Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = POP ligands

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1898 KiB  
Article
Folate-Targeted Nanoliposomal Chemophototherapy
by Upendra Chitgupi, Yiru Qin, Sanjana Ghosh, Breandan Quinn, Kevin Carter, Xuedan He, Ulas Sunar and Jonathan F. Lovell
Pharmaceutics 2023, 15(10), 2385; https://doi.org/10.3390/pharmaceutics15102385 - 26 Sep 2023
Cited by 4 | Viewed by 2257
Abstract
Light-responsive liposomes have been developed for the on-demand release of drugs. However, efficient delivery of chemotherapeutic drugs to tumor for cancer theranostics remains a challenge. Herein, folic acid (FA), an established ligand for targeted drug delivery, was used to decorate light-sensitive porphyrin-phospholipid (PoP) [...] Read more.
Light-responsive liposomes have been developed for the on-demand release of drugs. However, efficient delivery of chemotherapeutic drugs to tumor for cancer theranostics remains a challenge. Herein, folic acid (FA), an established ligand for targeted drug delivery, was used to decorate light-sensitive porphyrin-phospholipid (PoP) liposomes, which were assessed for FA-targeted chemophototherapy (CPT). PoP liposomes and FA-conjugated PoP liposomes were loaded with Doxorubicin (Dox), and physical properties were characterized. In vitro, FA-PoP liposomes that were incubated with FA receptor-overexpressing human KB cancer cells showed increased uptake compared to non-targeted PoP liposomes. Dox and PoP contributed towards chemophototherapy (CPT) in vitro, and PoP and FA-PoP liposomes induced cell killing. In vivo, mice bearing subcutaneous KB tumors treated with PoP or FA-PoP liposomes loaded with Dox, followed by 665 nm laser treatment, had delayed tumor growth and improved survival. Dox delivery to tumors increased following laser irradiation for both PoP and FA-PoP liposomes. Thus, while Dox-FA-PoP liposomes were effective following systemic administration and local light irradiation in this tumor model, the FA targeting moiety did not appear essential for anti-tumor responses. Full article
(This article belongs to the Special Issue Designing Nanomaterials for Drug Delivery and Cancer-Targeted Therapy)
Show Figures

Figure 1

12 pages, 2872 KiB  
Article
Selective C–H Bond Cleavage with a High-Spin FeIV–Oxido Complex
by Chen Sun, Jennifer L. Jaimes, Alec H. Follmer, Joseph W. Ziller and Andrew S. Borovik
Molecules 2023, 28(12), 4755; https://doi.org/10.3390/molecules28124755 - 14 Jun 2023
Cited by 1 | Viewed by 1978
Abstract
Non-heme Fe monooxygenases activate C–H bonds using intermediates with high-spin FeIV–oxido centers. To mimic these sites, a new tripodal ligand [pop]3− was prepared that contains three phosphoryl amido groups that are capable of stabilizing metal centers in high oxidation states. [...] Read more.
Non-heme Fe monooxygenases activate C–H bonds using intermediates with high-spin FeIV–oxido centers. To mimic these sites, a new tripodal ligand [pop]3− was prepared that contains three phosphoryl amido groups that are capable of stabilizing metal centers in high oxidation states. The ligand was used to generate [FeIVpop(O)], a new FeIV–oxido complex with an S = 2 spin ground state. Spectroscopic measurements, which included low-temperature absorption and electron paramagnetic resonance spectroscopy, supported the assignment of a high-spin FeIV center. The complex showed reactivity with benzyl alcohol as the external substrate but not with related compounds (e.g., ethyl benzene and benzyl methyl ether), suggesting the possibility that hydrogen bonding interaction(s) between the substrate and [FeIVpop(O)] was necessary for reactivity. These results exemplify the potential role of the secondary coordination sphere in metal-mediated processes. Full article
Show Figures

Figure 1

11 pages, 2775 KiB  
Article
Scissor-like Au4Cu2 Cluster with Phosphorescent Mechanochromism and Thermochromism
by Xue-Meng Wu, Jin-Yun Wang, Ya-Zi Huang and Zhong-Ning Chen
Molecules 2023, 28(7), 3247; https://doi.org/10.3390/molecules28073247 - 5 Apr 2023
Cited by 4 | Viewed by 2330
Abstract
Reaction of [Au(tht)2](ClO4) (tht = tetrahydrothiophene), [Cu(CH3CN)4](ClO4), 3,6-di-tert-butyl-1,8-diethynyl-9H-carbazole (H3decz), and bis(2-diphenylphosphinophenyl)ether (POP) in the presence of triethylamine (NEt3) gave the cluster complex Au4Cu [...] Read more.
Reaction of [Au(tht)2](ClO4) (tht = tetrahydrothiophene), [Cu(CH3CN)4](ClO4), 3,6-di-tert-butyl-1,8-diethynyl-9H-carbazole (H3decz), and bis(2-diphenylphosphinophenyl)ether (POP) in the presence of triethylamine (NEt3) gave the cluster complex Au4Cu2(decz)2(POP)2 as yellow crystals. As revealed by X-ray crystallography, the Au4Cu2 cluster exhibits scissor-like structure sustained by two decz and two POP ligands and stabilized by Au-Cu and Au-Au interactions. The Au4Cu2 cluster shows bright yellow to orange photoluminescence upon irradiation at >300 nm, arising from 3[π (decz)→5d (Au)] 3LMCT (ligand-to-metal charge transfer) and 3[π→π* (decz)] 3IL (intraligand) triplet states as revealed by theoretical and computational studies. When it is mechanically ground, reversible phosphorescence conversion from yellow to red is observed owing to more compact molecular packing and thus stronger intermetallic interaction. Variable-temperature luminescence studies reveal that it displays distinct red-shifts of the emission whether the temperature is elevated or lowered from ambient temperature, suggestive of exceptional thermochromic phosphorescence characteristics. Full article
(This article belongs to the Section Inorganic Chemistry)
Show Figures

Graphical abstract

17 pages, 3372 KiB  
Article
12-Vertex closo-3,1,2-Ruthenadicarbadodecaboranes with Chelate POP-Ligands: Synthesis, X-ray Study and Electrochemical Properties
by Anastasiya M. Zimina, Nikolay V. Somov, Yulia B. Malysheva, Nadezhda A. Knyazeva, Alexander V. Piskunov and Ivan D. Grishin
Inorganics 2022, 10(11), 206; https://doi.org/10.3390/inorganics10110206 - 11 Nov 2022
Cited by 4 | Viewed by 2006
Abstract
A class of so-called POP ligands (Xanthos, NiXantphos, DPEphos) are of a great interest to the coordination chemistry due to their wide P-M-P bite angles and ability to show either κ2- or κ3-binding modes. Such κ2–κ3 [...] Read more.
A class of so-called POP ligands (Xanthos, NiXantphos, DPEphos) are of a great interest to the coordination chemistry due to their wide P-M-P bite angles and ability to show either κ2- or κ3-binding modes. Such κ2–κ3-rearrangement is valuable for catalytic application and internal stabilization of intermediates. To widen the scope of ruthenium-based catalysts for Atom Transfer Radical Polymerization (ATRP) two new approaches to the synthesis of closo-ruthenacarboranes with aforementioned POP ligands were developed and six new 17-e (3,3-(POP)-3-Cl-closo-3,1,2-RuC2B9H11; 2, 4, 7) and 18-e (3,3-(POP)-3-NCCH3-closo-3,1,2-RuC2B9H11; 3, 5, 8) clusters were synthesized and characterized by means of NMR or ESR spectroscopy, MALDI mass-spectrometry and single crystal X-ray diffraction studies. The unique 18-e complex of Ru(II) with dioxygen ligand 3,3-(DPEphos)-3-(η2-O2)-closo-3,1,2-RuC2B9H11 (9) was isolated and characterized by X-ray diffraction. It was shown that aforementioned POP ligands coordinate to ruthenium by two phosphorus atoms in a κ2-fashion. The performed electrochemical studies have shown reversible Ru(II)-Ru(III) transition making the complexes suitable for application in catalysis of polymerization. The test experiments on methyl methacrylate (MMA) polymerization indicate the proceeding of the process in according with an ATRP mechanism. Full article
(This article belongs to the Special Issue Fifth Element: The Current State of Boron Chemistry)
Show Figures

Figure 1

13 pages, 13478 KiB  
Article
Construction of a (NNN)Ru-Incorporated Porous Organic Polymer with High Catalytic Activity for β-Alkylation of Secondary Alcohols with Primary Alcohols
by Yao Cui, Jixian Wang, Lei Yu, Ying Xu, David J. Young, Haiyan Li and Hongxi Li
Polymers 2022, 14(2), 231; https://doi.org/10.3390/polym14020231 - 7 Jan 2022
Cited by 5 | Viewed by 2619
Abstract
Solid supports functionalized with molecular metal catalysts combine many of the advantages of heterogeneous and homogeneous catalysis. A (NNN)Ru-incorporated porous organic polymer (POP-bp/bbpRuCl3) exhibited high catalytic efficiency and broad functional group tolerance in the C–C cross-coupling of secondary and primary alcohols [...] Read more.
Solid supports functionalized with molecular metal catalysts combine many of the advantages of heterogeneous and homogeneous catalysis. A (NNN)Ru-incorporated porous organic polymer (POP-bp/bbpRuCl3) exhibited high catalytic efficiency and broad functional group tolerance in the C–C cross-coupling of secondary and primary alcohols to give β-alkylated secondary alcohols. This catalyst demonstrated excellent durability during successive recycling without leaching of Ru which is ascribed to the strong binding of the pincer ligands to the metal ions. Full article
(This article belongs to the Special Issue High Performance Porous Polymers)
Show Figures

Figure 1

22 pages, 2851 KiB  
Article
First Crystal Structure of Bacterial Oligopeptidase B in an Intermediate State: The Roles of the Hinge Region Modification and Spermine
by Dmitry E. Petrenko, Vladimir I. Timofeev, Vladimir V. Britikov, Elena V. Britikova, Sergey Y. Kleymenov, Anna V. Vlaskina, Inna P. Kuranova, Anna G. Mikhailova and Tatiana V. Rakitina
Biology 2021, 10(10), 1021; https://doi.org/10.3390/biology10101021 - 9 Oct 2021
Cited by 11 | Viewed by 2785
Abstract
Oligopeptidase B (OpB) is a two-domain, trypsin-like serine peptidase belonging to the S9 prolyloligopeptidase (POP) family. Two domains are linked by a hinge region that participates in the transition of the enzyme between two major states—closed and open—in which domains and residues of [...] Read more.
Oligopeptidase B (OpB) is a two-domain, trypsin-like serine peptidase belonging to the S9 prolyloligopeptidase (POP) family. Two domains are linked by a hinge region that participates in the transition of the enzyme between two major states—closed and open—in which domains and residues of the catalytic triad are located close to each other and separated, respectively. In this study, we described, for the first time, a structure of OpB from bacteria obtained for an enzyme from Serratia proteomaculans with a modified hinge region (PSPmod). PSPmod was crystallized in a conformation characterized by a disruption of the catalytic triad together with a domain arrangement intermediate between open and closed states found in crystals of ligand-free and inhibitor-bound POP, respectively. Two additional derivatives of PSPmod were crystallized in the same conformation. Neither wild-type PSP nor its corresponding mutated variants were susceptible to crystallization, indicating that the hinge region modification was key in the crystallization process. The second key factor was suggested to be polyamine spermine since all crystals were grown in its presence. The influences of the hinge region modification and spermine on the conformational state of PSP in solution were evaluated by small-angle X-ray scattering. SAXS showed that, in solution, wild-type PSP adopted the open state, spermine caused the conformational transition to the intermediate state, and spermine-free PSPmod contained molecules in the open and intermediate conformations in dynamic equilibrium. Full article
Show Figures

Graphical abstract

15 pages, 5020 KiB  
Article
Heteroleptic [Cu(P^P)(N^N)][PF6] Complexes: Effects of Isomer Switching from 2,2′-biquinoline to 1,1′-biisoquinoline
by Nina Arnosti, Marco Meyer, Alessandro Prescimone, Edwin C. Constable and Catherine E. Housecroft
Crystals 2021, 11(2), 185; https://doi.org/10.3390/cryst11020185 - 13 Feb 2021
Cited by 6 | Viewed by 3252
Abstract
The preparation and characterization of [Cu(POP)(biq)][PF6] and [Cu(xantphos)(biq)][PF6] are reported (biq = 1,1′-biisoquinoline, POP = bis(2-(diphenylphosphanyl)phenyl)ether, and xantphos = (9,9-dimethyl-9H-xanthene-4,5-diyl)bis(diphenylphosphane). The single crystal structure of [Cu(POP)(biq)][PF6] 0.5Et2O was determined and compared to that [...] Read more.
The preparation and characterization of [Cu(POP)(biq)][PF6] and [Cu(xantphos)(biq)][PF6] are reported (biq = 1,1′-biisoquinoline, POP = bis(2-(diphenylphosphanyl)phenyl)ether, and xantphos = (9,9-dimethyl-9H-xanthene-4,5-diyl)bis(diphenylphosphane). The single crystal structure of [Cu(POP)(biq)][PF6] 0.5Et2O was determined and compared to that in three salts of [Cu(POP)(bq)]+ in which bq = 2,2′-biquinoline. The P–C–P angle is 114.456(19)o in [Cu(POP)(biq)]+ compared to a range of 118.29(3)–119.60(3)o [Cu(POP)(bq)]+. There is a change from an intra-POP PPh2-phenyl/(C6H4)2O-arene π-stacking in [Cu(POP)(biq)]+ to a π-stacking contact between the POP and bq ligands in [Cu(POP)(bq)]+. In solution and at ambient temperatures, the [Cu(POP)(biq)][PF6]+ and [Cu(xantphos)(biq)]+ cations undergo several concurrent dynamic processes, as evidenced in their multinuclear NMR spectra. The photophysical and electrochemical behaviors of the heteroleptic copper (I) complexes were investigated, and the effects of changing from bq to biq are described. Short Cu···O distances within the [Cu(POP)(biq)]+ and [Cu(xantphos)(biq)]+ cations may contribute to their very low photoluminescent quantum yields. Full article
(This article belongs to the Special Issue Self-Assembled Complexes: “Love at First Sight”)
Show Figures

Graphical abstract

17 pages, 3850 KiB  
Article
Desymmetrizing Heteroleptic [Cu(P^P)(N^N)][PF6] Compounds: Effects on Structural and Photophysical Properties, and Solution Dynamic Behavior
by Marco Meyer, Fabian Brunner, Alessandro Prescimone, Edwin C. Constable and Catherine E. Housecroft
Molecules 2021, 26(1), 125; https://doi.org/10.3390/molecules26010125 - 29 Dec 2020
Cited by 10 | Viewed by 2651
Abstract
The preparation, characterization and electrochemical and photophysical properties of a series of desymmetrized heteroleptic [Cu(P^P)(N^N)][PF6] compounds are reported. The complexes incorporate the chelating P^P ligands bis(2-(diphenylphosphanyl)phenyl)ether (POP) and (9,9-dimethyl-9H-xanthene-4,5-diyl)bis(diphenylphosphane) (xantphos), and 6-substituted 2,2′-bipyridine (bpy) derivatives with functional groups attached [...] Read more.
The preparation, characterization and electrochemical and photophysical properties of a series of desymmetrized heteroleptic [Cu(P^P)(N^N)][PF6] compounds are reported. The complexes incorporate the chelating P^P ligands bis(2-(diphenylphosphanyl)phenyl)ether (POP) and (9,9-dimethyl-9H-xanthene-4,5-diyl)bis(diphenylphosphane) (xantphos), and 6-substituted 2,2′-bipyridine (bpy) derivatives with functional groups attached by –(CH2)n– spacers: 6-(2,2′-bipyridin-6-yl)hexanoic acid (1), 6-(5-phenylpentyl)-2,2′-bipyridine (2) and 6-[2-(4-phenyl-1H-1,2,3,triazol-1-yl)ethyl]-2,2′-bipyridine (3). [Cu(POP)(1)][PF6], [Cu(xantphos)(1)][PF6], [Cu(POP)(2)][PF6], [Cu(xantphos)(2)][PF6], and [Cu(xantphos)(3)][PF6] have been characterized in solution using multinuclear NMR spectroscopy, and the single crystal structure of [Cu(xantphos)(3)][PF6].0.5Et2O was determined. The conformation of the 6-[2-(4-phenyl-1H-1,2,3,triazol-1-yl)ethyl]-substituent in the [Cu(xantphos)(3)]+ cation is such that the α- and β-CH2 units reside in the xanthene ‘bowl’ of the xantphos ligand. The 6-substituent desymmetrizes the structure of the [Cu(P^P)(N^N)]+ cation and this has consequences for the interpretation of the solution NMR spectra of the five complexes. The NOESY spectra and EXSY cross-peaks provide insight into the dynamic processes operating in the different compounds. For powdered samples, emission maxima are in the range 542–555 nm and photoluminescence quantum yields (PLQYs) lie in the range 13–28%, and a comparison of PLQYs and decay lifetimes with those of [Cu(xantphos)(6-Mebpy)][PF6] indicate that the introduction of the 6-substituent is not detrimental in terms of the photophysical properties. Full article
Show Figures

Graphical abstract

15 pages, 5351 KiB  
Article
Positional Isomerism in the N^N Ligand: How Much Difference Does a Methyl Group Make in [Cu(P^P)(N^N)]+ Complexes?
by Fabian Brunner, Alessandro Prescimone, Edwin C. Constable and Catherine E. Housecroft
Molecules 2020, 25(12), 2760; https://doi.org/10.3390/molecules25122760 - 15 Jun 2020
Cited by 9 | Viewed by 2598
Abstract
The synthesis and structural characterization of 5,6′-dimethyl-2,2′-bipyridine (5,6′-Me2bpy) are reported, along with the preparations and characterizations of [Cu(POP)(5,6′-Me2bpy)][PF6] and [Cu(xantphos)(5,6′-Me2bpy)][PF6] (POP = bis(2-(diphenylphosphanyl)phenyl)ether, xantphos = 4,5-bis(diphenylphosphanyl)-9,9-dimethyl-9H-xanthene). Single-crystal X-ray structure determinations of [...] Read more.
The synthesis and structural characterization of 5,6′-dimethyl-2,2′-bipyridine (5,6′-Me2bpy) are reported, along with the preparations and characterizations of [Cu(POP)(5,6′-Me2bpy)][PF6] and [Cu(xantphos)(5,6′-Me2bpy)][PF6] (POP = bis(2-(diphenylphosphanyl)phenyl)ether, xantphos = 4,5-bis(diphenylphosphanyl)-9,9-dimethyl-9H-xanthene). Single-crystal X-ray structure determinations of [Cu(POP)(5,6′-Me2bpy)][PF6] and [Cu(xantphos)(5,6′-Me2bpy)][PF6] confirmed distorted tetrahedral copper(I) coordination environments with the 5-methylpyridine ring of 5,6′-Me2bpy directed towards the (C6H4)2O unit of POP or the xanthene unit of xantphos. In the xantphos case, this preference may be attributed to C–H…π interactions involving both the 6-CH unit and the 5-methyl substituent in the 5-methylpyridine ring and the arene rings of the xanthene unit. 1H NMR spectroscopic data indicate that this ligand orientation is also preferred in solution. In solution and the solid state, [Cu(POP)(5,6′-Me2bpy)][PF6] and [Cu(xantphos)(5,6′-Me2bpy)][PF6] are yellow emitters, and, for powdered samples, photoluminescence quantum yields (PLQYs) are 12 and 11%, respectively, and excited-state lifetimes are 5 and 6 μs, respectively. These values are lower than PLQY and τ values for [Cu(POP)(6,6′-Me2bpy)][PF6] and [Cu(xantphos)(6,6′-Me2bpy)][PF6], and the investigation points to the 6,6′-dimethyl substitution pattern in the bpy ligand being critical for enhancement of the PLQY. Full article
(This article belongs to the Special Issue Advances in Coordination Chemistry)
Show Figures

Graphical abstract

13 pages, 2631 KiB  
Article
Chimera Diimine Ligands in Emissive [Cu(P^P)(N^N)][PF6] Complexes
by Marco Meyer, Fabian Brunner, Alessandro Prescimone, Edwin C. Constable and Catherine E. Housecroft
Inorganics 2020, 8(5), 33; https://doi.org/10.3390/inorganics8050033 - 12 May 2020
Cited by 6 | Viewed by 3617
Abstract
The syntheses and characterizations of the chelating ligand 6-chloro-6′-methyl-2,2′-bipyridine (6-Cl-6′-Mebpy) and of the copper(I) compounds [Cu(POP)(6-Cl-6′-Mebpy)][PF6] and [Cu(xantphos)(6-Cl-6′-Mebpy)][PF6] (POP = bis(2-(diphenylphosphanyl)phenyl)ether and xantphos = 4,5-bis(diphenylphosphanyl)-9,9-dimethyl-9H-xanthene) are described. The single crystal structures of both complexes were determined; the [...] Read more.
The syntheses and characterizations of the chelating ligand 6-chloro-6′-methyl-2,2′-bipyridine (6-Cl-6′-Mebpy) and of the copper(I) compounds [Cu(POP)(6-Cl-6′-Mebpy)][PF6] and [Cu(xantphos)(6-Cl-6′-Mebpy)][PF6] (POP = bis(2-(diphenylphosphanyl)phenyl)ether and xantphos = 4,5-bis(diphenylphosphanyl)-9,9-dimethyl-9H-xanthene) are described. The single crystal structures of both complexes were determined; the copper(I) ion is in a distorted tetrahedral environment and in [Cu(xantphos)(6-Cl-6′-Mebpy)][PF6], the disorder of the 6-Cl-6′-Mebpy ligand indicates there is no preference of the ‘bowl’-like cavity of the xanthene unit to host either the methyl or chloro-substituent, consistent with comparable steric effects of the two groups. The electrochemical and photophysical properties of [Cu(POP)(6-Cl-6′-Mebpy)][PF6] and [Cu(xantphos)(6-Cl-6′-Mebpy)][PF6] were investigated and are compared with those of the related compounds containing 6,6′-dichloro-2,2′-bipyridine or 6,6′-dimethyl-2,2′-bipyridine ligands. Trends in properties of the [Cu(P^P)(N^N)]+ complexes were consistent with 6-Cl-6′-Mebpy behaving as a combination of the two parent ligands. Full article
Show Figures

Graphical abstract

17 pages, 4153 KiB  
Article
Extended π-Systems in Diimine Ligands in [Cu(P^P)(N^N)][PF6] Complexes: From 2,2′-Bipyridine to 2-(Pyridin-2-yl)Quinoline
by Sarah Keller, Murat Alkan-Zambada, Alessandro Prescimone, Edwin C. Constable and Catherine E. Housecroft
Crystals 2020, 10(4), 255; https://doi.org/10.3390/cryst10040255 - 27 Mar 2020
Cited by 20 | Viewed by 4030
Abstract
We describe the synthesis and characterization of [Cu(POP)(1)][PF6], [Cu(POP)(2)][PF6], [Cu(xantphos)(1)][PF6], and [Cu(xantphos)(2)][PF6] in which ligands 1 and 2 are 2-(pyridin-2-yl)quinoline and 2-(6-methylpyridin-2-yl)quinoline, respectively. With 2,2'-bipyridine (bpy) as [...] Read more.
We describe the synthesis and characterization of [Cu(POP)(1)][PF6], [Cu(POP)(2)][PF6], [Cu(xantphos)(1)][PF6], and [Cu(xantphos)(2)][PF6] in which ligands 1 and 2 are 2-(pyridin-2-yl)quinoline and 2-(6-methylpyridin-2-yl)quinoline, respectively. With 2,2'-bipyridine (bpy) as a benchmark, we assess the impact of the extended π-system on structural and solid-state photophysical properties. The single crystal structures of [Cu(POP)(2)][PF6], [Cu(xantphos)(1)][PF6], and [Cu(xantphos)(2)][PF6] were determined and confirmed a distorted tetrahedral copper(I) coordination environment in each [Cu(P^P)(N^N)]+ cation. The xanthene unit in [Cu(xantphos)(1)][PF6] and [Cu(xantphos)(2)][PF6] hosts the quinoline unit of 1, and the 6-methylpyridine group of 2. 1H NMR spectroscopic data indicate that these different ligand orientations are also observed in acetone solution. In their crystal structures, the [Cu(POP)(2)]+, [Cu(xantphos)(1)]+, and [Cu(xantphos)(2)]+ cations exhibit different edge-to-face and face-to-face π-interactions, but in all cases, the copper(I) centre is effectively protected by a ligand sheath. In [Cu(POP)(2)][PF6], pairs of cations engage in an efficient face-to-face π-stacking embrace, and we suggest that this may contribute to this compound having the highest photoluminescence quantum yield (PLQY = 21%) of the series. With reference to data from the Cambridge Structural Database, we compare packing effects and PLQY data for the complexes incorporating 2-(pyridin-2-yl)quinoline and 2-(6-methylpyridin-2-yl)quinoline, with those of the benchmark bpy-containing compounds. We also assess the effect that Cu⋯O distances in the {Cu(POP)} and {Cu(xantphos)} domains of [Cu(P^P)(N^N)][X] compounds have on solid-state PLQY values. Full article
Show Figures

Graphical abstract

16 pages, 4365 KiB  
Article
Intra-Cation versus Inter-Cation π-Contacts in [Cu(P^P)(N^N)][PF6] Complexes
by Francesca Mazzeo, Fabian Brunner, Alessandro Prescimone, Edwin C. Constable and Catherine E. Housecroft
Crystals 2020, 10(1), 1; https://doi.org/10.3390/cryst10010001 - 18 Dec 2019
Cited by 10 | Viewed by 3251
Abstract
A series of [Cu(POP)(N^N][PF6] and [Cu(xantphos)(N^N][PF6] compounds has been prepared and characterized in which POP = bis[2-(diphenylphosphanyl)phenyl]ether (IUPAC PIN oxydi(2,1-phenylene)bis(diphenylphosphane), xantphos = 4,5-bis(diphenylphosphanyl)-9,9-dimethyl-9H-xanthene (IUPAC PIN (9,9-dimethyl-9H-xanthene- 4,5-diyl)bis(diphenylphosphane)) and the N^N ligands are 4-(4-bromophenyl)-6,6′-dimethyl-2,2′- bipyridine ( [...] Read more.
A series of [Cu(POP)(N^N][PF6] and [Cu(xantphos)(N^N][PF6] compounds has been prepared and characterized in which POP = bis[2-(diphenylphosphanyl)phenyl]ether (IUPAC PIN oxydi(2,1-phenylene)bis(diphenylphosphane), xantphos = 4,5-bis(diphenylphosphanyl)-9,9-dimethyl-9H-xanthene (IUPAC PIN (9,9-dimethyl-9H-xanthene- 4,5-diyl)bis(diphenylphosphane)) and the N^N ligands are 4-(4-bromophenyl)-6,6′-dimethyl-2,2′- bipyridine (1), 5,5′-bis(3-methoxyphenyl)-6-methyl-2,2′-bipyridine (2), and 6-benzyl-2,2′-bipyridine (3). The single crystal structures of [Cu(xantphos)(1)][PF6]·CH2Cl2, [Cu(xantphos)(2)][PF6]·CH2Cl2 and [Cu(POP)(3)][PF6]·0.5H2O were determined by X-ray diffraction. Each complex contains a copper(I) ion in a distorted tetrahedral environment with chelating N^N and P^P ligands. In the [Cu(xantphos)(1)]+ and [Cu(xantphos)(2)]+ cations, there are face-to-face π-stackings of bpy and PPh2 phenyl rings (i.e., between the ligands); in addition in [Cu(xantphos)(2)][PF6]·CH2Cl2, inter-cation π-embraces lead to the formation of infinite chains as a primary packing motif. In [Cu(POP)(3)][PF6]·0.5H2O, centrosymmetric pairs of [Cu(POP)(3)]+ cations engage in C–H…π (phenyl to bpy) and offset face-to-face (bpy…bpy) contacts. The electrochemical and photophysical properties of the compounds containing ligands 1 and 2 are reported. They are green or yellow emitters in the solid-state (λem in the range 535–577 nm) with values for the photoluminescence quantum yield (PLQY) in the range 19%–41%. Full article
(This article belongs to the Special Issue Structural Characterization of Metallic Complexes)
Show Figures

Graphical abstract

15 pages, 5081 KiB  
Article
Softening the Donor-Set: From [Cu(P^P)(N^N)][PF6] to [Cu(P^P)(N^S)][PF6]
by Isaak Nohara, Alessandro Prescimone, Catherine E. Housecroft and Edwin C. Constable
Inorganics 2019, 7(1), 11; https://doi.org/10.3390/inorganics7010011 - 18 Jan 2019
Cited by 3 | Viewed by 3816
Abstract
We report the synthesis and characterization of [Cu(P^P)(N^S)][PF6] complexes with P^P = bis(2-(diphenylphosphino)phenyl) ether (POP) or 4,5-bis(diphenylphosphino)-9,9- dimethylxanthene (xantphos) and N^S = 2-(iso-propylthio)pyridine (iPrSpy) or 2-(tert-butylthio)pyridine (tBuSpy). The single crystal structures of [Cu(POP)( [...] Read more.
We report the synthesis and characterization of [Cu(P^P)(N^S)][PF6] complexes with P^P = bis(2-(diphenylphosphino)phenyl) ether (POP) or 4,5-bis(diphenylphosphino)-9,9- dimethylxanthene (xantphos) and N^S = 2-(iso-propylthio)pyridine (iPrSpy) or 2-(tert-butylthio)pyridine (tBuSpy). The single crystal structures of [Cu(POP)(iPrSPy)][PF6] and [Cu(POP)(tBuSPy)][PF6] have been determined and confirm a distorted tetrahedral copper(I) centre and chelating P^P and N^S ligands in each complex. Variable temperature (VT) 1H and 31P{1H} NMR spectroscopy reveals dynamic behavior with motion of the POP backbone in [Cu(POP)(iPrSPy)][PF6] and [Cu(POP)(tBuSPy)][PF6] frozen out at 238 K. VT NMR spectroscopic data including EXSY peaks in the ROESY spectrum of [Cu(xantphos)(tBuSPy)][PF6] at 198 K reveal that two conformers exist in an approximate ratio of 5:1. Replacing bpy by the N^S ligands shifts the Cu+/Cu2+ oxidation to a higher potential. The copper(I) compounds are weak emitters in the solid state with PLQY values of <2%. These values are similar to those for [Cu(POP)(bpy)][PF6] and [Cu(xantphos)(bpy)][PF6] in the solid state. Full article
(This article belongs to the Special Issue Novel Ligand Design in Coordination Compounds)
Show Figures

Graphical abstract

9 pages, 1023 KiB  
Review
Organophosphines in Cis-PtP2CCl Derivatives Structural Aspects
by Milan Melnik, Peter Mikus and Clive Edward Holloway
Symmetry 2018, 10(3), 56; https://doi.org/10.3390/sym10030056 - 28 Feb 2018
Viewed by 3187
Abstract
This manuscript summarizes and analyzes X-ray data of monomeric cis-PtP2CCl derivatives. These complexes crystallize in the following crystal systems: tetragonal, P42/n (3), triclinic, Pī (10), orthorhombic, P212121 (prevails)(16), and monoclinic, P21/c (prevails) [...] Read more.
This manuscript summarizes and analyzes X-ray data of monomeric cis-PtP2CCl derivatives. These complexes crystallize in the following crystal systems: tetragonal, P42/n (3), triclinic, Pī (10), orthorhombic, P212121 (prevails)(16), and monoclinic, P21/c (prevails) (36) examples. There are three sub-groups of the respective complexes: Pt(η1-PL)21-CL)(η1-Cl); Pt(η2-P2L)(η1-CL)(η1-Cl) and Pt(η1-PL)(η2-P,CL)(η1-Cl). The chelating P,P-donor ligands form: four-(POP, PCP), five-(PC2P), six-(PC3P, PCNCP), seven-(PC4P) and even ten-(PCNCNCNCP) membered rings. The chelating P.C-donor ligands create three-(PC), four-(PCC) and five-(PC2C) membered rings. The mean Pt-L bond distance elongates in the sequence: 2.10 Å (C, trans to P) < 2.222 Å (P, trans to Cl) < 2.312 Å (P, trans to C) < 2.360 Å (Cl, trans to P). There are examples which exist in two isomeric forms, of the distortion isomer type. Full article
(This article belongs to the Special Issue Symmetry in Coordination Chemistry)
Show Figures

Graphical abstract

10 pages, 499 KiB  
Article
Novel Countercation in MMX-Type Mixed-Valence Chain Compound: Coexistence of Neutral and Protonated Amino Substituents
by Hiroaki Iguchi, Deli Jiang, Jimin Xie, Shinya Takaishi and Masahiro Yamashita
Polymers 2011, 3(4), 1652-1661; https://doi.org/10.3390/polym3041652 - 6 Oct 2011
Cited by 6 | Viewed by 7005
Abstract
The first MMX-type quasi-one-dimensional (Q1D) Pt chain complex (MMX chain) that contains a mono-protonated diamine as countercation, {o-(H3NC6H4NH2)}4[Pt2(pop)4I]·H2O (pop = P2H2O [...] Read more.
The first MMX-type quasi-one-dimensional (Q1D) Pt chain complex (MMX chain) that contains a mono-protonated diamine as countercation, {o-(H3NC6H4NH2)}4[Pt2(pop)4I]·H2O (pop = P2H2O52–), was synthesized. According to the crystal structural analysis, –NH2 group was hydrogen-bonded to either lattice H2O molecule or –NH3+ group in addition to typical hydrogen bond between –NH3+ group and pop ligand. To control the partial deprotonation of the countercation will be an important method for achieving the high-conductive MMX-chain polymer by the hole doping. Full article
(This article belongs to the Special Issue Coordination Polymers)
Show Figures

Graphical abstract

Back to TopTop