely, there was no notable disparity in enzyme activity under normal
irrigation conditions.
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values of three separate replicates. Significant variations were observed based on Duncan’s multiple
range test at a significance level of p ≤ 0.05, as indicated by the distinct lowercase letters.
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The impact of abiotic stresses on equilibrium between reactive oxygen species (ROS)
and antioxidants has been well documented, resulting in oxidative impairment of cellular
membrane architecture [66–69]. By boosting plant defensive responses, such as those of
the antioxidant system, Si treatment improves the resilience and tolerance of plants to
drought stress, hence reducing oxidative stress brought on by drought [70]. Prior studies
have indicated that the utilization of silicon augmented the efficacy of antioxidant enzymes
in particular crops, such as wheat and tomatoes, under conditions of abiotic stress [44,71].
Superoxide dismutase (SOD) serves as the primary defense mechanism against reactive
oxygen species (ROS) by catalyzing the conversion of superoxide or singlet oxygen radicals
into molecular oxygen and hydrogen peroxide [72]. SOD’s role in the defense mechanism
responsible for neutralizing oxidative stress is clearly indicated by the rise in cellular SOD
activity when there is environmental stress, such as drought [73]. By collaborating with
SOD to remove ROS and break down H2O2 into water and oxygen, CAT serves a beneficial
role [74]. In addition, MDHAR is synthesized in multiple cellular compartments through
the enzymatic conversion of H2O2 to H2O by APX, which employs ascorbate as a hydrogen
donor. The primary enzyme removes H2O2 from plant cells’ chloroplasts [75]. Previous
studies demonstrated, in a manner that is in agreement with our findings, the involvement
of Si application in enhancing the activity of antioxidant enzymes in the presence of abiotic
stressors [71,76–78]. SOD, CAT, and POX activity also rose in wheat under drought stress,
but more so in the presence of Si, according to Sattar et al. [55]. The observed outcomes may
be attributed to the significant augmentation of antioxidant enzymes APX and G-POX due
to the amplification of the ascorbic acid–glutathione cycle and related enzymes by Si [79].

2.7. Effect of SiO2NPs Application on Gene Expression

The results in Figure 8A indicate that expression of the D2 protein gene decreased
under drought stress compared with regular irrigation. Moreover, the D2 protein expression
was increased by SiO2 NPs application under drought conditions, while the D2 protein
gene was significantly increased under normal water conditions. The expressions of both
OSM-34 and aquaporin genes were found to be upregulated in response to drought stress
compared to well-watered conditions (Figure 8B,C). Moreover, the treatment with NPsSiO2
led to a decrease in the expression of OSM-34 and Aquaporin genes under drought and
normal conditions compared to the untreated plants.
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In agreement with our results, Si treatment elevated the expression of genes related
to oxidative stress [63]. Some previous works suggested that gene expression may be
impacted by Si fertilization [80,81]. In this study, plants treated with SiO2NPs seem to
impact gene expression. D2 protein is placed as a core for photosystem II inside the
plastid; thus, it is important to the integrity of thylakoid membranes and the efficiency of
photosynthesis [82]. Under stressful circumstances, D2 protein is susceptible to oxidative
damage and photoinhibition [83]. These effects can explain the downregulation of the
expression of the D2 protein under water stress. Meanwhile, the role of SiO2NPs in
safeguarding the machinery of photosynthesis under drought stress may be reflected in
their favorable effect on the expression of D2 protein.

Aquaporins (AQPs), which are widely recognized membrane channel proteins, have
the ability to transport water, metal ions, gases, and small neutral solutes in reaction to
both biotic and abiotic stressors [84]. Numerous factors, like phosphorylation, cytosolic
pH, divalent cations, reactive oxygen species, and stoichiometry, are frequently employed
to regulate aquaporin gating. Hydraulic conductance, root system architecture, abiotic
stress-related gene modulation, seed viability and germination, phloem loading, xylem
water exit, photosynthetic parameters, and post-drought recovery have all been connected
to them [14].

Additionally, a cysteine-rich protein called osmotin (OSM-34) is created in vacuoles
and acts as an osmoregulator when the water potential is low [85]. The overexpression
of osmotin protein in plants can protect them from different stresses by reducing reactive
oxygen species (ROS) production, limiting lipid peroxidation, initiating programmed cell
death (PCD), increasing proline content, and scavenging enzyme activity [12].

In this work, the reduction in AQPs and OSM-34 expression in plants treated with
SiO2NPs suggests enhanced membrane and RWC integrity (Figures 5 and 6) compared to
SiO2NPs untreated plants under drought stress.

3. Materials and Methods
3.1. Plant and Experimental Details

This study used maize seeds of a single white hybrid (Egaseed 81) as plant material.
Seeds were soaked in a solution of 0.1% sodium hypochlorite for 5 min, followed by four
rounds of washing. Subsequently, the seeds were subjected to incubation at 25 ◦C for
48 h, in the absence of light. The seeds were placed on moist filter paper and provided
with distilled water. Following the emergence of radicals, four seedlings that exhibited
similar growth patterns were chosen and subsequently transplanted into black plastic pots
measuring 20 cm in diameter and 25 cm in height. A total of 48 pots were maintained in
a greenhouse environment, with an average diurnal temperature of 28.2 ± 3.6 ◦C and an
average nocturnal temperature of 19.6 ± 2.8 ◦C. The relative humidity was 64.5 ± 4.9%,
and the duration of natural daylight ranged from 11 to 12 h. Every two days, tap water and
a half-strength Hoagland’s solution were used to water all pots [86]. The volume of water,
or Hoagland’s solution, was calculated directly using the weight method to maintain soil
moisture at 65–75% of the field capacity.

3.2. Experimental Design and Treatments Organization

Subsequently, after three weeks (three-true leaf stage), four treatments were applied
as follows: (i) control; pots were well irrigated day by day (field capacity: 65–75% using
the direct weight method) + foliar applications with distilled water, (ii) drought stress;
irrigation was stopped in two successive periods (5 and 7 days) + foliar applications with
distilled water; (iii) SiO2NPs; pots were well irrigated day by day + foliar applications
with 0.25 g/L SiO2NPs and (iv) drought stress + SiO2NPs; irrigation was stopped in
two successive periods (5 and 7 days) + foliar applications with 0.25 g/L SiO2NPs. The
timeline infographic of various treatments (irrigation and foliar applications) and sampling
is shown in Figure 9. All treatments were irrigated twice (at 21 and 27 days after sowing)
with 1.5 L of half-strength Hoagland’s solution to give all plants in drought and well-
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watered treatments the same amounts of nutrients. A preliminary study was conducted to
determine the optimum concentration of SiO2NPs by observing the decrease in the rate of
lipid peroxidation under drought stress (Figure S1). All foliar treatments (distilled water or
SiO2NPs) were sprayed five times with 20 mL of a fresh solution with 0.05% tween-20 at
23, 25, 27, 29, and 31 days after sowing. The total number of pots was 48 and distributed in
a complete randomized design (CRD), including two foliar treatments X 2 watering levels
X 4 pots X 3 replicates. The maize seedlings were permitted to continue growing for an
additional three days following the final foliar application. Subsequently, samples were
gathered to evaluate growth and various biochemical constituents.
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Figure 9. A simplified model shows the different treatments (irrigation and foliar applications with
distilled water or SiO2NPs) and the sampling date of maize seedlings.

3.3. Experimental Approach and SiO2 Preparation

Tetraethyl orthosilicate (TEOS) (Si(OC2H5)), acetic acid (CH3COOH), methyl acetate
(C3H6O2), and methanol (CH3OH) were among the chemicals acquired from Sigma-Aldrich
as beginning ingredients. Silicon dioxide (SiO2) nanoparticles were synthesized via the
sol–gel method, according to Saravanan and Dubey [87]. At the outset, a mixture of 2.3 mL
of acetic acid and 20 mL of methanol was blended and agitated for 5 min at ambient
temperature. The water molecules partially evaporated, resulting in the production of
methyl acetate. During the same period, 1.5 mL more of TEOS was added drop by drop.
Using vigorous stirring for 90 min, a homogenous translucent solution was produced.

CH3COOH + CH3OH→ C3H6O2 + H2O↑C3H6O2 + Si (OC2H5)4→ SiO2 + C11H26 O4↑

At room temperature, the produced SiO2 NPs solution was then dried. To create fine
nanoparticles, the dried SiO2 product was ground, calcined at 500 ◦C, and then grained.
The produced samples were analyzed using TEM and XRD after calcination.
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3.4. Characterization of SiO2
3.4.1. Phase Development Determination

The development of the hydrated phase at various curing ages and the mineralogical
makeup of the basic ingredients were determined using XRD. The pastes’ XRD patterns
were examined using Cu Kα radiation at 0.154 nm on a Rigaku SmartLab 3000Å diffrac-
tometer (Tokyo, Japan).

3.4.2. Transmission Electron Microscopy (TEM)

TEM was employed in order to investigate the shape of the SiO2NPs as well as their
dispersion by placing 10 µL of diluted sample onto holey carbon films on copper grids.
Samples were observed operating at an accelerating voltage of 200 kV. Nanoparticle size
was measured using ImageJ software (version 1.52a).

3.5. Determination of Growth Parameters

The shoot and root fresh weight at the 35-day-old stage was recorded immediately
using a digital balance.

3.6. Determination of Photosynthetic Pigments

The photosynthetic pigments of the maize leaves were determined according to Yang
et al. [88]. Using a mortar and pestle and 80% acetone, the fresh leaves (0.1 g) were extracted.
Spectrophotometers measured the solution’s absorbance at different wavelengths. The
expression for photosynthetic pigments was expressed as mg g −1 FW.

Chl a (µg/mL)= 12.25 A663.6 − 2.55 A646.6

Chl b (µg/mL)= 20.31 A646.6 − 4.91 A663.6

Chl Total (µg/mL)= 17.76 A646.6 + 7.34 A663.6

Car (µg/mL)= 4.69 A440.5 − 0.267 Chl Total

3.7. Histochemical Detection of H2O2

To investigate the existence of H2O2 histochemically using the diaminobenzidine
(DAB) method [89], a part of the ditched leaf from each treatment was completely soaked in
a Petri dish containing a solution of 100 ppm DAB and 50 mM Tris-HCl buffer, pH 4.0, for
24 h. After that, the leaf pieces were transferred to absolute alcohol several times to remove
the leaf pigment. The buildup of H2O2 in leaf tissues grew along with the appearance of a
dark brown color.

3.8. Quantification of H2O2 and Lipid Peroxidation

According to Velikova et al. [90], with a few adjustments, the hydrogen peroxide
(H2O2) content was determined. In tri-chloroacetic acid (TCA), leaf samples (0.2 g) were
homogenized. At 10,000 rpm and 4 ◦C for 10 min, the homogenate was centrifuged. Then,
0.75 mL of the supernatant was added to 1.5 mL of 1 M KI and 0.75 mL of 10 mM K-
phosphate buffer (pH 7.0). By comparing H2O2’s absorbance at 390 nm, the concentration
of H2O2 was determined.

Malondialdehyde (MDA) measurement was used to measure lipid peroxidation, as
explained by Heath and Packer [91]. The fourth leaf from the top was used to homogenize
leaf tissues with 0.1% (w/v) trichloroacetic acid (TCA). For 15 min, the homogenate was
centrifuged at 4500 rpm. Meanwhile, 1 mL of the supernatant and 4 mL of 0.5% (w/v)
thiobarbituric acid (TBA) mixed in 20% (w/v) TCA made up the reaction mixture. The
mixture was heated for 30 min in boiling water, cooled to room temperature, and then
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centrifuged for 15 min at 4500 rpm. The absorbance (A) of the supernatant was measured
at 535 nm and corrected for non-specific turbidity at 600 nm using a spectrophotometer.
The MDA concentration (nmol g−1 FW) was calculated using ∆ OD (A532-A600) and the
extinction coefficient (ε = 155 mM−1 cm−1)

3.9. Determination of Cell Membranes Stability Index (CMSI)

The method employed to ascertain the stability of the cell membrane was based on
the protocol outlined by González and González-Vilar [92], albeit with slight modifications.
Specifically, ten leaf discs with a diameter of 1 cm were immersed in 10 mL of deionized
water and subjected to agitation for 24 h. The EC1 readings were recorded using an EC
meter. Subsequently, all specimens underwent a thermal treatment in boiling water for
20 min, following which the measurements were once again documented (EC2).

MSI =
[

1−
(

EC1
EC2

)]
× 100 (1)

3.10. Determination the Activities of Antioxidant Enzymes

Fresh leaf samples were combined with a phosphate buffer (5 mL, 50 mM, 7.8 pH) and
centrifuged at 6000 rpm for 20 min. Inhibiting NBT (nitroblue tetrazolium) reduction is the
fundamental method for calculating superoxide dismutase (SOD) activity at 560 nm [93].
The primary reactants in this reaction were 1 mL of NBT (50 µM), 1 mL of riboflavin
(0.5 mM), 50 µL of enzyme extract, 900 µL of phosphate buffer (50 mM), and 50 µL of
methionine (13 mM). The mixture was first exposed to 30 W of fluorescent lamp light to
begin the reaction. The reaction ceased when the lamp was switched off after five minutes.
The blue formazan produced via NBT reduction was visible at 560 nm. The identical
reactants were used to take a blank reading, but no enzyme extract was present. The
Aebi [94] methodology was employed to quantify the catalase (CAT) activity. The decline in
absorbance at 290 nm of ascorbate oxidation was used to determine the activity of ascorbate
peroxidase (APX) [95]. Guaiacol peroxidase (G-POX) activity was assayed by measuring
guaiacol’s oxidation by observing the absorbance increase at 470 nm for 3 min [96].

3.11. Relative Water Content (RWC), Total Soluble Sugars, and Proline

Leaf discs (1 cm in diameter) were used to measure RWC in leaves [8]. The leaf discs
were floated on distilled water in the dark for five hours after each disc’s fresh weight (FW)
measurement to obtain turgid weights (TW). The RWC in leaves was determined using
leaf discs (1 cm diameter) [97]. Total soluble sugar was measured utilizing the method
described by Chow and Landhäusser [98], with some modifications. Proline content was
evaluated as per Bates et al.’s [99] methodology.

3.12. Gene Expression

The mRNA from each treatment (0.5 g of leaves) was isolated utilizing an RNA
extraction kit (Sigma-Aldrich, St. Louis, MO, USA). Following reverse transcription and
cDNA formation, the primer sequences (Table 1) used in real-time PCR with SYBR® Green
and GAPDH were used as housekeeping genes. Relative gene expression was determined
using 2−∆∆Ct [100].

Table 1. Sequences of primers utilized for quantitative RT-PCR analysis.

Gene Name Sequence Accession Number

Osmotin-like protein
(Osmotin-34)

F 5′-GAACGGAGGGTGTCACAAAATC-3′
NM_001153626.2

R 5′-CGTAGTGGGTCCACAAGTTCCT-3′

D2 protein (psbD) F 5′- GGAAGATCAATCGACCGAAA-3′
S46931.1

R 5′- CCTTATGCACCCATTTCACA-3′
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Table 1. Cont.

Gene Name Sequence Accession Number

Aquaporin (AQPs)
F 5′- GTTCCTATCCTTGCCCCACT-3′

AY243801.1
R 5′- AGGCGTGATCCCTGTTGTAG-3′

GAPDH
(The housekeeping gene)

F 5′- TTGGTTTCCACTGACTTCGTT-3′
X15596.1

R 5′-CTGTAGCCCCACTCGTTGT-3′

3.13. Statistics

The SAS [101] software was utilized to conduct the one-way ANOVA procedure. The
results of three replicates were presented as varying values ± standard deviation. The
differences between means were determined according to Duncan’s multiple range test.

4. Conclusions

Silica nanoparticles have been identified as a potentially effective means of improving
plant growth and yield and mitigating other stresses. However, these techniques are still in
an early stage of development. Therefore, this study has tried to focus on how the nanosil-
ica mediates the tolerance mechanisms to drought stress in maize seedlings. The results
confirmed that SiO2NPs could improve growth and trigger several strategies to combat the
detrimental effects of drought stress. The responses observed encompassed enhancements
in photosynthetic pigments, plant hydration levels, osmolyte accumulation, heightened
activity of antioxidant enzymes, mitigation of oxidative injury, and mediation of gene
expression regulation. SiO2NPs can be recommended as an excellent alternative to con-
ventional chemical fertilizers. However, future studies should focus on the concentrations
of SiO2NPs that can lead to phytotoxicity and their long-term effects on the environment.
Further molecular studies should evaluate the underlying mechanisms behind various
biochemical pathways of secondary metabolites in plants.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/plants12142592/s1, Figure S1: Effect of different concentrations of
water and SiO2NPs on the membrane lipid oxidation of maize seedlings grown under control and
drought stress.
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