Optical Properties and Molecular Composition of Fine Organic Aerosols in Nanjing, China: A Comparison of 2019 and 2023
Abstract
1. Introduction
2. Experimental Methods
2.1. Sample Collection and Pre-Treatment
2.2. Chemical Analysis
2.3. Optical Analysis
3. Results and Discussion
3.1. Light Absorption Properties
3.2. Fluorescent Properties
3.2.1. Fluorescent Indicators
3.2.2. Key Fluorescent Components
3.3. Molecular Composition
3.3.1. Overview
3.3.2. CHO Compounds
3.3.3. CHON and CHN Compounds
3.3.4. CHOS and CHONS Compounds
3.4. Characteristics of OA Molecules
3.4.1. Tracer Compounds of Different Sources
3.4.2. Correlations with Light Absorption
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jimenez, J.L.; Canagaratna, M.R.; Donahue, N.M.; Prevot, A.S.H.; Zhang, Q.; Kroll, J.H.; DeCarlo, P.F.; Allan, J.D.; Coe, H.; Ng, N.L.; et al. Evolution of Organic Aerosols in the Atmosphere. Science 2009, 326, 1525–1529. [Google Scholar] [CrossRef] [PubMed]
- Hecobian, A.; Zhang, X.; Zheng, M.; Frank, N.; Edgerton, E.S.; Weber, R.J. Water-Soluble Organic Aerosol material and the light-absorption characteristics of aqueous extracts measured over the Southeastern United States. Atmos. Chem. Phys. 2010, 10, 5965–5977. [Google Scholar] [CrossRef]
- Srinivas, B.; Sarin, M.M. Brown carbon in atmospheric outflow from the Indo-Gangetic Plain: Mass absorption efficiency and temporal variability. Atmos. Environ. 2014, 89, 835–843. [Google Scholar] [CrossRef]
- Costabile, F.; Gilardoni, S.; Barnaba, F.; Di Ianni, A.; Di Liberto, L.; Dionisi, D.; Manigrasso, M.; Paglione, M.; Poluzzi, V.; Rinaldi, M.; et al. Characteristics of brown carbon in the urban Po Valley atmosphere. Atmos. Chem. Phys. 2017, 17, 313–326. [Google Scholar] [CrossRef]
- Kirillova, E.N.; Andersson, A.; Tiwari, S.; Srivastava, A.K.; Bisht, D.S.; Gustafsson, Ö. Water-soluble organic carbon aerosols during a full New Delhi winter: Isotope-based source apportionment and optical properties. J. Geophys. Res. Atmos. 2014, 119, 3476–3485. [Google Scholar] [CrossRef]
- Liu, J.; Scheuer, E.; Dibb, J.; Diskin, G.S.; Ziemba, L.D.; Thornhill, K.L.; Anderson, B.E.; Wisthaler, A.; Mikoviny, T.; Devi, J.J.; et al. Brown carbon aerosol in the North American continental troposphere: Sources, abundance, and radiative forcing. Atmos. Chem. Phys. 2015, 15, 7841–7858. [Google Scholar] [CrossRef]
- Xie, M.; Shen, G.; Holder, A.L.; Hays, M.D.; Jetter, J.J. Light absorption of organic carbon emitted from burning wood, charcoal, and kerosene in household cookstoves. Environ. Pollut. 2018, 240, 60–67. [Google Scholar] [CrossRef]
- Kim, H.; Kim, J.Y.; Jin, H.C.; Lee, J.Y.; Lee, S.P. Seasonal variations in the light-absorbing properties of water-soluble and insoluble organic aerosols in Seoul, Korea. Atmos. Environ. 2016, 129, 234–242. [Google Scholar] [CrossRef]
- Liu, J.; Bergin, M.; Guo, H.; King, L.; Kotra, N.; Edgerton, E.; Weber, R.J. Size-resolved measurements of brown carbon in water and methanol extracts and estimates of their contribution to ambient fine-particle light absorption. Atmos. Chem. Phys. 2013, 13, 12389–12404. [Google Scholar] [CrossRef]
- Park, S.; Son, S.-C.; Lee, S. Characterization, sources, and light absorption of fine organic aerosols during summer and winter at an urban site. Atmos. Res. 2018, 213, 370–380. [Google Scholar] [CrossRef]
- Lu, J.; Ge, X.; Liu, Y.; Chen, Y.; Xie, X.; Ou, Y.; Ye, Z.; Chen, M. Significant secondary organic aerosol production from aqueous-phase processing of two intermediate volatility organic compounds. Atmos. Environ. 2019, 211, 63–68. [Google Scholar] [CrossRef]
- Ye, Z.; Qu, Z.; Ma, S.; Luo, S.; Chen, Y.; Chen, H.; Chen, Y.; Zhao, Z.; Chen, M.; Ge, X. A comprehensive investigation of aqueous-phase photochemical oxidation of 4-ethylphenol. Environ. Sci. Technol. 2019, 685, 976–985. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Ramanathan, V.; Kotamarthi, V.R. Brown carbon: A significant atmospheric absorber of solar radiation? Atmos. Chem. Phys. 2013, 13, 8607–8621. [Google Scholar] [CrossRef]
- Jo, D.S.; Park, R.J.; Lee, S.; Kim, S.W.; Zhang, X. A global simulation of brown carbon: Implications for photochemistry and direct radiative effect. Atmos. Chem. Phys. 2016, 16, 3413–3432. [Google Scholar] [CrossRef]
- Park, R.J.; Kim, M.J.; Jeong, J.I.; Youn, D.; Kim, S. A contribution of brown carbon aerosol to the aerosol light absorption and its radiative forcing in East Asia. Atmos. Environ. 2010, 44, 1414–1421. [Google Scholar] [CrossRef]
- Chen, Y.; Bond, T.C. Light absorption by organic carbon from wood combustion. Atmos. Chem. Phys. 2010, 10, 1773–1787. [Google Scholar] [CrossRef]
- Hoffer, A.; Gelencsér, A.; Guyon, P.; Kiss, G.; Schmid, O.; Frank, G.P.; Artaxo, P.; Andreae, M.O. Optical properties of humic-like substances (HULIS) in biomass-burning aerosols. Atmos. Chem. Phys. 2006, 6, 3563–3570. [Google Scholar] [CrossRef]
- Andreae, M.O.; Gelencsér, A. Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos. Chem. Phys. 2006, 6, 3131–3148. [Google Scholar] [CrossRef]
- Laskin, A.; Laskin, J.; Nizkorodov, S.A. Chemistry of Atmospheric Brown Carbon. Chem. Rev. 2015, 115, 4335–4382. [Google Scholar] [CrossRef]
- Desyaterik, Y.; Sun, Y.; Shen, X.; Lee, T.; Wang, X.; Wang, T.; Collett, J.L., Jr. Speciation of “brown” carbon in cloud water impacted by agricultural biomass burning in eastern China. J. Geophys. Res. Atmos. 2013, 118, 7389–7399. [Google Scholar] [CrossRef]
- Zhang, X.; Lin, Y.-H.; Surratt, J.D.; Weber, R.J. Sources, Composition and Absorption Ångström Exponent of Light-absorbing Organic Components in Aerosol Extracts from the Los Angeles Basin. Environ. Sci. Technol. 2013, 47, 3685–3693. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.-J.; Yang, L.; Cao, J.; Chen, Y.; Chen, Q.; Li, Y.; Duan, J.; Zhu, C.; Dai, W.; Wang, K.; et al. Brown Carbon Aerosol in Urban Xi’an, Northwest China: The Composition and Light Absorption Properties. Environ. Sci. Technol. 2018, 52, 6825–6833. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Fu, T.-M.; Yu, J.Z.; Zhang, A.; Yu, X.; Ye, J.; Zhu, L.; Shen, H.; Wang, C.; Yang, X.; et al. Nitrogen dominates global atmospheric organic aerosol absorption. Science 2025, 387, 989–995. [Google Scholar] [CrossRef]
- Liu, J.; Lin, P.; Laskin, A.; Laskin, J.; Kathmann, S.M.; Wise, M.; Caylor, R.; Imholt, F.; Selimovic, V.; Shilling, J.E. Optical properties and aging of light-absorbing secondary organic aerosol. Atmos. Chem. Phys. 2016, 16, 12815–12827. [Google Scholar] [CrossRef]
- Chen, Q.; Li, J.; Hua, X.; Jiang, X.; Mu, Z.; Wang, M.; Wang, J.; Shan, M.; Yang, X.; Fan, X.; et al. Identification of species and sources of atmospheric chromophores by fluorescence excitation-emission matrix with parallel factor analysis. Environ. Sci. Technol. 2020, 718, 137322. [Google Scholar] [CrossRef]
- Li, J.; Chen, Q.; Hua, X.; Chang, T.; Wang, Y. Occurrence and sources of chromophoric organic carbon in fine particulate matter over Xi’an, China. Environ. Sci. Technol. 2020, 725, 138290. [Google Scholar] [CrossRef]
- Xie, X.; Chen, Y.; Nie, D.; Liu, Y.; Liu, Y.; Lei, R.; Zhao, X.; Li, H.; Ge, X. Light-absorbing and fluorescent properties of atmospheric brown carbon: A case study in Nanjing, China. Chemosphere 2020, 251, 126350. [Google Scholar] [CrossRef]
- Lin, P.; Bluvshtein, N.; Rudich, Y.; Nizkorodov, S.A.; Laskin, J.; Laskin, A. Molecular Chemistry of Atmospheric Brown Carbon Inferred from a Nationwide Biomass Burning Event. Environ. Sci. Technol. 2017, 51, 11561–11570. [Google Scholar] [CrossRef]
- Cheng, Y.; He, K.-B.; Du, Z.-Y.; Engling, G.; Liu, J.-M.; Ma, Y.-L.; Zheng, M.; Weber, R.J. The characteristics of brown carbon aerosol during winter in Beijing. Atmos. Environ. 2016, 127, 355–364. [Google Scholar] [CrossRef]
- Chen, Q.; Ikemori, F.; Nakamura, Y.; Vodicka, P.; Kawamura, K.; Mochida, M. Structural and Light-Absorption Characteristics of Complex Water-Insoluble Organic Mixtures in Urban Submicrometer Aerosols. Environ. Sci. Technol. 2017, 51, 8293–8303. [Google Scholar] [CrossRef]
- Corbin, J.C.; Czech, H.; Massabò, D.; de Mongeot, F.B.; Jakobi, G.; Liu, F.; Lobo, P.; Mennucci, C.; Mensah, A.A.; Orasche, J.; et al. Infrared-absorbing carbonaceous tar can dominate light absorption by marine-engine exhaust. Npj Clim. Atmos. Sci. 2019, 2, 12. [Google Scholar] [CrossRef]
- Afsana, S.; Zhou, R.; Miyazaki, Y.; Tachibana, E.; Deshmukh, D.K.; Kawamura, K.; Mochida, M. Abundance, chemical structure, and light absorption properties of humic-like substances (HULIS) and other organic fractions of forest aerosols in Hokkaido. Sci. Rep. 2022, 12, 14379. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Ikemori, F.; Mochida, M. Light Absorption and Excitation–Emission Fluorescence of Urban Organic Aerosol Components and Their Relationship to Chemical Structure. Environ. Sci. Technol. 2016, 50, 10859–10868. [Google Scholar] [CrossRef]
- Huang, R.-J.; Yang, L.; Shen, J.; Yuan, W.; Gong, Y.; Guo, J.; Cao, W.; Duan, J.; Ni, H.; Zhu, C.; et al. Water-Insoluble Organics Dominate Brown Carbon in Wintertime Urban Aerosol of China: Chemical Characteristics and Optical Properties. Environ. Sci. Technol. 2020, 54, 7836–7847. [Google Scholar] [CrossRef]
- Afsana, S.; Zhou, R.; Miyazaki, Y.; Tachibana, E.; Deshmukh, D.K.; Kawamura, K.; Mochida, M. Fluorescence of solvent-extractable organics in sub-micrometer forest aerosols in Hokkaido, Japan. Atmos. Environ. 2023, 303, 119710. [Google Scholar] [CrossRef]
- Kuang, Y.; Shang, J.; Sheng, M.; Shi, X.; Zhu, J.; Qiu, X. Molecular Composition of Beijing PM2.5 Brown Carbon Revealed by an Untargeted Approach Based on Gas Chromatography and Time-of-Flight Mass Spectrometry. Environ. Sci. Technol. 2023, 57, 909–919. [Google Scholar] [CrossRef]
- Mao, J.; Cheng, Y.; Bai, Z.; Zhang, W.; Zhang, L.; Chen, H.; Wang, L.; Li, L.; Chen, J. Molecular characterization of nitrogen-containing organic compounds in the winter North China Plain. Environ. Sci. Technol. 2022, 838, 156189. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, Y.; Huang, R.-J.; Cao, J.; Hoffmann, T. UHPLC-Orbitrap mass spectrometric characterization of organic aerosol from a central European city (Mainz, Germany) and a Chinese megacity (Beijing). Atmos. Environ. 2018, 189, 22–29. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, Y.; Jiang, B.; Chen, Y.; Song, Y.; Tang, Y.; Dong, C.; Cai, Z. Molecular characterization of organic aerosols in Taiyuan, China: Seasonal variation and source identification. Environ. Sci. Technol. 2021, 800, 149419. [Google Scholar] [CrossRef]
- Wang, J.; Ge, X.; Chen, Y.; Shen, Y.; Zhang, Q.; Sun, Y.; Xu, J.; Ge, S.; Yu, H.; Chen, M. Highly time-resolved urban aerosol characteristics during springtime in Yangtze River Delta, China: Insights from soot particle aerosol mass spectrometry. Atmos. Chem. Phys. 2016, 16, 9109–9127. [Google Scholar] [CrossRef]
- Wu, Y.; Ge, X.; Wang, J.; Shen, Y.; Ye, Z.; Ge, S.; Wu, Y.; Yu, H.; Chen, M. Responses of secondary aerosols to relative humidity and photochemical activities in an industrialized environment during late winter. Atmos. Environ. 2018, 193, 66–78. [Google Scholar] [CrossRef]
- Li, D.; Cui, S.; Wu, Y.; Wang, J.; Ge, X. Direct Measurement of Aerosol Liquid Water Content: A Case Study in Summer in Nanjing, China. Toxics 2024, 12, 164. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.; Li, L.; Chen, Y.; Chen, H.; Wu, D.; Wang, J.; Xie, X.; Ge, S.; Ye, Z.; Xu, J.; et al. Aerosol characteristics and sources in Yangzhou, China resolved by offline aerosol mass spectrometry and other techniques. Environ. Pollut. 2017, 225, 74–85. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Y.; Xie, X.; Ye, Z.; Li, Q.; Ge, X.; Chen, M. Chemical Characteristics of PM2.5 and Water-Soluble Organic Nitrogen in Yangzhou, China. Atmosphere 2019, 10, 178. [Google Scholar] [CrossRef]
- Tsugawa, H.; Cajka, T.; Kind, T.; Ma, Y.; Higgins, B.; Ikeda, K.; Kanazawa, M.; VanderGheynst, J.; Fiehn, O.; Arita, M. MS-DIAL: Data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Methods. 2015, 12, 523–526. [Google Scholar] [CrossRef]
- Bae, E.; Yeo, I.J.; Jeong, B.; Shin, Y.; Shin, K.-H.; Kim, S. Study of Double Bond Equivalents and the Numbers of Carbon and Oxygen Atom Distribution of Dissolved Organic Matter with Negative-Mode FT-ICR MS. Anal. Chem. 2011, 83, 4193–4199. [Google Scholar] [CrossRef]
- Yassine, M.; Harir, M.; Dabek, E.; Schmitt-Kopplin, P. Structural characterization of organic aerosol using Fourier transform ion cyclotron resonance mass spectrometry: Aromaticity equivalent approach. Rapid Commun. Mass Spectrom. 2014, 28, 2445–2454. [Google Scholar] [CrossRef]
- Kourtchev, I.; Godoi, R.H.M.; Connors, S.; Levine, J.G.; Archibald, A.T.; Godoi, A.F.L.; Paralovo, S.L.; Barbosa, C.G.G.; Souza, R.A.F.; Manzi, A.O.; et al. Molecular composition of organic aerosols in central Amazonia: An ultra-high-resolution mass spectrometry study. Atmos. Chem. Phys. 2016, 16, 11899–11913. [Google Scholar] [CrossRef]
- Tong, H.; Kourtchev, I.; Pant, P.; Keyte, I.J.; O’Connor, I.P.; Wenger, J.C.; Pope, F.D.; Harrison, R.M.; Kalberer, M. Molecular composition of organic aerosols at urban background and road tunnel sites using ultra-high resolution mass spectrometry. Faraday Discuss. 2016, 189, 51–68. [Google Scholar] [CrossRef]
- Kroll, J.H.; Donahue, N.M.; Jimenez, J.L.; Kessler, S.H.; Canagaratna, M.R.; Wilson, K.R.; Altieri, K.E.; Mazzoleni, L.R.; Wozniak, A.S.; Bluhm, H.; et al. Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol. Nat. Chem. 2011, 3, 133–139. [Google Scholar] [CrossRef]
- Lin, P.; Rincon, A.G.; Kalberer, M.; Yu, J.Z. Elemental Composition of HULIS in the Pearl River Delta Region, China: Results Inferred from Positive and Negative Electrospray High Resolution Mass Spectrometric Data. Environ. Sci. Technol. 2012, 46, 7454–7462. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Ge, X.; Chen, H.; Xie, X.; Chen, Y.; Wang, J.; Ye, Z.; Bao, M.; Zhang, Y.; Chen, M. Seasonal light absorption properties of water-soluble brown carbon in atmospheric fine particles in Nanjing, China. Atmos. Environ. 2018, 187, 230–240. [Google Scholar] [CrossRef]
- Chen, Y.; Xie, X.; Shi, Z.; Li, Y.; Gai, X.; Wang, J.; Li, H.; Wu, Y.; Zhao, X.; Chen, M.; et al. Brown carbon in atmospheric fine particles in Yangzhou, China: Light absorption properties and source apportionment. Atmos. Res. 2020, 244, 105028. [Google Scholar] [CrossRef]
- Murphy, K.R.; Stedmon, C.A.; Graeber, D.; Bro, R. Fluorescence spectroscopy and multi-way techniques. PARAFAC. Anal. Methods 2013, 5, 6557–6566. [Google Scholar] [CrossRef]
- Birdwell, J.E.; Engel, A.S. Characterization of dissolved organic matter in cave and spring waters using UV–Vis absorbance and fluorescence spectroscopy. Org. Geochem. 2010, 41, 270–280. [Google Scholar] [CrossRef]
- McKnight, D.M.; Boyer, E.W.; Westerhoff, P.K.; Doran, P.T.; Kulbe, T.; Andersen, D.T. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnol. Oceanogr. 2001, 46, 38–48. [Google Scholar] [CrossRef]
- Zhang, B.; Tang, J.; Geng, X.; Mo, Y.; Zhao, S.; Zhong, G.; Li, J.; Zhang, G. Seasonal changes in water-soluble brown carbon (BrC) at Nanling background station in South China. Front. Environ. Sci. 2024, 12, 1360453. [Google Scholar] [CrossRef]
- Zhong, M.; Xu, J.; Wang, H.; Gao, L.; Zhu, H.; Zhai, L.; Zhang, X.; Zhao, W. Characterizing water-soluble brown carbon in fine particles in four typical cities in northwestern China during wintertime: Integrating optical properties with chemical processes. Atmos. Chem. Phys. 2023, 23, 12609–12630. [Google Scholar] [CrossRef]
- Soleimanian, E.; Mousavi, A.; Taghvaee, S.; Shafer, M.M.; Sioutas, C. Impact of secondary and primary particulate matter (PM) sources on the enhanced light absorption by brown carbon (BrC) particles in central Los Angeles. Environ. Sci. Technol. 2020, 705, 135902. [Google Scholar] [CrossRef]
- Lambe, A.T.; Cappa, C.D.; Massoli, P.; Onasch, T.B.; Forestieri, S.D.; Martin, A.T.; Cummings, M.J.; Croasdale, D.R.; Brune, W.H.; Worsnop, D.R.; et al. Relationship between Oxidation Level and Optical Properties of Secondary Organic Aerosol. Environ. Sci. Technol. 2013, 47, 6349–6357. [Google Scholar] [CrossRef]
- Fan, X.; Li, M.; Cao, T.; Cheng, C.; Li, F.; Xie, Y.; Wei, S.; Song, J.; Peng, P.A. Optical properties and oxidative potential of water- and alkaline-soluble brown carbon in smoke particles emitted from laboratory simulated biomass burning. Atmos. Environ. 2018, 194, 48–57. [Google Scholar] [CrossRef]
- Shamjad, P.M.; Tripathi, S.N.; Thamban, N.M.; Vreeland, H. Refractive Index and Absorption Attribution of Highly Absorbing Brown Carbon Aerosols from an Urban Indian City-Kanpur. Sci. Rep. 2016, 6, 37735. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Ma, H.; Wang, X.; Zhong, S.; Zhang, Z.; Zhu, J.; Fan, Y.; Hu, W.; Wu, L.; Li, X.; et al. Measurement report: Optical properties and sources of water-soluble brown carbon in Tianjin, North China—insights from organic molecular compositions. Atmos. Chem. Phys. 2022, 22, 6449–6470. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Q.; Wang, G.; Li, J.; Wu, C.; Liu, L.; Wang, J.; Jiang, W.; Li, L.; Ho, K.F.; et al. Optical properties and molecular compositions of water-soluble and water-insoluble brown carbon (BrC) aerosols in northwest China. Atmos. Chem. Phys. 2020, 20, 4889–4904. [Google Scholar] [CrossRef]
- Wen, H.; Zhou, Y.; Xu, X.; Wang, T.; Chen, Q.; Chen, Q.; Li, W.; Wang, Z.; Huang, Z.; Zhou, T.; et al. Water-soluble brown carbon in atmospheric aerosols along the transport pathway of Asian dust: Optical properties, chemical compositions, and potential sources. Environ. Sci. Technol. 2021, 789, 147971. [Google Scholar] [CrossRef]
- Choudhary, V.; Rajput, P.; Gupta, T. Absorption properties and forcing efficiency of light-absorbing water-soluble organic aerosols: Seasonal and spatial variability. Environ. Pollut. 2021, 272, 115932. [Google Scholar] [CrossRef]
- Choudhary, V.; Gupta, T.; Zhao, R. Evolution of Brown Carbon Aerosols during Atmospheric Long-Range Transport in the South Asian Outflow and Himalayan Cryosphere. ACS Earth Space Chem. 2022, 6, 2335–2347. [Google Scholar] [CrossRef]
- Sumlin, B.J.; Pandey, A.; Walker, M.J.; Pattison, R.S.; Williams, B.J.; Chakrabarty, R.K. Atmospheric Photooxidation Diminishes Light Absorption by Primary Brown Carbon Aerosol from Biomass Burning. Environ. Sci. Technol. Lett. 2017, 4, 540–545. [Google Scholar] [CrossRef]
- Huguet, A.; Vacher, L.; Relexans, S.; Saubusse, S.; Froidefond, J.M.; Parlanti, E. Properties of fluorescent dissolved organic matter in the Gironde Estuary. Org. Geochem. 2009, 40, 706–719. [Google Scholar] [CrossRef]
- Lee, H.J.; Laskin, A.; Laskin, J.; Nizkorodov, S.A. Excitation–Emission Spectra and Fluorescence Quantum Yields for Fresh and Aged Biogenic Secondary Organic Aerosols. Environ. Sci. Technol. 2013, 47, 5763–5770. [Google Scholar] [CrossRef]
- Fu, P.; Kawamura, K.; Chen, J.; Qin, M.; Ren, L.; Sun, Y.; Wang, Z.; Barrie, L.A.; Tachibana, E.; Ding, A.; et al. Fluorescent water-soluble organic aerosols in the High Arctic atmosphere. Sci. Rep. 2015, 5, 9845. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Zhang, L.; Zhou, X.; Duan, J.; Mu, S.; Xiao, K.; Hu, J.; Tan, J. Fluorescence fingerprinting properties for exploring water-soluble organic compounds in PM2.5 in an industrial city of northwest China. Atmos. Environ. 2018, 184, 203–211. [Google Scholar] [CrossRef]
- Dong, Z.; Pavuluri, C.M.; Li, P.; Xu, Z.; Deng, J.; Zhao, X.; Zhao, X.; Fu, P.; Liu, C.Q. Measurement report: Optical characterization, seasonality, and sources of brown carbon in fine aerosols from Tianjin, North China: Year-round observations. Atmos. Chem. Phys. 2024, 24, 5887–5905. [Google Scholar] [CrossRef]
- Fan, X.; Yu, X.; Wang, Y.; Xiao, X.; Li, F.; Xie, Y.; Wei, S.; Song, J.; Peng, P.A. The aging behaviors of chromophoric biomass burning brown carbon during dark aqueous hydroxyl radical oxidation processes in laboratory studies. Atmos. Environ. 2019, 205, 9–18. [Google Scholar] [CrossRef]
- Coble, P.G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Mar. Chem. 1996, 51, 325–346. [Google Scholar] [CrossRef]
- Murphy, K.R.; Hambly, A.; Singh, S.; Henderson, R.K.; Baker, A.; Stuetz, R.; Khan, S.J. Organic Matter Fluorescence in Municipal Water Recycling Schemes: Toward a Unified PARAFAC Model. Environ. Sci. Technol. 2011, 45, 2909–2916. [Google Scholar] [CrossRef]
- Yu, H.; Liang, H.; Qu, F.; Han, Z.-S.; Shao, S.; Chang, H.; Li, G. Impact of dataset diversity on accuracy and sensitivity of parallel factor analysis model of dissolved organic matter fluorescence excitation-emission matrix. Sci. Rep. 2015, 5, 10207. [Google Scholar] [CrossRef]
- Chen, Q.; Miyazaki, Y.; Kawamura, K.; Matsumoto, K.; Coburn, S.; Volkamer, R.; Iwamoto, Y.; Kagami, S.; Deng, Y.; Ogawa, S.; et al. Characterization of Chromophoric Water-Soluble Organic Matter in Urban, Forest, and Marine Aerosols by HR-ToF-AMS Analysis and Excitation–Emission Matrix Spectroscopy. Environ. Sci. Technol. 2016, 50, 10351–10360. [Google Scholar] [CrossRef]
- Dubnick, A.; Barker, J.; Sharp, M.; Wadham, J.; Lis, G.; Telling, J.; Fitzsimons, S.; Jackson, M. Characterization of dissolved organic matter (DOM) from glacial environments using total fluorescence spectroscopy and parallel factor analysis. Ann. Glaciol. 2010, 51, 111–122. [Google Scholar] [CrossRef]
- Fu, P.; Mostofa, K.M.G.; Wu, F.; Liu, C.-Q.; Li, W.; Liao, H.; Wang, L.; Wang, J.; Mei, Y.I. Excitation-emission matrix characterization of dissolved organic matter sources in two eutrophic lakes (Southwestern China Plateau). Geochem. J. 2010, 44, 99–112. [Google Scholar] [CrossRef]
- Barsotti, F.; Ghigo, G.; Vione, D. Computational assessment of the fluorescence emission of phenol oligomers: A possible insight into the fluorescence properties of humic-like substances (HULIS). J. Photochem. Photobiol. A Chem. 2016, 315, 87–93. [Google Scholar] [CrossRef]
- Chen, Q.; Hua, X.; Li, J.; Chang, T.; Wang, Y. Diurnal evolutions and sources of water-soluble chromophoric aerosols over Xi’an during haze event, in Northwest China. Environ. Sci. Technol. 2021, 786, 147412. [Google Scholar] [CrossRef] [PubMed]
- Cao, T.; Li, M.; Zou, C.; Fan, X.; Song, J.; Jia, W.; Yu, C.; Yu, Z.; Peng, P. Chemical composition, optical properties, and oxidative potential of water- and methanol-soluble organic compounds emitted from the combustion of biomass materials and coal. Atmos. Chem. Phys. 2021, 21, 13187–13205. [Google Scholar] [CrossRef]
- Cottrell, B.A.; Gonsior, M.; Isabelle, L.M.; Luo, W.; Perraud, V.; McIntire, T.M.; Pankow, J.F.; Schmitt-Kopplin, P.; Cooper, W.J.; Simpson, A.J. A regional study of the seasonal variation in the molecular composition of rainwater. Atmos. Environ. 2013, 77, 588–597. [Google Scholar] [CrossRef]
- Tu, P.; Hall, W.A.I.V.; Johnston, M.V. Characterization of Highly Oxidized Molecules in Fresh and Aged Biogenic Secondary Organic Aerosol. Anal. Chem. 2016, 88, 4495–4501. [Google Scholar] [CrossRef]
- Kourtchev, I.; O’Connor, I.P.; Giorio, C.; Fuller, S.J.; Kristensen, K.; Maenhaut, W.; Wenger, J.C.; Sodeau, J.R.; Glasius, M.; Kalberer, M. Effects of anthropogenic emissions on the molecular composition of urban organic aerosols: An ultrahigh resolution mass spectrometry study. Atmos. Environ. 2014, 89, 525–532. [Google Scholar] [CrossRef]
- Ge, X.; Wexler, A.S.; Clegg, S.L. Atmospheric amines—Part I. A review. Atmos. Environ. 2011, 45, 524–546. [Google Scholar] [CrossRef]
- Ma, Y.; Hays, M.D. Thermal extraction–two-dimensional gas chromatography–mass spectrometry with heart-cutting for nitrogen heterocyclics in biomass burning aerosols. J. Chromatogr. A 2008, 1200, 228–234. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, M.; Wang, Y.; Zheng, J.; Shang, D.; Yang, Y.; Liu, Y.; Li, X.; Tang, R.; Zhu, W.; et al. The formation of nitro-aromatic compounds under high NOx and anthropogenic VOC conditions in urban Beijing, China. Atmos. Chem. Phys. 2019, 19, 7649–7665. [Google Scholar] [CrossRef]
- Wang, L.; Wang, X.; Gu, R.; Wang, H.; Yao, L.; Wen, L.; Zhu, F.; Wang, W.; Xue, L.; Yang, L.; et al. Observations of fine particulate nitrated phenols in four sites in northern China: Concentrations, source apportionment, and secondary formation. Atmos. Chem. Phys. 2018, 18, 4349–4359. [Google Scholar] [CrossRef]
- Song, J.; Li, M.; Fan, X.; Zou, C.; Zhu, M.; Jiang, B.; Yu, Z.; Jia, W.; Liao, Y.; Peng, P.A. Molecular Characterization of Water- and Methanol-Soluble Organic Compounds Emitted from Residential Coal Combustion Using Ultrahigh-Resolution Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Environ. Sci. Technol. 2019, 53, 13607–13617. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.; Liu, J.; Shilling, J.E.; Kathmann, S.M.; Laskin, J.; Laskin, A. Molecular characterization of brown carbon (BrC) chromophores in secondary organic aerosol generated from photo-oxidation of toluene. Phys. Chem. Chem. Phys. 2015, 17, 23312–23325. [Google Scholar] [CrossRef] [PubMed]
- Harrison, M.A.J.; Barra, S.; Borghesi, D.; Vione, D.; Arsene, C.; Iulian Olariu, R. Nitrated phenols in the atmosphere: A review. Atmos. Environ. 2005, 39, 231–248. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, M.; Lin, P.; Guo, Q.; Wu, Z.; Li, M.; Zeng, L.; Song, Y.; Zeng, L.; Wu, Y.; et al. Molecular Characterization of Nitrogen-Containing Organic Compounds in Humic-like Substances Emitted from Straw Residue Burning. Environ. Sci. Technol. 2017, 51, 5951–5961. [Google Scholar] [CrossRef]
- Iinuma, Y.; Böge, O.; Gräfe, R.; Herrmann, H. Methyl-Nitrocatechols: Atmospheric Tracer Compounds for Biomass Burning Secondary Organic Aerosols. Environ. Sci. Technol. 2010, 44, 8453–8459. [Google Scholar] [CrossRef]
- Kahnt, A.; Behrouzi, S.; Vermeylen, R.; Safi Shalamzari, M.; Vercauteren, J.; Roekens, E.; Claeys, M.; Maenhaut, W. One-year study of nitro-organic compounds and their relation to wood burning in PM10 aerosol from a rural site in Belgium. Atmos. Environ. 2013, 81, 561–568. [Google Scholar] [CrossRef]
- Fleming, L.T.; Lin, P.; Roberts, J.M.; Selimovic, V.; Yokelson, R.; Laskin, J.; Laskin, A.; Nizkorodov, S.A. Molecular composition and photochemical lifetimes of brown carbon chromophores in biomass burning organic aerosol. Atmos. Chem. Phys. 2020, 20, 1105–1129. [Google Scholar] [CrossRef]
- Qi, L.; Chen, M.; Stefenelli, G.; Pospisilova, V.; Tong, Y.; Bertrand, A.; Hueglin, C.; Ge, X.; Baltensperger, U.; Prévôt, A.S.H.; et al. Organic aerosol source apportionment in Zurich using an extractive electrospray ionization time-of-flight mass spectrometer (EESI−TOF-MS)—Part 2: Biomass burning influences in winter. Atmos. Chem. Phys. 2019, 19, 8037–8062. [Google Scholar] [CrossRef]
- Kristensen, K.; Jensen, L.N.; Glasius, M.; Bilde, M. The effect of sub-zero temperature on the formation and composition of secondary organic aerosol from ozonolysis of alpha-pinene. Environ. Sci. Proc. Imp. 2017, 19, 1220–1234. [Google Scholar] [CrossRef]
- Daellenbach, K.R.; Cai, J.; Hakala, S.; Dada, L.; Yan, C.; Du, W.; Yao, L.; Zheng, F.; Ma, J.; Ungeheuer, F.; et al. Substantial contribution of transported emissions to organic aerosol in Beijing. Nat. Geosci. 2024, 17, 747–754. [Google Scholar] [CrossRef]
- Boreddy, S.K.R.; Hegde, P.; Aswini, A.R.; Aryasree, S. Chemical Characteristics, Size Distributions, Molecular Composition, and Brown Carbon in South Asian Outflow to the Indian Ocean. Earth Space Sci. 2021, 8, e2020EA001615. [Google Scholar] [CrossRef]
- Song, J.; Li, M.; Jiang, B.; Wei, S.; Fan, X.; Peng, P.A. Molecular Characterization of Water-Soluble Humic like Substances in Smoke Particles Emitted from Combustion of Biomass Materials and Coal Using Ultrahigh-Resolution Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Environ. Sci. Technol. 2018, 52, 2575–2585. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Hu, M.; Lin, P.; Tan, T.; Li, M.; Xu, N.; Zheng, J.; Du, Z.; Qin, Y.; Wu, Y.; et al. Enhancement in Particulate Organic Nitrogen and Light Absorption of Humic-Like Substances over Tibetan Plateau Due to Long-Range Transported Biomass Burning Emissions. Environ. Sci. Technol. 2019, 53, 14222–14232. [Google Scholar] [CrossRef]
- Qi, L.; Zhang, Z.; Wang, X.; Deng, F.; Zhao, J.; Liu, H. Molecular characterization of atmospheric particulate organosulfates in a port environment using ultrahigh resolution mass spectrometry: Identification of traffic emissions. J. Hazard. Mater. 2021, 419, 126431. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, M.; Guo, S.; Wang, Y.; Zheng, J.; Yang, Y.; Zhu, W.; Tang, R.; Li, X.; Liu, Y.; et al. The secondary formation of organosulfates under interactions between biogenic emissions and anthropogenic pollutants in summer in Beijing. Atmos. Chem. Phys. 2018, 18, 10693–10713. [Google Scholar] [CrossRef]
- Ye, Y.; Zhan, H.; Yu, X.; Li, J.; Wang, X.; Xie, Z. Detection of organosulfates and nitrooxy-organosulfates in Arctic and Antarctic atmospheric aerosols, using ultra-high resolution FT-ICR mass spectrometry. Sci. Total Environ. 2021, 767, 144339. [Google Scholar] [CrossRef]
- Yang, Z.; Tsona, N.T.; Li, J.; Wang, S.; Xu, L.; You, B.; Du, L. Effects of NOx and SO2 on the secondary organic aerosol formation from the photooxidation of 1,3,5-trimethylbenzene: A new source of organosulfates. Environ. Pollut. 2020, 264, 114742. [Google Scholar] [CrossRef]
- McNeill, V.F. Aqueous Organic Chemistry in the Atmosphere: Sources and Chemical Processing of Organic Aerosols. Environ. Sci. Technol. 2015, 49, 1237–1244. [Google Scholar] [CrossRef]
Terms | 2019 | 2023 | ||
---|---|---|---|---|
Summer (n = 73) | Winter (n = 38) | Summer (n = 52) | Winter (n = 30) | |
EC (μg m−3) | 1.17 ± 0.34 | 1.72 ± 1.08 | 0.94 ± 0.43 | 1.02 ± 0.79 |
OC (μg m−3) | 8.73 ± 2.49 | 12.39 ± 5.06 | 6.70 ± 2.82 | 10.25 ± 6.11 |
WSOC (μg m−3) | 5.34 ± 1.59 | 6.73 ± 2.74 | 3.95 ± 1.75 | 5.69 ± 2.96 |
MSOC (μg m−3) | 7.25 ± 2.21 | 10.94 ± 4.65 | 6.06 ± 2.71 | 8.26 ± 4.85 |
Water-soluble OC (WSOC) | ||||
AbsWSOC-365 (M m−1) | 2.87 ± 0.86 | 5.70 ± 3.56 | 1.76 ± 1.00 | 3.73 ± 2.46 |
MAEWSOC-365 (m2 g−1) | 0.54 ± 0.14 | 0.81 ± 0.29 | 0.45 ±0.15 | 0.62 ± 0.18 |
AAEWSOC | 6.04 ± 0.40 | 6.64 ± 1.21 | 6.28 ± 0.61 | 6.53 ± 0.71 |
kWSOC-365 | 0.0236 ± 0.0060 | 0.0355 ± 0.0127 | 0.0195 ± 0.0066 | 0.0271 ± 0.0078 |
Methanol-soluble OC (MSOC) | ||||
AbsMSOC-365 (M m−1) | 3.92 ± 0.95 | 12.73 ± 4.56 | 2.97 ± 1.12 | 5.14 ± 2.65 |
MAEMSOC-365 (m2 g−1) | 0.57 ± 0.19 | 1.20 ± 0.23 | 0.52 ± 0.15 | 0.65 ± 0.15 |
AAEMSOC | 5.53 ± 0.50 | 4.40 ± 0.32 | 6.34 ± 0.96 | 6.09 ± 0.32 |
kMSOC-365 | 0.0247 ± 0.0085 | 0.0525 ± 0.0099 | 0.0226 ± 0.0065 | 0.0284 ± 0.0064 |
2019 | 2023 | |||
---|---|---|---|---|
Summer | Winter | Summer | Winter | |
WSOC | ||||
FIWSOC | 1.91 ± 0.18 | 1.87 ± 0.07 | 2.02 ± 0.26 | 1.91 ± 0.09 |
BIXWSOC | 0.86 ± 0.08 | 0.87 ± 0.09 | 0.85 ± 0.09 | 0.86 ± 0.06 |
HIXWSOC | 5.58 ± 1.07 | 7.16 ± 1.06 | 5.24 ± 0.70 | 6.09 ± 0.77 |
MSOC | ||||
FIMSOC | 2.62 ± 0.44 | 2.70 ± 0.28 | 3.35 ± 0.62 | 2.25 ± 0.18 |
BIXMSOC | 0.93 ± 0.10 | 1.00 ± 0.10 | 0.85 ± 0.14 | 1.04 ± 0.13 |
HIXMSOC | 3.34 ± 0.81 | 3.87 ± 0.43 | 2.80 ± 0.62 | 3.05 ± 0.64 |
2019 Summer | 2019 Winter | 2023 Summer | 2023 Winter | ||||||
---|---|---|---|---|---|---|---|---|---|
2019SH | 2019SL | 2019WH | 2019WL | 2023SH | 2023SL | 2023WH | 2023WL | ||
CHOS | OrgSs (ESI−) | 75.0% | 77.8% | 64.7% | 86.4% | 75.0% | 70.8% | 60.0% | 56.3% |
OrgSs (ESI+) | 68.9% | 70.6% | 62.1% | 66.7% | 62.5% | 63.0% | 60.9% | 61.9% | |
CHNOS | Nitrooxy-OrgSs (ESI−) | 9.4% | 16.3% | 15.0% | 16.5% | 10.6% | 17.4% | 5.1% | 14.3% |
Mode | Type | Summer | Winter |
---|---|---|---|
MAEMSOC-365 | MAEMSOC-365 | ||
ESI− | CH | 0.78 | −0.15 |
CHO | 0.23 | 0.59 | |
CHS | 0.76 | 0.66 | |
CHN | 0.81 | −0.7 | |
CHON | 0.5 | −0.68 | |
CHOS | −0.71 | 0.83 | |
CHNS | −0.49 | 0.46 | |
CHONS | −0.43 | 0.35 | |
ESI+ | CH | 0.66 | 0.39 |
CHO | 0.38 | −0.87 | |
CHS | 0.42 | −0.59 | |
CHN | 0.69 | 0.82 | |
CHON | 0.32 | −0.41 | |
CHOS | 0.48 | −0.94 | |
CHNS | −0.44 | 0.97 | |
CHONS | 0.49 | −0.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, B.; Huang, Y.; Feng, L.; Zhang, Z.; Li, H.; Wu, Y.; Ye, J.; Ge, X. Optical Properties and Molecular Composition of Fine Organic Aerosols in Nanjing, China: A Comparison of 2019 and 2023. Toxics 2025, 13, 443. https://doi.org/10.3390/toxics13060443
Zhou B, Huang Y, Feng L, Zhang Z, Li H, Wu Y, Ye J, Ge X. Optical Properties and Molecular Composition of Fine Organic Aerosols in Nanjing, China: A Comparison of 2019 and 2023. Toxics. 2025; 13(6):443. https://doi.org/10.3390/toxics13060443
Chicago/Turabian StyleZhou, Binhuang, Yu Huang, Liangyu Feng, Zihao Zhang, Haiwei Li, Yun Wu, Jianhuai Ye, and Xinlei Ge. 2025. "Optical Properties and Molecular Composition of Fine Organic Aerosols in Nanjing, China: A Comparison of 2019 and 2023" Toxics 13, no. 6: 443. https://doi.org/10.3390/toxics13060443
APA StyleZhou, B., Huang, Y., Feng, L., Zhang, Z., Li, H., Wu, Y., Ye, J., & Ge, X. (2025). Optical Properties and Molecular Composition of Fine Organic Aerosols in Nanjing, China: A Comparison of 2019 and 2023. Toxics, 13(6), 443. https://doi.org/10.3390/toxics13060443