Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (210)

Search Parameters:
Keywords = PM10 chemical components

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5004 KiB  
Article
Local Emissions Drive Summer PM2.5 Pollution Under Adverse Meteorological Conditions: A Quantitative Case Study in Suzhou, Yangtze River Delta
by Minyan Wu, Ningning Cai, Jiong Fang, Ling Huang, Xurong Shi, Yezheng Wu, Li Li and Hongbing Qin
Atmosphere 2025, 16(7), 867; https://doi.org/10.3390/atmos16070867 - 16 Jul 2025
Viewed by 323
Abstract
Accurately identifying the sources of fine particulate matter (PM2.5) pollution is crucial for pollution control and public health protection. Taking the PM2.5 pollution event that occurred in Suzhou in June 2023 as a typical case, this study analyzed the characteristics [...] Read more.
Accurately identifying the sources of fine particulate matter (PM2.5) pollution is crucial for pollution control and public health protection. Taking the PM2.5 pollution event that occurred in Suzhou in June 2023 as a typical case, this study analyzed the characteristics and components of PM2.5, and quantified the contributions of meteorological conditions, regional transport, and local emissions to the summertime PM2.5 surge in a typical Yangtze River Delta (YRD) city. Chemical composition analysis highlighted a sharp increase in nitrate ions (NO3, contributing up to 49% during peak pollution), with calcium ion (Ca2+) and sulfate ion (SO42−) concentrations rising to 2 times and 7.5 times those of clean periods, respectively. Results from the random forest model demonstrated that emission sources (74%) dominated this pollution episode, significantly surpassing the meteorological contribution (26%). The Weather Research and Forecasting model combined with the Community Multiscale Air Quality model (WRF–CMAQ) further revealed that local emissions contributed the most to PM2.5 concentrations in Suzhou (46.3%), while external transport primarily originated from upwind cities such as Shanghai and Jiaxing. The findings indicate synergistic effects from dust sources, industrial emissions, and mobile sources. Validation using electricity consumption and key enterprise emission data confirmed that intensive local industrial activities exacerbated PM2.5 accumulation. Recommendations include strengthening regulations on local industrial and mobile source emissions, and enhancing regional joint prevention and control mechanisms to mitigate cross-boundary transport impacts. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

17 pages, 3983 KiB  
Article
Reduced Precipitation Alters Soil Nutrient Dynamics by Regulating the Chemical Properties of Deadwood Substrates
by Laicong Luo, Xi Yuan, Chunsheng Wu, Dehuan Zong, Xueying Zhong, Kang Lin, Long Li, Bingxu Yang, Xuejiao Han, Chao Luo, Wenping Deng, Shijie Li and Yuanqiu Liu
Forests 2025, 16(7), 1112; https://doi.org/10.3390/f16071112 - 4 Jul 2025
Viewed by 242
Abstract
Global climate change has intensified the heterogeneity of precipitation regimes in subtropical regions, and the increasing frequency of extreme drought events poses a significant threat to biogeochemical cycling in forest ecosystems. Yet, the pathways by which reduced precipitation regulates deadwood decomposition and thereby [...] Read more.
Global climate change has intensified the heterogeneity of precipitation regimes in subtropical regions, and the increasing frequency of extreme drought events poses a significant threat to biogeochemical cycling in forest ecosystems. Yet, the pathways by which reduced precipitation regulates deadwood decomposition and thereby influences soil nutrient pools remain poorly resolved. Here, we investigated a Cunninghamia lanceolata (Lamb.) Hook. plantation in subtropical China under ambient precipitation (CK) and precipitation reduction treatments of 30%, 50%, and 80%, systematically examining how reduced precipitation alters the chemical properties of deadwood substrates and, in turn, soil nutrient status. Our findings reveal that (1) as precipitation declined, soil water content decreased significantly (p < 0.01), while deadwood pH declined and total organic carbon (TOC), nonstructural carbohydrates (NSCs), and lignin content markedly accumulated (p < 0.01); (2) these shifts in deadwood chemistry affected feedback mechanisms, leading to the suppression of soil nutrient pools: extreme drought (80% reduction) significantly reduced soil TOC, dissolved organic carbon (DOC), total nitrogen (TN), and total phosphorus (TP) (p < 0.01) and inhibited N and P mineralization, whereas the 30% reduction treatment elicited a transient increase in soil microbial biomass carbon (MBC), indicative of microbial acclimation to mild water stress; and (3) principal component analysis (PCA) showed that the 80% reduction treatment drove lignin accumulation in deadwood, while the 30% reduction treatment exerted the greatest influence on soil DOC, TOC, and MBC; partial least squares path modeling (PLS-PM) further demonstrated that soil water content and deadwood substrate properties (pH, lignin, soluble sugars, TOC, C/N, and lignin/N) were strongly negatively correlated (r = −0.9051, p < 0.01), and that deadwood chemistry was, in turn, negatively correlated with soil nutrient variables (pH, TOC, DOC, MBC, TP, TN, and dissolved organic nitrogen [DON]; r = −0.8056, p < 0.01). Together, these results indicate that precipitation reduction—by drying soils—profoundly modifies deadwood chemical composition (lignin accumulation and NSC retention) and thereby, via slowed organic-matter mineralization, constrains soil nutrient release and accumulation. This work provides a mechanistic framework for understanding forest carbon–nitrogen cycling under climate change. Full article
(This article belongs to the Special Issue Deadwood Decomposition and Its Impact on Forest Soil)
Show Figures

Figure 1

34 pages, 776 KiB  
Review
Pathways to the Brain: Impact of Fine Particulate Matter Components on the Central Nervous System
by Yasuhiro Ishihara, Miki Tanaka, Naoyuki Nezu, Nami Ishihara, Ami Oguro and Christoph F. A. Vogel
Antioxidants 2025, 14(6), 730; https://doi.org/10.3390/antiox14060730 - 14 Jun 2025
Viewed by 706
Abstract
Fine particulate matter with an aerodynamic diameter ≤ 2.5 µm (PM2.5) has been extensively studied due to its adverse health effects. Most research has focused on its impact on the respiratory system; however, increasing attention is being directed toward its effects [...] Read more.
Fine particulate matter with an aerodynamic diameter ≤ 2.5 µm (PM2.5) has been extensively studied due to its adverse health effects. Most research has focused on its impact on the respiratory system; however, increasing attention is being directed toward its effects on the brain. Associations between air pollution and neurological disorders—such as Alzheimer’s disease, cerebral infarction, and autism spectrum disorder—have been reported, with mechanism-based studies in animal models providing further insights. PM2.5 comprises a complex mixture of thousands of chemical constituents. To elucidate its neurotoxicity mechanisms, it is essential to investigate both its transport pathways to the brain and the specific actions of its individual components. This review highlights key PM2.5 components—water-soluble ions, metals, carbonaceous particles, polycyclic aromatic hydrocarbons, quinones, plastics, and bioaerosols—and outlines their potential routes of entry into the central nervous system, along with their associated mechanisms of action. By integrating these findings, this review contributes to a deeper understanding of the neurological effects mediated by PM2.5, which represent one of the most critical aspects of its health impact. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

16 pages, 8279 KiB  
Article
An Endocrine-Disrupting Chemical, Bisphenol A Diglycidyl Ether (BADGE), Accelerates Neuritogenesis and Outgrowth of Cortical Neurons via the G-Protein-Coupled Estrogen Receptor
by Ikuko Miyazaki, Chiharu Nishiyama, Takeru Nagoshi, Akane Miyako, Suzuka Ono, Ichika Misawa, Aika Isse, Kana Tomimoto, Kaori Masai, Kazumasa Zensho and Masato Asanuma
NeuroSci 2025, 6(2), 53; https://doi.org/10.3390/neurosci6020053 - 6 Jun 2025
Viewed by 574
Abstract
Bisphenol A diglycidyl ether (BADGE) is the main component of epoxy resin and is used for the inner coating of canned foods and plastic food containers. BADGE can easily migrate from containers and result in food contamination; the compound is known as an [...] Read more.
Bisphenol A diglycidyl ether (BADGE) is the main component of epoxy resin and is used for the inner coating of canned foods and plastic food containers. BADGE can easily migrate from containers and result in food contamination; the compound is known as an endocrine-disrupting chemical. We previously reported that maternal exposure to bisphenol A bis (2,3-dihydroxypropyl) ether (BADGE·2H2O), which is the most detected BADGE derivative not only in canned foods but also in human specimens, during gestation and lactation, could accelerate neuronal differentiation in the cortex of fetuses and induce anxiety-like behavior in juvenile mice. In this study, we investigated the effects of low-dose BADGE·2H2O (1–100 pM) treatment on neurites and the mechanism of neurite outgrowth in cortical neurons. BADGE·2H2O exposure significantly increased the number of dendrites and neurite length in cortical neurons; these accelerating effects were inhibited by estrogen receptor (ER) antagonist ICI 182,780 and G-protein-coupled estrogen receptor (GPER) antagonist G15. BADGE·2H2O down-regulated Hes1 expression, which is a transcriptional repressor, and increased levels of neuritogenic factor neurogenin-3 (Ngn3) in the cortical neurons; the changes were significantly blocked by G15. These data suggest that direct BADGE·2H2O exposure can accelerate neuritogenesis and outgrowth in cortical neurons through down-regulation of Hes1 and by increasing Ngn3 levels through ERs, particularly GPER. Full article
Show Figures

Graphical abstract

11 pages, 1217 KiB  
Article
Molecular Characterization of Organic Aerosol in Summer Suburban Shanghai Under High Humidity
by Xiancheng Tang, Junfang Mao, Dongmei Cai, Zhiwei Zhang, Haixin Nong, Ling Li and Jianmin Chen
Atmosphere 2025, 16(6), 659; https://doi.org/10.3390/atmos16060659 - 30 May 2025
Viewed by 372
Abstract
In this study, the chemical compositions of PM2.5 (particulate matter < 2.5 μm) and the molecular compositions of methanol-soluble organic carbon (MSOC) in suburban Shanghai during summer were measured to investigate the molecular characteristics of organic aerosol (OA) under high humidity. Diurnal [...] Read more.
In this study, the chemical compositions of PM2.5 (particulate matter < 2.5 μm) and the molecular compositions of methanol-soluble organic carbon (MSOC) in suburban Shanghai during summer were measured to investigate the molecular characteristics of organic aerosol (OA) under high humidity. Diurnal variation analysis reveals the influence of relative humidity (RH) on secondary organic aerosol (SOA) components. Organosulfates (OSs), particularly nitrooxy-OSs, exhibit a positive correlation with increasing humidity rather than atmospheric oxidants in this high-humidity site. This suggests that high RH can promote the formation of OSs, possibly through enhancing particle surface area and volume, and creating a favorable environment for aqueous-phase or heterogeneous reactions in the particle phase. A considerable proportion of CHOS compounds may be derived from anthropogenic aliphatic hydrocarbon derivatives. These compounds exhibit slightly elevated daytime concentrations due to increased emissions of long-chain aliphatics from sources such as diesel combustion, as well as photochemically enhanced oxidation to OSs. In contrast, CHONS compounds increased at night, driven by high-humidity liquid-phase oxidation. Terpenoid derivatives accounted for 13.4% of MSOC and contributed over 40% to nighttime CHONS. These findings highlight humidity’s important role in driving daytime and nighttime processing of anthropogenic and biogenic precursors to form SOA, even under low SO2 and NOx conditions. Full article
(This article belongs to the Section Aerosols)
Show Figures

Figure 1

20 pages, 2087 KiB  
Article
Analysis of Chemical Composition and Sources of PM10 in the Southern Gateway of Beijing
by Yu Qu, Juan Yang, Xingang Liu, Yong Chen, Haiyan Ran, Junling An and Fanyeqi Yang
Atmosphere 2025, 16(6), 656; https://doi.org/10.3390/atmos16060656 - 29 May 2025
Viewed by 546
Abstract
PM10 samples were collected at an urban site of Zhuozhou, the southern gateway of Beijing, from 28 December 2021 to 29 January 2022, in order to explore the chemical composition, sources and physical and chemical formation processes of prominent components. The results [...] Read more.
PM10 samples were collected at an urban site of Zhuozhou, the southern gateway of Beijing, from 28 December 2021 to 29 January 2022, in order to explore the chemical composition, sources and physical and chemical formation processes of prominent components. The results showed that five trace elements (Mn, Cu, As, Zn and Pb) had high enrichment in PM10 and were closely related with anthropogenic combustion and vehicle emissions; organic and element carbon had a high correlation due to the same primary sources and similar evolution; nitrate dominated SNA (sulfate, nitrate, ammonium) and nitrate/sulfate ratios reached 2.35 on the polluted days owing to the significant contribution of motor vehicle emissions. Positive matrix factorization analysis indicated that secondary source, traffic, biomass burning, industry, coal combustion and crustal dust were the main sources of PM10, contributing 32.5%, 20.9%, 15.0%, 13.9%, 9.4% and 8.3%, respectively; backward trajectories and potential source contribution function analysis showed that short-distance airflow was the dominant cluster and accounted for nearly 50% of total trajectories. The Weather Research and Forecasting model with Chemistry, with integrated process rate analysis, showed that dominant gas-phase reactions (heterogeneous reaction) during daytime (nighttime) in presence of ammonia led to a significant enhancement of nitrate in Zhuozhou, contributing 12.6 μg/m3 in episode 1 and 22.9 μg/m3 in episode 2. Full article
(This article belongs to the Section Aerosols)
Show Figures

Figure 1

25 pages, 3745 KiB  
Article
Optical Properties and Molecular Composition of Fine Organic Aerosols in Nanjing, China: A Comparison of 2019 and 2023
by Binhuang Zhou, Yu Huang, Liangyu Feng, Zihao Zhang, Haiwei Li, Yun Wu, Jianhuai Ye and Xinlei Ge
Toxics 2025, 13(6), 443; https://doi.org/10.3390/toxics13060443 - 27 May 2025
Viewed by 516
Abstract
Optical properties and chemical composition of atmospheric fine particles (PM2.5) are critical to their environmental and health effects. In this study, we analyzed the organic aerosols (OA) in PM2.5 samples in Nanjing, China, collected during the summer and winter of [...] Read more.
Optical properties and chemical composition of atmospheric fine particles (PM2.5) are critical to their environmental and health effects. In this study, we analyzed the organic aerosols (OA) in PM2.5 samples in Nanjing, China, collected during the summer and winter of 2019 and 2023. Results show a decline in both concentrations and light-absorbing abilities of methanol—soluble organic carbon (MSOC) and water-soluble OC (WSOC) in OA from 2019 to 2023. Due to increased combustion activities, MSOC and WSOC concentrations, and their corresponding mass absorption efficiencies were all higher in winter than in summer. Furthermore, fluorescence indices suggest that OA in Nanjing was influenced by a mix of microbial/biogenic sources. Fluorescent properties of both WSOC and MSOC were dominated by humic-like components but the remaining contribution from protein-like components was more significant in MSOC. The molecular composition of OA did not show a remarkable difference between 2019 and 2023. Overall, CHON compounds were the most abundant species, followed by CHO and CHN compounds, and aliphatic compounds dominated all molecular types except for CHN (in positive mode) and CHON, CHOS (in negative mode). Regarding the OA sources, the numbers of molecules from fossil fuel combustion and biomass burning (BB) were a bit more in 2023 than in 2019, and signal intensities of BB-related molecules were also higher in winter than in summer; the presence of organosulfates indicate the contribution of aqueous-phase oxidation to OA, especially during high relative humidity conditions. At last, correlations between OA molecules and light absorption efficiencies indicate that the key light-absorbing species in winter and summer were likely quite different despite similar chemical compositions, and in summer, CH and CHN compounds were important to light absorption, whereas CHNS compounds became more important in winter. Full article
(This article belongs to the Special Issue Source and Components Analysis of Aerosols in Air Pollution)
Show Figures

Graphical abstract

20 pages, 13076 KiB  
Article
Enhancement of a Magnetically Controlled Cathodic Arc Source for the Deposition of Multi-Component Hard Nitride Coatings
by Van-Tien Tang, Yin-Yu Chang and Yi-Ru Chen
Materials 2025, 18(10), 2276; https://doi.org/10.3390/ma18102276 - 14 May 2025
Viewed by 599
Abstract
The creation of coatings by the cathodic arc evaporation method has outstanding advantages: these coatings are highly durable and wear-resistant, especially since the method has an intense ionization process and the atoms can penetrate deep into the surface substrates, resulting in excellent adhesion. [...] Read more.
The creation of coatings by the cathodic arc evaporation method has outstanding advantages: these coatings are highly durable and wear-resistant, especially since the method has an intense ionization process and the atoms can penetrate deep into the surface substrates, resulting in excellent adhesion. Furthermore, this approach provides precise control over the chemical composition and thickness of the coating, ensuring consistent quality across the entire surface. However, uneven evaporation and ejection of molten metal droplets from the cathode during cathode arc deposition produce particles and droplets, resulting in an uneven coating surface. This study presents a new design for a magnetically controlled cathode arc source to effectively reduce particles and droplets during the cathodic arc deposition of multi-component alloy targets for nitride-based hard coatings. The study compares the performance of a new source with a conventional magnetic-controlled arc source for depositing TiAlNbSiN and AlCrSiN films. In the conventional source, the magnetic field is generated by a permanent magnet (PM), whereas in the new source, it is generated and controlled using an electromagnet (EM). Both films are produced using multi-component alloy targets (TiAlNbSi and AlCrSi) with identical composition ratios. The plasma characteristics of the two different arc sources are investigated using an optical emission spectrometer (OES), and the surface morphology, structural characteristics, deposition rate, uniformity, and surface roughness (Sa) are examined using scanning electron microscopy (SEM). When the EM was applied to have high plasma density, the hardness of the TiAlNbSiN film deposited with the novel arc source measured 31.2 ± 1.9 GPa, which is higher than that of the PM arc source (28.3 ± 1.4 GPa). In contrast, the AlCrSiN film created using a typical arc source exhibited a hardness of only 25.5 ± 0.6 GPa. This lower hardness may be due to insufficient ion kinetic energy to enhance stress blocking and increase hardness, or the presence of the h-AlN phase in the film, which was not detected by XRD. The electromagnet arc source, with its adequate ion bombardment velocity, facilitated a complementary effect between grain growth and stress blocking, leading to a remarkable hardness of 32.6 ± 0.5 GPa. Full article
(This article belongs to the Special Issue Advancements in Thin Film Deposition Technologies)
Show Figures

Figure 1

22 pages, 25259 KiB  
Article
Spatial Modeling of Trace Element Concentrations in PM10 Using Generalized Additive Models (GAMs)
by Mariacarmela Cusano, Alessandra Gaeta, Raffaele Morelli, Giorgio Cattani, Silvia Canepari, Lorenzo Massimi and Gianluca Leone
Atmosphere 2025, 16(4), 464; https://doi.org/10.3390/atmos16040464 - 16 Apr 2025
Viewed by 507
Abstract
GAMs were implemented to evaluate the spatial variation in concentrations of 33 elements in PM10, in their water-soluble and insoluble fractions used as tracers for different emission sources. Data were collected during monitoring campaigns (November 2016–February 2018) in the Terni basin [...] Read more.
GAMs were implemented to evaluate the spatial variation in concentrations of 33 elements in PM10, in their water-soluble and insoluble fractions used as tracers for different emission sources. Data were collected during monitoring campaigns (November 2016–February 2018) in the Terni basin (an urban and industrial hotspot of Central Italy), using an innovative experimental approach based on high-spatial-resolution (23 sites, approximately 1 km apart) monthly samplings and the chemical characterization of PM10. For each element, a model was developed using monthly mean concentrations as the response variable. As covariates, the temporal predictors included meteorological parameters (temperature, relative humidity, wind speed and direction, irradiance, precipitation, planet boundary layer height), while the spatial predictors encompassed distances from major sources, road length, building heights, land use variables, imperviousness, and population. A stepwise procedure was followed to determine the model with the optimal set of covariates. A leave-one-out cross-validation method was used to estimate the prediction error. Statistical indicators (Adjusted R-Squared, RMSE, FAC2, FB) were used to evaluate the performance of the GAMs. The spatial distribution of the fitted values of PM10 and its elemental components, weighted over all sampling periods, was mapped at a resolution of 100 m. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

22 pages, 4687 KiB  
Article
Novel Insights into the Vertical Distribution Patterns of Multiple PM2.5 Components in a Super Mega-City: Responses to Pollution Control Strategies
by Yifan Song, Ting Yang, Ping Tian, Hongyi Li, Yutong Tian, Yining Tan, Yele Sun and Zifa Wang
Remote Sens. 2025, 17(7), 1151; https://doi.org/10.3390/rs17071151 - 24 Mar 2025
Viewed by 484
Abstract
The vertical profiles of PM2.5 chemical components are crucial for tracing pollution development, determining causes, and improving air quality. Yet, previous studies only yielded transient and sparse results due to technological limitations. Comprehensive analysis of component vertical distribution across an entire boundary [...] Read more.
The vertical profiles of PM2.5 chemical components are crucial for tracing pollution development, determining causes, and improving air quality. Yet, previous studies only yielded transient and sparse results due to technological limitations. Comprehensive analysis of component vertical distribution across an entire boundary layer remains challenging. Here, we provided a first-ever vertical–temporal continuous dataset of aerosol component concentrations, including sulfate (SO42−), ammonium (NH4+), nitrate (NO3), organic matter (OM), and black carbon (BC), using ground-based remote sensing retrieval. The retrieved dataset showed high correlations with in situ chemical observation, with all components exceeding 0.75 and some surpassing 0.90. Using the Beijing 2022 Winter Paralympics as an example, we observed distinct vertical patterns and responses to meteorology and emissions of different components under strictly controlled conditions. During the Paralympics, the emissions contribution (51.12%) surpassed meteorology (48.88%), except SO42− and NO3. Inorganics showed high-altitude transport features, while organics were surface-concentrated, with high-altitude inorganic(organic) concentrations 1.19(0.56) times higher than those near the surface. SO42− peaked at 919 m and 1516 m, NH4+ and NO3 showed an additional peak near 300–500 m, influenced by surface sources and secondary generation. The inorganics exhibited a transport-holding–sinking–resurging process, with NO3 reaching higher and sinking more. By contrast, organic components massified near 200 m, with a slight increase in high-altitude transport by time. The dispersion of all components driven by a north-westerly wind started 5 h earlier at high altitudes than near the surface, marking the end of the process. The insights gleaned highlight regional inorganic impacts and local organic impacts under the coupling of emission control and meteorology, thus offering helpful guidance for source attribution and targeted control policies. Full article
Show Figures

Figure 1

16 pages, 1442 KiB  
Article
Regional Differences in PM2.5 Chemical Composition and Inhalation Risk Assessment: A Case Study of Seoul, Incheon, and Wonju
by Seung-Hyun Jung, Seon-Ho Baek, Shin-Young Park, Cheol-Min Lee and Jung-Il Lee
Toxics 2025, 13(4), 240; https://doi.org/10.3390/toxics13040240 - 24 Mar 2025
Cited by 1 | Viewed by 786
Abstract
This study evaluates the chemical components of an aerodynamic diameter less than 2.5 μm (PM2.5) and its health risks in Seoul, Incheon, and Wonju, South Korea. The results revealed significant regional variations, particularly under the reasonable maximum exposure scenario, with Seoul’s [...] Read more.
This study evaluates the chemical components of an aerodynamic diameter less than 2.5 μm (PM2.5) and its health risks in Seoul, Incheon, and Wonju, South Korea. The results revealed significant regional variations, particularly under the reasonable maximum exposure scenario, with Seoul’s average daily dose (6.4 × 10−1 µg/kg/day) approximately 2 times higher than Incheon (5.8 × 10−1 µg/kg/day) and Wonju (3.2 × 10−1 µg/kg/day) under the central tendency exposure scenario. Furthermore, exposure to the chemical components comprising PM2.5 can surpass risk thresholds when PM2.5 concentrations exceed the national standard levels. These findings suggest the potential benefits of preventive measures, such as minimizing outdoor exposure, especially for individuals over 60 years of age, to help reduce health risks. However, further research is needed to confirm the effectiveness of these measures in different regions. The study also highlighted the variation in the health impacts of PM2.5 concentrations and its chemical components across the different regions. The results suggest that relying solely on PM2.5 concentrations for health risk assessments may underestimate the risks associated with carcinogenic components such as chromium (Cr, VI). However, under the reasonable maximum exposure (RME) scenario, the excess cancer risk (ECR) for Cr (VI) exceeds the acceptable threshold in all three regions, suggesting a high carcinogenic risk under the RME scenario. For example, the ECR for Cr(VI) in Seoul was calculated as 1.4 × 10−4, Incheon as 2.0 × 10−4, and Wonju as 1.2 × 10−4. Therefore, we emphasize the importance of incorporating both the mass concentration of PM2.5 and its chemical constituents when conducting health risk assessments to inform region-specific health policies to mitigate health risks, particularly for vulnerable populations. Full article
Show Figures

Graphical abstract

19 pages, 5144 KiB  
Article
Investigating the Role of Organic Aerosol Schemes in the Simulation of Atmospheric Particulate Matter in a Large Mediterranean Urban Agglomeration
by Anastasia Poupkou, Serafim Kontos, Natalia Liora, Dimitrios Tsiaousidis, Ioannis Kapsomenakis, Stavros Solomos, Eleni Liakakou, Eleni Athanasopoulou, Georgios Grivas, Aikaterini Bougiatioti, Kalliopi Petrinoli, Evangelia Diapouli, Vasiliki Vasilatou, Stefanos Papagiannis, Athena Progiou, Pavlos Kalabokas, Dimitrios Melas, Nikolaos Mihalopoulos, Evangelos Gerasopoulos, Konstantinos Eleftheriadis and Christos Zerefosadd Show full author list remove Hide full author list
Sustainability 2025, 17(6), 2619; https://doi.org/10.3390/su17062619 - 16 Mar 2025
Viewed by 1186
Abstract
Air quality simulations were performed for Athens (Greece) in ~1 km resolution applying the models WRF-CAMx for July and December 2019 with the secondary organic aerosol processor (SOAP) and volatility basis set (VBS) organic aerosol (OA) schemes. CAMx results were evaluated against particulate [...] Read more.
Air quality simulations were performed for Athens (Greece) in ~1 km resolution applying the models WRF-CAMx for July and December 2019 with the secondary organic aerosol processor (SOAP) and volatility basis set (VBS) organic aerosol (OA) schemes. CAMx results were evaluated against particulate matter (PM) and OA concentrations from the regulatory monitoring network and research monitoring sites (including PM2.5 low-cost sensors). The repartition of primary OA (POA) and secondary OA (SOA) by CAMx was compared with positive matrix factorization (PMF)-resolved OA components based on aerosol chemical speciation monitor (ACSM) measurements. In July, OA concentrations underestimation was decreased by up to 24% with VBS. In December, VBS introduced small negative biases or resulted in more pronounced (but moderate) underestimations of OA with respect to SOAP. CAMx performance for POA was much better than for SOA, while VBS decreased the overestimation of POA and the underestimation of SOA in both study periods. Despite the SOA concentrations increases by VBS, CAMx still considerably underestimated SOA (e.g., by 65% in July). Better representation of simulated OA concentrations in Athens could benefit by accounting for the missing cooking emissions, by improvements in the biomass burning emissions, or by detailed integration of processes related to OA chemical aging. Full article
(This article belongs to the Section Pollution Prevention, Mitigation and Sustainability)
Show Figures

Figure 1

19 pages, 5496 KiB  
Article
Boosting PMS Activation Through Fe3S4/WO3: The Essential Impact of WX and SX on Catalyst Activity and Regeneration Fe Active Sites for Efficient Pollutant Removal
by Zhao Wang, Jawad Ali, Ajmal Shahzad, Yanan Chen, Haiqing Ma, Qiao Huang, Lei Xie and Futang Xing
Catalysts 2025, 15(3), 230; https://doi.org/10.3390/catal15030230 - 27 Feb 2025
Viewed by 848
Abstract
Fe-based heterogeneous catalytic advanced oxidation processes show great potential for treating wastewater. However, catalyst instability often hinders their practical use, mainly due to the slow regeneration of Fe2+ sites. Herein, we developed a Fe3S4/WO3 catalyst, where the [...] Read more.
Fe-based heterogeneous catalytic advanced oxidation processes show great potential for treating wastewater. However, catalyst instability often hinders their practical use, mainly due to the slow regeneration of Fe2+ sites. Herein, we developed a Fe3S4/WO3 catalyst, where the electron-rich Wx and Sx sites promoted efficient electron transfer, enabling continuous regeneration of Fe2+ active sites on the catalyst surface. The Fe3S4/WO3 catalyst exhibited outstanding degradation efficiency for tetracycline (TC) in the peroxymonosulfate (PMS) system, achieving a 92.5% removal efficiency, significantly higher than its individual components of Fe3S4 (52.8%), WO3 (43.1%), and WS2 (53.2%). Moreover, the Fe3S4/WO3/PMS system demonstrated a broad operational pH range (3.0–9.0), excellent degradation efficiency for various emerging pollutants, minimal interference from background electrolytes and organic matter, and strong stability in real water treatment. Chemical scavenger tests and electron paramagnetic resonance (EPR) analysis confirmed that the oxidative degradation of TC was driven by multiple reactive species, including SO4•−, OH, O2, and 1O2. This study provides a novel strategy for regulating active sites in Fe-based catalysts to ensure sustained performance, offering a pathway for the rational design of next-generation Fenton-like catalysts for efficient and sustainable micropollutant removal from wastewater. Full article
Show Figures

Figure 1

21 pages, 5483 KiB  
Article
Spatiotemporal Distribution Characteristics of PM2.5 Components in the Yeosu and Gwangyang Industrial Complexes
by Hyeok Jang, Shin-Young Park, Young-Hyun Kim and Cheol-Min Lee
Atmosphere 2025, 16(3), 241; https://doi.org/10.3390/atmos16030241 - 20 Feb 2025
Viewed by 619
Abstract
Particulate matter (PM) composition and distribution heavily rely on the spatiotemporal characteristics of its emission sources. This study analyzed the distribution characteristics and sources of fine PM (PM2.5) and its chemical components at five locations near the Yeosu and Gwangyang industrial [...] Read more.
Particulate matter (PM) composition and distribution heavily rely on the spatiotemporal characteristics of its emission sources. This study analyzed the distribution characteristics and sources of fine PM (PM2.5) and its chemical components at five locations near the Yeosu and Gwangyang industrial complexes. Samples were chemically analyzed, considering their ionic, carbonaceous, and trace elements, from August 2020 to July 2023. Spatial characteristics were examined using the coefficient of divergence and Pearson correlation coefficient, and temporal characteristics were investigated using monthly, seasonal, and annual distribution patterns. The range of average PM2.5 concentrations at the five measurement sites was 17.2–20.3 μg/m3. The time-series analysis indicated that ionic species consistently comprised the largest proportion of PM2.5 across all seasons and years (51.4–60.3%), with the highest proportion observed in winter. Trace elements and carbonaceous species were present in higher proportions in spring (19.4%) and autumn (35.7%), respectively. High concentrations of PM2.5 and its chemical components were identified by temporal variations and emission sources. Principal component analysis showed that the chemical components of PM2.5 were mainly from soil dust, vehicular emissions, the steel industry, and other pollution sources. This study provides foundational data for future research aimed at air pollutant emissions management and PM2.5 source apportionment. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

17 pages, 2405 KiB  
Article
Impact of Emission Standards on Fine Particulate Matter Toxicity: A Long-Term Analysis in Los Angeles
by Mohammad Mahdi Badami, Yashar Aghaei and Constantinos Sioutas
Toxics 2025, 13(2), 140; https://doi.org/10.3390/toxics13020140 - 18 Feb 2025
Cited by 2 | Viewed by 944
Abstract
This study examines long-term trends in fine particulate matter (PM2.5) composition and oxidative potential in Los Angeles based on data from the University of Southern California’s Particle Instrumentation Unit, with chemical composition retrieved from the EPA’s Air Quality System (AQS). While [...] Read more.
This study examines long-term trends in fine particulate matter (PM2.5) composition and oxidative potential in Los Angeles based on data from the University of Southern California’s Particle Instrumentation Unit, with chemical composition retrieved from the EPA’s Air Quality System (AQS). While regulatory interventions have reduced PM2.5 mass concentration and primary combustion-related components, our findings reveal a more complex toxicity pattern. From 2001 to 2008, the PM2.5 oxidative potential, measured via the dithiothreitol (DTT) assay, declined from ~0.84 to ~0.16 nmol/min/m3 under stringent tailpipe controls. However, after this initial decline, PM2.5 DTT stabilized and gradually increased from ~0.35 in 2012 to ~0.97 nmol/min/m3 by 2024, reflecting the growing influence of non-tailpipe emissions such as brake/tire wear. Metals, such as iron (Fe, ~150 ng/m3) and zinc (Zn, ~10 ng/m3), remained relatively stable as organic and elemental carbon (OC and EC) declined, resulting in non-tailpipe contributions dominating PM2.5 toxicity. Although PM2.5 mass concentrations were effectively reduced, the growing contribution of non-tailpipe emissions (e.g., brake/tire wear and secondary organic aerosols) underscores the limitations of mass-based standards and tailpipe-focused strategies. Our findings emphasize the need to broaden regulatory strategies, targeting emerging sources that shape PM2.5 composition and toxicity and ensuring more improvements in public health outcomes. Full article
(This article belongs to the Special Issue Air Pollutant Exposure and Respiratory Injury)
Show Figures

Graphical abstract

Back to TopTop