Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (93)

Search Parameters:
Keywords = PKA energy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5743 KiB  
Article
Effect of Grain Boundary Characteristics on Mechanical Properties and Irradiation Response in 3C-SiC: A Molecular Dynamics Simulation Study
by Wenying Liu, Fugen Deng, Jiajie Yu, Lin Chen, Yuyang Zhou, Yulu Zhou and Yifang Ouyang
Materials 2025, 18(15), 3545; https://doi.org/10.3390/ma18153545 - 29 Jul 2025
Viewed by 226
Abstract
Molecular dynamics (MD) simulations have been performed on the energetics, mechanical properties, and irradiation response of seventy-three 3C-SiC symmetric tilt grain boundaries (STGBs) with three tilt axes (<100>, <110> and <111>). The effect of GB characteristics on the STGB properties has been investigated. [...] Read more.
Molecular dynamics (MD) simulations have been performed on the energetics, mechanical properties, and irradiation response of seventy-three 3C-SiC symmetric tilt grain boundaries (STGBs) with three tilt axes (<100>, <110> and <111>). The effect of GB characteristics on the STGB properties has been investigated. The GB energy is positively and linearly correlated with the excess volume, but the linearity in SiC is not as good as in metals, which stems from the inhomogeneous structural relaxation near GBs induced by orientation-sensitive covalent bonding. For <110>STGBs, the shear strength exhibits symmetry with respect to the misorientation angle of 90°, which is consistent with ab initio calculations for Al in similar shear orientations. Cascades are performed with 8 keV silicon as the primary knock-on atom (PKA). No direct correlation is found between the sink efficiency of GBs for defects and GB characteristics, which comes from the complexity of the diatomic system during the recovery phase. For GBs with smaller values of Σ, the GBs exhibit a weaker blocking effect on the penetration of irradiated defects, resulting in a lower number of defects in GBs and a higher number of total surviving defects. In particular, it is seen that the percentage decrease in tensile strength after irradiation is positively correlated with the Σ value. Taken together, these results help to elucidate the impact of GB behavior on the mechanical properties of as well as the primary irradiation damage in SiC and provide a reference for creating improved materials through GB engineering. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

13 pages, 1357 KiB  
Article
On the Computational Determination of the pKa of Some Arylboronic Acids
by André Gustavo Horta Barbosa, João Guilherme Siqueira Monteiro, Noemi de Jesus Hiller and Daniela de Luna Martins
Compounds 2025, 5(3), 28; https://doi.org/10.3390/compounds5030028 - 24 Jul 2025
Viewed by 211
Abstract
An important property of arylboronic acids, particularly when considering their use in medicinal chemistry, is their pKa in aqueous solution. The results of computational determination of absolute pKas of arylboronic acids can be very disappointing in comparison to available experimental [...] Read more.
An important property of arylboronic acids, particularly when considering their use in medicinal chemistry, is their pKa in aqueous solution. The results of computational determination of absolute pKas of arylboronic acids can be very disappointing in comparison to available experimental results, particularly in the case of large substituents. In this paper, the main origin of this problem is identified. It is shown that in order to obtain accurate pKa values for arylboronic acids from computational quantum chemistry, it is necessary to consider the effect of different possible conformations of the hydroxyl groups in the acid and its conjugate base together with the low-energy conformations of their substituents. An improved practical procedure for the computational determination of the pKas of arylboronic acids is proposed and applied to a set of recently synthesized arylboronic acids, yielding consistent results. Full article
Show Figures

Graphical abstract

23 pages, 1383 KiB  
Review
The Critical Role of the Bile Acid Receptor TGR5 in Energy Homeostasis: Insights into Physiology and Therapeutic Potential
by Lucas Zangerolamo, Marina Carvalho and Helena C. L. Barbosa
Int. J. Mol. Sci. 2025, 26(14), 6547; https://doi.org/10.3390/ijms26146547 - 8 Jul 2025
Viewed by 699
Abstract
Over the past decades, bile acids have been recognized as important signaling molecules with significant roles in metabolic health and disease. Many of their beneficial effects are mediated through the activation of the Takeda G protein-coupled receptor 5 (TGR5), a G protein-coupled receptor [...] Read more.
Over the past decades, bile acids have been recognized as important signaling molecules with significant roles in metabolic health and disease. Many of their beneficial effects are mediated through the activation of the Takeda G protein-coupled receptor 5 (TGR5), a G protein-coupled receptor ubiquitously expressed in both humans and animals. Upon activation, TGR5 stimulates adenylate cyclase, leading to increased cyclic adenosine monophosphate (cAMP) levels and subsequent activation of protein kinase A (PKA). PKA then phosphorylates and activates several downstream signaling pathways, including exchange protein directly activated by cAMP (EPAC), extracellular signal-regulated kinase 1/2 (ERK1/2), and protein kinase B (AKT). Through these pathways, TGR5 acts as a key molecular link between bile acid signaling and the regulation of energy metabolism. TGR5 activation has been associated with body weight loss in obese models, primarily by reducing food intake, enhancing thermogenesis in adipose tissue and muscle to increase energy expenditure, and improving insulin secretion. This review highlights recent advances in our understanding of TGR5 biology and critically examines its therapeutic potential, limitations, and controversies in the context of energy metabolism, offering new perspectives and opportunities for treating metabolic disorders. Full article
Show Figures

Figure 1

25 pages, 647 KiB  
Review
Metabolic Reprogramming in Autosomal Dominant Polycystic Kidney Disease: Role in Cystogenesis and Novel Therapeutic Approaches
by Jingyuan Gao and Xiaoyong Yu
Biomedicines 2025, 13(7), 1596; https://doi.org/10.3390/biomedicines13071596 - 30 Jun 2025
Viewed by 578
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a prevalent hereditary renal disorder characterized by the progressive formation of numerous fluid-filled cysts, ultimately leading to end-stage kidney disease. The results of recent studies have demonstrated that metabolic reprogramming plays a crucial role in cystogenesis [...] Read more.
Autosomal dominant polycystic kidney disease (ADPKD) is a prevalent hereditary renal disorder characterized by the progressive formation of numerous fluid-filled cysts, ultimately leading to end-stage kidney disease. The results of recent studies have demonstrated that metabolic reprogramming plays a crucial role in cystogenesis and disease progression, including enhanced aerobic glycolysis, impaired fatty acid oxidation, glutamine dependence, and mitochondrial dysfunction; these metabolic alterations are regulated by signaling pathways such as mTOR, cAMP/PKA, and HIF-1α, which can modulate cell proliferation, fluid secretion, and energy metabolism. Furthermore, hypoxia and the oxidative microenvironment also promote the growth of cysts. In this review, we summarized the complex interactions between metabolic pathway alterations and key signaling cascades in ADPKD, in addition to exploring new therapeutic strategies targeting these metabolic pathways, including drug and dietary interventions. A comprehensive understanding of these mechanisms may contribute to the development of innovative treatment methods aiming to slow the disease progression of patients with ADPKD. Full article
Show Figures

Figure 1

13 pages, 606 KiB  
Article
Inhibition of Urea Hydrolysis in Human Urine for Resource and Energy Recovery: Pharmaceuticals and Their Metabolites as Co-Existing Anticatalyzers
by Haoran Chi, Minshu Chen, Wei Yang, Ya Li, Shuhui Sun, Hualin Wang, Xuejing Yang, Michael R. Hoffmann and Lei Guo
Catalysts 2025, 15(7), 630; https://doi.org/10.3390/catal15070630 - 27 Jun 2025
Viewed by 589
Abstract
Urine, which has a high concentration of urea, can be used as a sustainable resource for nutrient recovery and sustainable energy. However, urea undergoes hydrolysis, catalyzed by urease, generating ammonia and carbon dioxide. As ammonia is released during hydrolysis in stored urine, the [...] Read more.
Urine, which has a high concentration of urea, can be used as a sustainable resource for nutrient recovery and sustainable energy. However, urea undergoes hydrolysis, catalyzed by urease, generating ammonia and carbon dioxide. As ammonia is released during hydrolysis in stored urine, the pH rises progressively until the pKa of ammonium is reached (i.e., 9.3). At elevated pH levels, struvite and other related precipitates are formed. These reactions lower the efficiency of ammonia and urea nitrogen recovery and often cause scaling, pipe blockage, and odors. Herein, we explore an approach to stabilize urea, using pharmaceuticals and their metabolites that are commonly present in human urine. Based on a survey of the urease inhibitory effects of twenty-three pharmaceuticals and metabolites, we determined that the polyphenolic and disulfide-containing compounds had the highest urease inhibition efficiency. Specifically, outstanding inhibitors include catechol (CAT), hydroquinone (HYD), and disulfiram (DSF). Furthermore, when added to urine, these compounds resulted in the retardation of urease-catalyzed hydrolysis, leading to longer-term urine stabilization upon storage. Reaction mechanisms for urease inhibition by polyphenolics and disulfiram are proposed. Evidence is provided that pharmaceutical metabolites can stabilize urea and thus could lead to a sustainable method for nitrogen nutrient recovery from stored urine. Full article
Show Figures

Figure 1

22 pages, 5296 KiB  
Review
The Role of Mitochondrial Energy Metabolism in the Mechanism of Exercise Improving Depression
by Yuwei Liu, Chenghao Zhong, Yuxin Yang, Jianbo Hu, Xiaoyan Yi, Jiating Huang, Haonan Li, Xiaojie Liu, Ke Xue and Xianghe Chen
Curr. Issues Mol. Biol. 2025, 47(5), 382; https://doi.org/10.3390/cimb47050382 - 21 May 2025
Viewed by 1131
Abstract
Depression is the most disabling neuropsychiatric disorder, but its exact mechanisms remain unclear. Mitochondrial energy metabolism may play a key role in the onset and development of depression. Cytokines such as PGC-1α, NLRP3, and BDNF can influence mitochondrial energy metabolism by regulating mitochondrial [...] Read more.
Depression is the most disabling neuropsychiatric disorder, but its exact mechanisms remain unclear. Mitochondrial energy metabolism may play a key role in the onset and development of depression. Cytokines such as PGC-1α, NLRP3, and BDNF can influence mitochondrial energy metabolism by regulating mitochondrial biogenesis, immune inflammation, and neuroplasticity, thereby mediating the occurrence and progression of depression. Exercise can improve depression by regulating mitochondrial energy metabolism. The molecular mechanisms are closely related to the upregulation of exercise-induced PGC-1α, AMPK, SIRT1, and BDNF expression, as well as the downregulation of NLRP3 expression. These factors can activate key factors or pathways such as Nrf2, AMPK, and PKA/CREB, while inhibiting the excessive activation of NF-κB. Through these mechanisms, they regulate the expression of downstream target genes (such as TFAM, NRF1, CREB, and Bcl-2), thereby enhancing mitochondrial biogenesis and improving the quantity and quality of mitochondria. Additionally, they can act to inhibit the release of inflammatory factors to improve immune inflammation, enhance neuroplasticity, promote neuronal growth, and facilitate synapse formation and remodeling, thereby enhancing mitochondrial energy metabolism and improving its dysfunction, which in turn alleviates depression. Currently, there is a lack of systematic and comprehensive research on the mechanisms by which exercise improves depression through mitochondrial energy metabolism. Therefore, this article aims to review and analyze the role of mitochondrial energy metabolism in the improvement of depression through exercise, in order to provide a new theoretical basis and research ideas for the prevention and treatment of depression. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

14 pages, 3789 KiB  
Article
Anti-Obesity Effects of LB-GABA
by Hyein Han, Gunju Song, Jongwon Kim, Heegu Jin and Boo-Yong Lee
Int. J. Mol. Sci. 2025, 26(8), 3554; https://doi.org/10.3390/ijms26083554 - 10 Apr 2025
Viewed by 732
Abstract
Obesity is characterized by an excessive imbalance in energy metabolism and is associated with metabolic syndrome. Mammals have two types of adipose tissue: white adipose tissue (WAT) and brown adipose tissue (BAT). These are key factors in regulating the energy balance. Strategies aimed [...] Read more.
Obesity is characterized by an excessive imbalance in energy metabolism and is associated with metabolic syndrome. Mammals have two types of adipose tissue: white adipose tissue (WAT) and brown adipose tissue (BAT). These are key factors in regulating the energy balance. Strategies aimed at reducing obesity should encompass not only the prevention of lipid accumulation but also the stimulation of browning in both WAT and BAT, with the aim of enhancing energy expenditure. In this study, the mechanism by which Lactobacillus brevis-fermented gamma-aminobutyric acid (LB-GABA) prevents obesity was investigated, as well as whether it induces lipolysis and browning in WAT using 3T3-L1 adipocytes. The expression of proteins involved in signaling pathways regulating lipid accumulation and degradation, as well as browning, was measured using Western blotting analysis. We demonstrated that LB-GABA significantly inhibited lipid accumulation by suppressing adipogenesis and lipogenesis. In addition, the microscopic analysis of WAT demonstrated that LB-GABA reduced the adipocyte size and the number of lipid droplets. Moreover, Western blot analysis revealed that GABA increased lipolysis and activated the protein kinase A (PKA) signaling pathway, which promotes uncoupling protein 1 (UCP1)-mediated WAT browning. In conclusion, these results suggest that LB-GABA activates energy expenditure through lipid metabolism regulation and exerts anti-obesity effects. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Bioactive Nutrients Promoting Human Health)
Show Figures

Figure 1

23 pages, 2724 KiB  
Review
Thermogenesis and Energy Metabolism in Brown Adipose Tissue in Animals Experiencing Cold Stress
by Xuekai Zhang, Jin Xiao, Min Jiang, Clive J. C. Phillips and Binlin Shi
Int. J. Mol. Sci. 2025, 26(7), 3233; https://doi.org/10.3390/ijms26073233 - 31 Mar 2025
Cited by 2 | Viewed by 2486
Abstract
Cold exposure is a regulatory biological functions in animals. The interaction of thermogenesis and energy metabolism in brown adipose tissue (BAT) is important for metabolic regulation in cold stress. Brown adipocytes (BAs) produce uncoupling protein 1 (UCP1) in mitochondria, activating non-shivering thermogenesis (NST) [...] Read more.
Cold exposure is a regulatory biological functions in animals. The interaction of thermogenesis and energy metabolism in brown adipose tissue (BAT) is important for metabolic regulation in cold stress. Brown adipocytes (BAs) produce uncoupling protein 1 (UCP1) in mitochondria, activating non-shivering thermogenesis (NST) by uncoupling fuel combustion from ATP production in response to cold stimuli. To elucidate the mechanisms underlying thermogenesis and energy metabolism in BAT under cold stress, we explored how cold exposure triggers the activation of BAT thermogenesis and regulates overall energy metabolism. First, we briefly outline the precursor composition and function of BA. Second, we explore the roles of the cAMP- protein kinase A (PKA) and adenosine monophosphate-activated protein kinase (AMPK) signaling pathways in thermogenesis and energy metabolism in BA during cold stress. Then, we analyze the mechanism by which BA regulates mitochondria homeostasis and energy balance during cold stress. This research reveals potential therapeutic targets, such as PKA, AMPK, UCP1 and PGC-1α, which can be used to develop innovative strategies for treating metabolic diseases. Furthermore, it provides theoretical support for optimizing cold stress response strategies, including the pharmacological activation of BAT and the genetic modulation of thermogenic pathways, to improve energy homeostasis in livestock. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

13 pages, 1479 KiB  
Article
Computation of the pKa Values of Gallic Acid and Its Anionic Forms in Aqueous Solution: A Self-Similar Transformation Approach for Accurate Proton Hydration Free Energy Estimation
by Marcin Molski
Molecules 2025, 30(3), 742; https://doi.org/10.3390/molecules30030742 - 6 Feb 2025
Cited by 1 | Viewed by 1127
Abstract
The Gibbs free energies of gallic acid (GA) and its anionic forms in aqueous solution were computed utilizing density functional theory (DFT) at the LSDA, M062X, B3LYP/QZVP levels, in conjunction with the SMD solvation model. The pKa values corresponding to the [...] Read more.
The Gibbs free energies of gallic acid (GA) and its anionic forms in aqueous solution were computed utilizing density functional theory (DFT) at the LSDA, M062X, B3LYP/QZVP levels, in conjunction with the SMD solvation model. The pKa values corresponding to the four-step deprotonation of GA were determined through a non-linear self-similar transformation expressed as, pKa = a⋅pKa(the)c which establishes a link between theoretical and experimental pKa values. This approach replaces the previously employed linear relationship, pKa = a⋅pKa(the) + b. The proposed model demonstrates high accuracy in reproducing the experimental pKa1 = 4.16 ± 0.02, pKa2 = 8.55 ± 0.01, pKa3 =11.40 ± 0.10, pKa4 =12.8 ± 0.40 values of GA, with a standard error (SE) of 0.045 and a mean absolute error (MAE) of 0.019 in pKa unit. Furthermore, it facilitates the precise determination of the Gibbs free energy of the proton hydration, yielding ∆G(H+)aq = 259.4272(75) [kcal mol−1]. This result conforms acceptably with the experimental value of ∆G(H+)aq = −259.5 [kcal mol−1]. Full article
(This article belongs to the Special Issue Computational Chemistry Insights into Molecular Interactions)
Show Figures

Graphical abstract

13 pages, 4595 KiB  
Article
Molecular Dynamic Simulation of Primary Damage with Electronic Stopping in Indium Phosphide
by Yurong Bai, Wenlong Liao, Zhongcun Chen, Wei Li, Wenbo Liu, Huan He and Chaohui He
Nanomaterials 2024, 14(21), 1738; https://doi.org/10.3390/nano14211738 - 30 Oct 2024
Cited by 1 | Viewed by 1122
Abstract
Indium phosphide (InP) is an excellent material used in space electronic devices due to its direct band gap, high electron mobility, and high radiation resistance. Displacement damage in InP, such as vacancies, interstitials, and clusters, induced by cosmic particles can lead to the [...] Read more.
Indium phosphide (InP) is an excellent material used in space electronic devices due to its direct band gap, high electron mobility, and high radiation resistance. Displacement damage in InP, such as vacancies, interstitials, and clusters, induced by cosmic particles can lead to the serious degradation of InP devices. In this work, the analytical bond order potential of InP is modified with the short-range repulsive potential, and the hybrid potential is verified for its reliability to simulate the atomic cascade collisions. By using molecular dynamics simulations with the modified potential, the primary damage defects evolution of InP caused by 1–10 keV primary knock-on atoms (PKAs) are studied. The effects of electronic energy loss are also considered in our research. The results show that the addition of electronic stopping loss reduces the number of point defects and weakens the damage regions. The reduction rates of point defects caused by electronic energy loss at the stable state are 32.2% and 27.4% for 10 keV In-PKA and P-PKA, respectively. In addition, the effects of electronic energy loss can lead to an extreme decline in the number of medium clusters, cause large clusters to vanish, and make the small clusters dominant damage products in InP. These findings are helpful to explain the radiation-induced damage mechanism of InP and expand the application of InP devices. Full article
(This article belongs to the Special Issue Theoretical Calculation Study of Nanomaterials: 2nd Edition)
Show Figures

Figure 1

16 pages, 1106 KiB  
Article
Cryoprotective Potential of Theobromine in the Improvement of the Post-Thaw Quality of Bovine Spermatozoa
by Filip Benko, Štefan Baňas, Michal Ďuračka, Miroslava Kačániová and Eva Tvrdá
Cells 2024, 13(20), 1710; https://doi.org/10.3390/cells13201710 - 16 Oct 2024
Viewed by 1325
Abstract
Theobromine (TBR) is a methylxanthine known for its bronchodilatory and stimulatory effects. This research evaluated the vitality, capacitation patterns, oxidative characteristics, microbial profile and expression of capacitation-associated proteins (CatSper1/2, sodium bicarbonate cotransporter [NBC], protein kinases A [PKA] and C [PKC] and adenylate cyclase [...] Read more.
Theobromine (TBR) is a methylxanthine known for its bronchodilatory and stimulatory effects. This research evaluated the vitality, capacitation patterns, oxidative characteristics, microbial profile and expression of capacitation-associated proteins (CatSper1/2, sodium bicarbonate cotransporter [NBC], protein kinases A [PKA] and C [PKC] and adenylate cyclase 10 [ADCY10]) in cryopreserved bovine spermatozoa (n = 30) in the absence (cryopreserved control [CtrlC]) or presence of different TBR concentrations (12.5, 25, and 50 µM) in egg yolk extender. Fresh ejaculate served as a negative control (CtrlN). Significant post-thaw maintenance of the sperm motility, membrane and DNA integrity and mitochondrial activity (p < 0.001) were recorded following the administration of 25 μM and 50 μM TBR, then compared to CtrlC. All groups supplemented with TBR exhibited a significantly lower percentage of prematurely capacitated spermatozoa (p < 0.001) than CtrlC. Significantly decreased levels of global reactive oxygen species (ROS), hydrogen peroxide and hydroxyl radicals were observed in the presence of 25 μM and 50 μM TBR (p < 0.01). Western blot analysis revealed that supplementation with 50 μM TBR significantly prevented the loss of NBC and ADCY10 (p < 0.01), while all TBR doses stabilized the levels of PKC (p < 0.05 at 50 μM TBR; p < 0.001 at 12.5 μM and 25 μM TBR). In summary, we suggest that TBR is effective in protecting the spermatozoa during the cryopreservation process through its potential to stimulate energy synthesis while preventing ROS overproduction and the loss of proteins involved in the sperm activation process. Full article
(This article belongs to the Section Reproductive Cells and Development)
Show Figures

Figure 1

16 pages, 2284 KiB  
Article
Local Strain Effects on Lattice Defect Dynamics and Interstitial Dislocation Loop Formation in Irradiated Tungsten–Molybdenum Alloys: A Molecular Dynamics Study
by Marzoqa M. Alnairi and Mosab Jaser Banisalman
Int. J. Mol. Sci. 2024, 25(19), 10777; https://doi.org/10.3390/ijms251910777 - 7 Oct 2024
Viewed by 1236
Abstract
In this study, molecular dynamics (MD) simulations were used to investigate how alloying tungsten (W) with molybdenum (Mo) and local strain affect the primary defect formation and interstitial dislocation loops (IDLs) in W–Mo alloys. While the number of Frenkel pairs (FPs) in the [...] Read more.
In this study, molecular dynamics (MD) simulations were used to investigate how alloying tungsten (W) with molybdenum (Mo) and local strain affect the primary defect formation and interstitial dislocation loops (IDLs) in W–Mo alloys. While the number of Frenkel pairs (FPs) in the W–Mo alloy is similar to pure W, it is half that of pure Mo. The W–20% Mo alloy, chosen for further analysis, showed minimal FP variance after collision cascades induced by primary knock-on atoms (PKAs) at 10 to 80 keV. The research examined hydrostatic strains from −1.4% to 1.6%, finding that higher strains correlated with increased FP counts and cluster formation, including IDLs. The following two types of IDLs were identified: majority ½ <111> loops as well as <100> IDLs that formed within the initial picoseconds of the simulations under higher tensile strain (1.6%) and larger PKA energies (80 keV). The strain effects also correlated with changes in threshold displacement energy (TDE), with higher FP formation under tensile strain. This study highlights the impact of strain and alloying on radiation damage, particularly in low-temperature, high-energy environments. Full article
(This article belongs to the Special Issue Research on Molecular Dynamics: 2nd Edition)
Show Figures

Figure 1

13 pages, 7133 KiB  
Article
Hederagenin from Hedera helix Promotes Fat Browning in 3T3-L1 Adipocytes
by Seung Min Choi, Ho Seon Lee, Sung Ho Lim, Gayoung Choi and Chang-Ik Choi
Plants 2024, 13(19), 2789; https://doi.org/10.3390/plants13192789 - 4 Oct 2024
Cited by 5 | Viewed by 1884
Abstract
The prevalence of obesity is increasing globally, with approximately 700 million obese people worldwide. Currently, regulating energy homeostasis by increasing energy expenditure is attracting attention as a strategy for treating obesity. White adipose tissue is known to play a role in accumulating energy [...] Read more.
The prevalence of obesity is increasing globally, with approximately 700 million obese people worldwide. Currently, regulating energy homeostasis by increasing energy expenditure is attracting attention as a strategy for treating obesity. White adipose tissue is known to play a role in accumulating energy by storing excess energy, while brown adipose tissue expends energy and maintains body temperature. Thus, the browning of white adipose tissue has been shown to be effective in controlling obesity. Hedera helix (H. helix) has been widely used as a traditional medicine for various diseases. In several previous studies, hederagenin (HDG) from H. helix has demonstrated many biological activities. In this study, we investigated the antiobesity effect of HDG on fat browning in 3T3-L1 adipocytes. Consequent to HDG treatment, a reduction in lipid accumulation was measured through oil red O staining. In addition, this study investigated that HDG increases energy expenditure by upregulating the expression of several targets related to thermogenesis, including uncoupling protein 1 (UCP1). This process involves inhibiting lipogenesis via the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway and promoting lipolysis through the protein kinase A (PKA) pathway. HDG is expected to be effective in promoting fat browning, indicating its potential as a natural antiobesity candidate. Full article
Show Figures

Figure 1

14 pages, 29936 KiB  
Article
On the Use of a Chloride or Fluoride Salt Fuel System in Advanced Molten Salt Reactors, Part 3; Radiation Damage
by Omid Noori-kalkhoran, Lakshay Jain and Bruno Merk
Energies 2024, 17(19), 4772; https://doi.org/10.3390/en17194772 - 24 Sep 2024
Viewed by 1094
Abstract
Structural materials in fast reactors with harsh radiation environments due to high energy neutrons—compared to thermal reactors—potentially suffer from a higher degree of radiation damage. This radiation damage can change the thermophysical and mechanical properties of materials and, as a result, alter their [...] Read more.
Structural materials in fast reactors with harsh radiation environments due to high energy neutrons—compared to thermal reactors—potentially suffer from a higher degree of radiation damage. This radiation damage can change the thermophysical and mechanical properties of materials and, as a result, alter their performance and effective lifetime, in some cases leading to their disintegration. These phenomena can jeopardize the safety of fast reactors and thus need to be investigated. In this study, the effect of radiation damage on the vessels of molten salt fast reactors (MSFR) was evaluated based on two fundamental radiation damage parameters: displacement per atom (dpa) and primary knock-on atom (pka). Following the previous part of this article (Parts 1 and 2), an iMAGINE reactor core design (University of Liverpool, UK—chloride-based salt fuel system) and an EVOL reactor core design (CNRS, Grenoble, France, fluoride-based salt fuel system) with stainless steel and nickel-based alloy material vessels, respectively, were considered as case studies. The SPECTER and SPECTRA-PKA codes and a PTRAC card of MCNPX, integrated with a module which has been developed in MATLAB, named PTRIM and SRIM-2013 (using binary collision approximation), were employed individually to calculate and compare dpa and PKA (this master module containing all three tools has been appended to the iMAGINE-3BIC package for future use during reactor operations). Additionally, SRIM-2013 was applied in a 3D simulation of a radiation damage map on a small sample of vessels based on the calculated PKA. Our results showed a higher degree of radiation damage in the iMAGINE vessel compared to the EVOL one, which could be expected due to the harder neutron flux spectrum of the iMAGINE core compared to EVOL. In addition, the nickel alloy vessel showed better radiation damage resistance against high energy neutrons compared to the stainless steel one, although more investigations are required on thermal neutrons and alloy corrosion mechanisms to determine the best material for use in MSFR vessels. Full article
(This article belongs to the Special Issue Advanced Waste-to-Energy Technologies)
Show Figures

Figure 1

16 pages, 1273 KiB  
Article
Predicting pKa Values of Para-Substituted Aniline Radical Cations vs. Stable Anilinium Ions in Aqueous Media
by Jingxin Wang, Hansun Fang, Zixi Zhong, Huajun Huang, Ximei Liang, Yufan Yuan, Wenwen Zhou and Davide Vione
Molecules 2024, 29(19), 4522; https://doi.org/10.3390/molecules29194522 - 24 Sep 2024
Viewed by 1449
Abstract
The focus of pKa calculations has primarily been on stable molecules, with limited studies comparing radical cations and stable cations. In this study, we comprehensively investigate models with implicit solvent and explicit water molecules, direct and indirect calculation approaches, as well [...] Read more.
The focus of pKa calculations has primarily been on stable molecules, with limited studies comparing radical cations and stable cations. In this study, we comprehensively investigate models with implicit solvent and explicit water molecules, direct and indirect calculation approaches, as well as methods for calculating free energy, solvation energy, and quasi-harmonic oscillator approximation for para-substituted aniline radical cations (R-PhNH2•+) and anilinium cations (R-PhNH3+) in the aqueous phase. Properly including and positioning explicit H2O molecules in the models is important for reliable pKa predictions. For R-PhNH2•+, precise pKa values were obtained using models with one or two explicit H2O molecules, resulting in a root mean square error (RMSE) of 0.563 and 0.384, respectively, for both the CBS-QB3 and M062X(D3)/ma-def2QZVP methods. Further improvement was achieved by adding H2O near oxygen-containing substituents, leading to the lowest RMSE of 0.310. Predicting pKa values for R-PhNH3+ was more challenging. CBS-QB3 provided an RMSE of 0.349 and the M062X(D3)/ma-def2QZVP method failed to calculate pKa accurately (RMSE > 1). However, by adopting the double-hybrid functional method and adding H2O near the R substituent group, the calculations were significantly improved with an average absolute difference (ΔpKa) of 0.357 between the calculated and experimental pKa values. Our study offers efficient and reliable methods for pKa calculations of R-PhNH2•+ (especially) and R-PhNH3+ based on currently mature quantum chemistry software. Full article
Show Figures

Graphical abstract

Back to TopTop