Cryoprotective Potential of Theobromine in the Improvement of the Post-Thaw Quality of Bovine Spermatozoa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Freezing Procedure
2.2. Qualitative Sperm Parameters
2.3. Assessment of the Sperm Capacitation Patterns
2.4. Evaluation of the Oxidative Profile
2.5. Western Blotting
2.6. Bacteriological Analysis and Identification of Bacteria
2.7. Statistics
3. Results
3.1. Sperm Viability
3.2. Sperm Capacitation Patterns
3.3. Oxidative Profile
3.4. Western Blot
3.5. Microbial Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ugur, M.R.; Abdelrahman, A.S.; Evans, H.C.; Gilmore, A.A.; Hitit, M.; Arififiantini, R.I.; Purwantara, B.; Kaya, A.; Memili, E. Advances in Cryopreservation of Bull Sperm. Front. Vet. Sci. 2019, 6, 268. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, V.R.; Ramesh, V.; Dewry, R.K.; Kumar, G.; Raval, K.; Patoliya, P. Implications of cryopreservation on structural and functional attributes of bovine spermatozoa: An overview. Andrologia 2021, 53, e14154. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Prasad, J.K.; Srivastava, N.; Ghosh, S.K. Strategies to minimize various stress-related freeze-thaw damages during conventional cryopreservation of mammalian spermatozoa. Biopreservation Biobanking 2019, 17, 603–612. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, A.; Saha, D.; Niemann, H.; Gryshkov, O.; Glasmacher, B.; Hofmann, N. Effects of cryopreservation on the epigenetic profile of cells. Cryobiology 2017, 74, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Talukdar, D.J.; Ahmed, K.; Talukdar, P. Cryocapacitation and Fertility of Cryopreserved Semen. Int. J. Livest. Res. 2015, 5, 11–18. [Google Scholar] [CrossRef]
- Visconti, P.E. Understanding the molecular basis of sperm capacitation through kinase design. Proc. Natl. Acad. Sci. USA 2009, 106, 667–668. [Google Scholar] [CrossRef]
- Bailey, J.L. Factors Regulating Sperm Capacitation. SBiRM 2010, 56, 334–348. [Google Scholar] [CrossRef]
- Sutovsky, P. Sperm Capacitation, the Acrosome Reaction, and Fertilization. In Reproductive Endocrinology and Infertility; Carrell, D., Peterson, C., Eds.; Springer: New York, NY, USA, 2010; pp. 389–421. [Google Scholar]
- Watson, P.F. The causes of reduced fertility with cryopreserved semen. Anim. Reprod. Sci. 2000, 60–61, 481–492. [Google Scholar] [CrossRef]
- Lessard, C.; Parent, S.; Leclerc, P.; Bailey, J.L.; Sullivan, R. Cryopreservation alters the levels of the bull sperm surface protein P25b. J. Androl. 2000, 21, 700–707. [Google Scholar] [CrossRef]
- Kadirvel, G.; Kathiravan, P.; Kumar, S. Protein tyrosine phosphorylation and zona binding ability of in vitro capacitated and cryopreserved buffalo spermatozoa. Theriogenology 2011, 75, 1630–1639. [Google Scholar] [CrossRef]
- Lone, S.A.; Prasad, J.K.; Ghosh, S.K.; Das, G.K.; Balamurugan, B.; Verma, M.R. Study on correlation of sperm quality parameters with antioxidant and oxidant status of buffalo bull semen during various stages of cryopreservation. Andrologia 2018, 50, e12970. [Google Scholar] [CrossRef] [PubMed]
- Dowling, D.K.; Simmons, L.W. Reactive oxygen species as universal constraints in life-history evolution. Proc. R. Soc. B Biol. Sci. 2008, 276, 1737–1745. [Google Scholar] [CrossRef] [PubMed]
- Aitken, R.J.; Wingate, J.K.; De Iuliis, G.N.; Koppers, A.J.; McLaughlin, E.A. Cis-Unsaturated Acids Stimulate Reactive Oxygen Species Generation and Lipid Peroxidation in Human Spermatozoa. JCEM 2006, 91, 4154–4163. [Google Scholar] [CrossRef] [PubMed]
- Bui, A.D.; Sharma, R.; Henkel, R.; Agarwal, A. Reactive oxygen species impact on sperm DNA and its role in male infertility. Andrologia 2018, 50, e13012. [Google Scholar] [CrossRef]
- Tvrdá, E.; Benko, F.; Slanina, T.; du Plessis, S.S. The Role of Selected Natural Biomolecules in Sperm Production and functionality. Molecules 2021, 26, 5196. [Google Scholar] [CrossRef]
- Agarwal, A.; Saleh, R.A. Role of oxidants in male infertility: Rationale, significance, and treatment. Urol. Clin. N. Am. 2002, 29, 817–827. [Google Scholar] [CrossRef]
- Bollwein, H.; Fuchs, I.; Koess, C. Interrelationship Between Plasma Membrane Integrity, Mitochondrial Membrane Potential and DNA Fragmentation in cryopreserved Bovine Spermatozoa. Reprod. Dom. Anim. 2008, 43, 189–195. [Google Scholar] [CrossRef]
- Ahmad, M.; Ahmad, N.; Riaz, A.; Anzar, M. Sperm survival kinetics in different types of bull semen: Progressive motility, plasma membrane integrity, acrosomal status and reactive oxygen species generation. Reprod. Fertil. Dev. 2015, 27, 784–793. [Google Scholar] [CrossRef]
- Tahvilzadeh, M.; Hajimahmoodi, M.; Toliyat, T.; Karimi, M.; Rahimi, R. An evidence-based approach to medicinal plants for the treatment of sperm abnormalities in traditional Persian medicine. Andrologia 2016, 48, 860–879. [Google Scholar] [CrossRef]
- Gupta, S.; Kumar, A.; Mahajan, A.; Sharma, P.; Sachan, V.; Aggrawal, J.; Yadav, S.; Saxena, A.; Kumar Swain, D. curcumin in a tris-based semen extender improves cryosurvival of Hariana bull spermatozoa. Andrologia 2021, 54, e14255. [Google Scholar]
- Bucak, M.N.; Ataman, M.B.; Baspinar, N.; Uysal, O.; Taspinar, M.; Bilgili, A.; Ozturk, C.; Gungor, S.; Inanc, M.E.; Akal, E. Lycopene and resveratrol improve post-thaw bull sperm parameters: Sperm motility, mitochondrial activity and DNA integrity. Andrologia 2014, 47, 545–552. [Google Scholar] [CrossRef] [PubMed]
- Baňas, Š.; Benko, F.; Ďuračka, M.; Lukáč, N.; Tvrdá, E. Epicatechin Prevents Cryocapacitation of Bovine Spermatozoa through Antioxidant Activity and Stabilization of Transmembrane Ion Channels. Int. J. Mol. Sci. 2023, 24, 2510. [Google Scholar] [CrossRef]
- El-Raey, M.; Azab, R.E. The Effect of Kaempferol on Buffalo Semen Freezability and Redox State. Benha Vet. Med. J. 2022, 42, 164–169. [Google Scholar]
- Longobardi, V.; Zullo, G.; Salzano, A.; De Canditis, C.; Cammarano, A.; De Luise, L.; Puzio, M.V.; Neglia, G.; Gasparrini, B. Resveratrol prevents capacitation-like changes and improves in vitro fertilizing capability of buffalo frozen-thawed sperm. Theriogenology 2017, 88, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.F.; Shao, S.H.; Xu, P.; Yang, X.Q.; Qian, L.S. Catechin-enriched green tea extract as a safe and effective agent for antimicrobial and anti-inflammatory treatment. Afr. J. Pharm. Pharmacol. 2011, 5, 1452–1461. [Google Scholar] [CrossRef]
- Adeyi, A.O.; Ajisebiola, B.S.; Sanni, A.A.; Oladele, J.O.; Mustapha, A.R.K.; Oyedara, O.O.; Fagbenro, O.S. Kaempferol mitigates reproductive dysfunction induced by Naja nigricollis venom through antioxidant system and anti-inflammatory response in male rats. Sci. Rep. 2024, 14, 3933. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, H.; Jahan, S.; Riaz, M.; Tarin Khan, B.; Umar Ijaz, M. Epigallocatechin-3-gallate (EGCG) addition as an antioxidant in a cryo-diluent media improves microscopic parameters, and fertility potential, and alleviates oxidative stress parameters of buffalo spermatozoa. Cryobiology 2020, 97, 101–109. [Google Scholar] [CrossRef]
- Eteng, M.U.; Eyong, E.U.; Ifere, G.O.; Chukwuemeka, N. Theobromine induced seminiferous tubular lesion with elevated serum testosterone levels in male Wistar rats. Biokemistri 2005, 17, 123–128. [Google Scholar] [CrossRef]
- Bishist, R.; Raina, V.S.; Bhakat, M.; Mohanty, T.K.; Lone, S.A.; Sinha, R. Effect of antioxidant additives on freezability of buffalo spermatozoa. Buffalo Bull. 2020, 39, 337–344. [Google Scholar]
- Minelli, A.; Bellezza, I. Methylxanthines and Reproduction. In Methylxanthines. Handbook of Experimental Pharmacology; Fredholm, B.B., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 200, pp. 349–372. [Google Scholar]
- Ďuračka, M.; Kováč, J.; Benko, F.; Lukáč, N.; Tvrdá, E. Theobromine promotes short-term and long-term sperm survival in dose-dependent manner. In Book of Abstracts of the 73rd Annual Meeting of the European Federation of Animal Science; Wageningen Academic Publishers: Wageningen, The Netherlands, 2022; p. 155. [Google Scholar]
- Baňas, Š.; Benko, F.; Ďuračka, M.; Lukáč, N.; Tvrdá, E. Theobromine as a protective biomolecule in the CatSper gene expression of bovine cryopreserved spermatozoa. In Animal Biotechnology; Slovak University of Agriculture: Nitra, Slovakia, 2024; p. 54. [Google Scholar]
- Benko, F.; Mohammadi-Sangcheshmeh, A.; Ďuračka, M.; Lukáč, N.; Tvrdá, E. In vitro versus cryo-induced capacitation of bovine spermatozoa, part 1: Structural, functional, and oxidative similarities and differences. PLoS ONE 2022, 17, e0276683. [Google Scholar] [CrossRef]
- Benko, F.; Fialková, V.; Žiarovská, J.; Ďuračka, M.; Lukáč, N.; Tvrdá, E. In Vitro versus Cryo-Induced Capacitation of Bovine Spermatozoa, Part 2: Changes in the Expression Patterns of Selected Transmembrane Channels and Protein Kinase A. Int. J. Mol. Sci. 2022, 23, 14646. [Google Scholar] [CrossRef] [PubMed]
- Baňas, Š.; Tvrdá, E.; Benko, F.; Ďuračka, M.; Čmiková, N.; Lukáč, N.; Kačániová, M. Kaempferol as an Alternative Cryosupplement for Bovine Spermatozoa: Cryoprotective and Membrane-Stabilizing Effects. Int. J. Mol. Sci. 2024, 25, 4129. [Google Scholar] [CrossRef]
- Ďuračka, M.; Husarčíková, K.; Jančov, M.; Galovičová, l.; Kačániová, M.; Lukáč, N.; Tvrdá, E. Staphylococcus-Induced Bacteriospermia In Vitro: Consequences on the Bovine Spermatozoa Quality, Extracellular Calcium and Magnesium Content. Animals 2021, 11, 3309. [Google Scholar] [CrossRef] [PubMed]
- Ďuračka, M.; Belić, L.; Tokárová, K.; Žiarovská, J.; Kačániová, M.; Lukáč, N.; Tvrdá, E. Bacterial communities in bovine ejaculates and their impact on the semen quality. Syst. Biol. Reprod. Med. 2021, 67, 438–449. [Google Scholar] [CrossRef]
- Alkali, I.M.; Asuku, S.O.; Umar, M.B.; Abba, A.; Mustapha, A.; Bukar, M.M.; Waziri, M.A. Microbial Contaminants in Fresh and Extended Turkey Semen and their Sensitivity to Antibiotics. Nig. Vet. J. 2020, 41, 1–6. [Google Scholar] [CrossRef]
- Hezavei, M.; Sharafi, M.; Mohseni Kouchesfahani, H.; Henkel, R.; Agarwal, A.; Esmaili, V.; Shahverdi, A. Sperm cryopreservation: A review on current molecular cryobiology and advanced approaches. Reprod. Biomed. Online 2018, 37, 327–339. [Google Scholar] [CrossRef] [PubMed]
- Peris-Frau, P.; Soler, A.J.; Iniesta-Cuerda, M.; Martín-Maestro, A.; Sánchez-Ajofrín, I.; Medina-Chávez, D.A.; Fernández-Santos, M.R.; Garcia-Álvez, O.; Maroto-Morales, A.; Montoro, V.; et al. Sperm Cryodamage in Ruminants: Understanding the Molecular Changes Induced by the Cryopreservation process to Optimize Sperm Quality. Int. J. Mol. Sci. 2020, 21, 2781. [Google Scholar] [CrossRef]
- Khalil, W.A.; El-Harairy, M.A.; Zeidan, A.E.B.; Hassan, M.A.E.; Mohey-Elsaeed, O. Evaluation of bull spermatozoa during and after cryopreservation: Structural and ultrastructural insights. Int. J. Vet. Sci. Med. 2018, 6, S49–S56. [Google Scholar] [CrossRef]
- Nagata, M.B.; Egashira, J.; Katafuchi, N.; Endo, K.; Ogata, K.; Yamanaka, K.; Yamanouchi, T.; Matsuda, H.; Hashiyada, Y.; Yamashita, K. Bovine sperm selection procedure prior to cryopreservation for improvement of post-thawed semen quality and fertility. J. Anim. Sci. Biotechnol. 2019, 10, 91. [Google Scholar] [CrossRef]
- Madeja, Z.E.; Podralska, M.; Nadel, A.; Psczola, M.; Pawlak, P.; Rozwadowska, N. Mitochondria Content and Activity Crucial Parameters for Bull Sperm Quality Evaluation. Antioxidants 2021, 10, 1204. [Google Scholar] [CrossRef]
- Teramachi Trevizan, J.; Torres Carreira, J.; Resende Carvalho, I.; Kipper, B.H.; Nagata, W.B.; Venturoli Perri, S.H.; Franco Oliviera, M.E.; Cestari Pierucci, J.; Burkhardt de Koivisto, M. Does lipid peroxidation and oxidative DNA damage differ in cryopreserved semen samples from young, adult and aged Nellore bulls? Anim. Reprod. Sci. 2018, 195, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Alshawa, E.; Laggan, M.; Montenarch, M.; Hammadeh, M.E. Influence of cryopreservation on the CATSPER2 and TEKT2 expression levels and protein levels in human spermatozoa. Toxicol. Rep. 2019, 6, 819–824. [Google Scholar] [CrossRef] [PubMed]
- Jensen, L.J.; Schmitt, B.U.; Berger, U.V.; Nsumu, N.N.; Boron, W.F.; Hediger, M.A.; Brown, D.; Breton, S. Localization of Sodium Bicarbonate Cotransporter (NBC) Protein and Messenger Ribonucleic Acid in Rat Epididymis. Biol. Reprod. 1999, 60, 573–579. [Google Scholar] [CrossRef]
- Flores, E.; Ramió-Lluch, L.; Bucci, D.; Fernández-Novell, J.M.; Pena, A.; Rodríguez-Gil, J.E. Freezing-thawing induces alterations in histone H1-DNA binding and the breaking of protein-DNA disulfide bonds in boar sperm. Theriogenology 2011, 76, 1450–1464. [Google Scholar] [CrossRef]
- Harrison, R.A.P.; White, I.G. Glycolytic enzymes in the spermatozoa and cytoplasmic droplets of bull, boar and ram, and their leakage after shock. J. Reprod. Fert. 1972, 30, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Lee-Estevez, M.; Herrera, L.; Díaz, R.; Beltrán, J.; Figueroa, E.; Dumorné, K.; Ulloa-Rodríguez, P.; Short, S.; Risopatrón, J.; Valdebenito, I.; et al. Effects of cryopreservation on cAMP-dependent protein kinase and AMP-activated protein kinase in Atlantic salmon (Salmo salar) spermatozoa: Relation with post-thaw motility. Anim. Reprod. Sci. 2019, 209, 106133. [Google Scholar] [CrossRef]
- Feliciello, A.; Gottesman, M.E.; Avvedimento, E.V. The biological functions of A-kinase anchor proteins. J. Mol. Biol. 2001, 308, 99–114. [Google Scholar] [CrossRef]
- Stival, C.; Ritaglati, C.; Xu, X.; Gervasi, M.G.; Luque, G.M.; Baró Graf, C.; De la Vega-Beltrán, J.L.; Torres, N.; Darzson, A.; Krapf, D.; et al. Disruption of protein kinase A localization induces acrosomal exocytosis in capacitated mouse sperm. J. Biol. Chem. 2018, 293, 9435–9447. [Google Scholar] [CrossRef] [PubMed]
- Al-Mutary, M.G. Use of antioxidants to augment semen efficiency during liquid storage and cryopreservation in livestock animals: A review. J. King Saud Univ. Sci. 2021, 33, 101226. [Google Scholar] [CrossRef]
- Silvestre, M.A.; Yániz, J.L.; Pena, F.J.; Santolaria, P.; Castelló-Ruiz, M. Role of Antioxidants in Cooled Liquid Storage of Mammal Spermatozoa. Antioxidants 2021, 10, 1096. [Google Scholar] [CrossRef]
- Kumar, A.; Virmani, M.; Kumar, R.; Kumar, S.; Kanwar, S.A.; Kumar, S.; Patil, C.S. Inclusion of 1,3-dimethylxanthine improved quality parameters of bull semen. Anim. Biol. 2023, 25, 11–16. [Google Scholar] [CrossRef]
- Buffone, M.G.; Wertheimer, E.V.; Visconti, P.E.; Krapf, D. Central role of soluble adenylyl cyclase and cAMP in sperm physiology. Biochim. Biophys. Acta 2014, 1842, 2610–2620. [Google Scholar] [CrossRef]
- Li, P.; li, Z.H.; Dzyuba, B.; Hulak, M.; Rodina, M.; Linhart, O. Evaluating the impacts of osmotic and oxidative stress in common carp (Cyprinus carpio L.) sperm caused by cryopreservation techniques. Biol. Reprod. 2010, 83, 852–858. [Google Scholar] [CrossRef] [PubMed]
- Satish, M.; Sandhya, K.; Nitin, K.; Yashas Kiran, N.; Aleena, B.; Satish Kumar, A.; Kalthuir, G.; Rajakumara, E. Computational, biochemical and ex vivo evaluation of xanthine derivates against phosphodiesterases to enhance sperm motility. J. Biomol. Struct. Dyn. 2022, 41, 5317–5327. [Google Scholar]
- Glogowski, J.; Danforth, D.R.; Ciereszko, A. Inhibition of Alkaline Phosphatase Activity of Boar Semen by Pentoxifylline, Caffeine, and Theophylline. J. Androl. 2002, 23, 783–792. [Google Scholar] [CrossRef] [PubMed]
- Minelli, A.; Liguori, L.; Bellazza, I.; Mannucci, R.; Johansson, B.; Fredholm, B.B. Involvement of A1 Adenosine Receptors in the Acquisition of Fertilizing Capacity. J. Androl. 2004, 25, 286–292. [Google Scholar] [CrossRef]
- Werner, C.; Cadoná, F.C.; da Cruz, I.B.M.; da Silveira Flôres, E.R.; Machado, A.K.; Fantinel, M.R.; Weis, G.C.C.; Assmann, C.E.; de Oliveira Alves, A.; Bonadiman, B.D.S.R.; et al. A chemical compound based on methylxanthine-polyphenols lowers nitric oxide levels and increases post-thaw human sperm viability. Zygote 2017, 25, 719–730. [Google Scholar] [CrossRef]
- Wu, F.; Liu, R.; Shen, X.; Xu, H.; Sheng, L. Study on the interaction and antioxidant activity of theophylline and theobromine with SOD by spectra and calculation. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 215, 354–362. [Google Scholar] [CrossRef]
- Okada, H.; Tatsumi, N.; Kanzaki, M.; Fujisawa, M.; Arakawa, S.; Kamidono, S. Formation of reactive oxygen species by spermatozoa from astheno-zoospermic patients: Response to treatment with pentoxyfiline. J. Urol. 1997, 157, 2140–2146. [Google Scholar] [CrossRef]
- Calza, N.; Ciotti, P.M.; Tranquillo, M.L.; Notarangelo, L.; Zuffa, S.; Damiano, G.; Cipriani, L.; Dirodi, M.; Franceschelli, A.; Porcu, E. P-098 Use of Dimethylxanthine Theophylline in surgical retrieved sperms that do not recover motility after thawing. Hum. Reprod. 2021, 36, deab130-097. [Google Scholar] [CrossRef]
- Ebner, T.; Tews, G.; Mayer, R.B.; Ziehr, S.; Arzt, W.; Costamoling, W.; Shebl, O. Pharmacological stimulation of sperm motility in frozen and thawed testicular sperm using the dimethylxanthine theophylline. Fertil. Steril. 2011, 96, 1331–1336. [Google Scholar] [CrossRef] [PubMed]
- Belhan, S.; Oto, G.; Arihan, O.; Kosal, V. Changes in Sperm parameters Following Administration of Theophylline, a Competitive Antagonist of Adenosine in Rats Exposed to Bleomycin, a Chemotherapeutic Agent. Atatürk Univ. J. Vet. Sci. 2019, 14, 246–251. [Google Scholar]
- Weinberger, M.A.; Friedman, L.; Farber, T.M.; Moreland, F.M.; Peters, E.L.; Gilmore, C.E.; Khan, M.A. Testicular atrophy and impaired spermatogenesis in rats fed high levels of the methylxanthines caffeine, theobromine, or theophylline. J. Environ. Pathol. Toxicol. 1978, 1, 669–688. [Google Scholar]
- Tengowski, M.W.; Feng, D.; Sutovsky, M.; Sutovsky, P. Differential expression of genes encoding constitutive and inducible 20S proteasomal core of theophylline- or 1,3-dinitrobenzene-exposed rats. Biol. Reprod. 2007, 76, 149–163. [Google Scholar] [CrossRef]
- Baňas, Š.; Benko, F.; Ďuračka, M.; Lukáč, N.; Tvrdá, E. Kaempferol Enhances Sperm Post-Thaw Survival by Its Cryoprotective and Antioxidant Behavior. Stresses 2023, 3, 687–700. [Google Scholar] [CrossRef]
- Bazzaz, B.S.; Lavaei, S.; Hosseinzadeh, H. Interaction of methylxanthines and gentamycin against Staphylococcus aureus and Pseudomonas aureginosa: Role of phosphodiesterase inhibition. Acta Microbiol. Immunol. Hung. 2012, 59, 13–20. [Google Scholar] [CrossRef]
- Fazly Bazzaz, B.S.; Sarabandi, S.; Khameneh, B.; Hosseinzadeh, H. Effect of Catechins, green tea Extract and Methylxanthines in Combination with Gentamicin Against Staphylococcus aureus and Pseudomonas aureginosa. J. Pharmacopunct. 2016, 19, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Hosseinzadeh, H.; Bazaz, F.; Sadati, M. In vitro evaluation of methylxanthines and some antibiotics: Interaction against Staphylococcus aureus and Pseudomonas aureginosa. Iran. Biomed. J. 2006, 10, 163–167. [Google Scholar]
- Morrell, J.M.; Valeanu, A.S.; Lundeheim, N.; Johannisson, A. Sperm quality in frozen beef and dairy bull semen. Acta Vet. Scand. 2018, 60, 41. [Google Scholar] [CrossRef]
Protein of Interest | Name | Cat. No. | Source | Dilution | Manufacturer |
---|---|---|---|---|---|
CatSper 1 | CATSPER1 polyclonal antibody | #PA5-75788 | rabbit | 1:1000, 5% milk/TBS/0.1% Tween-20 | Invitrogen, Waltham, MA, USA |
CatSper 2 | CATSPER2 polyclonal antibody | #PA5-41072 | rabbit | 1:1000, 5% milk/TBS/0.1% Tween-20 | Invitrogen, Waltham, MA, USA |
NBC | Anti-Na+/HCO3− cotransporter polyclonal antibody | #AB3212-I | rabbit | 1:500, 5% milk/TBS/0.1% Tween-20 | EMD Millipore Corporation, Temecula, CA, USA |
PKA | PKA α antibody | #PA5-17626 | rabbit | 1:1000, 5% milk/TBS/0.1% Tween-20 | Invitrogen, Waltham, MA, USA |
PKC | PKC alpha monoclonal antibody | #PA5-43049 | rabbit | 1:1000, 5% milk/TBS/0.1% Tween-20 | Invitrogen, Waltham, MA, USA |
ADCY10 | ADCY10 polyclonal antibody | #PA5-43049 | rabbit | 1:1000, 5% milk/TBS/0.1% Tween-20 | Invitrogen, Waltham, MA, USA |
Group/Parameter | CtrlN | CtrlC | 12.5 µM TBR | 25 µM TBR | 50 µM TBR |
---|---|---|---|---|---|
Sperm motility [%] | 93.70 ± 3.52 | 57.00 ± 2.86 ****N | 70.30 ± 3.42 ***N; ***C | 77.20 ± 4.66 ***N; ***C | 77.90 ± 2.94 ***N; ***C |
Membrane integrity [%] | 94.56 ± 1.67 | 67.77 ± 3.85 ****N | 78.87 ± 3.96 ****N; **C | 81.14 ± 5.12 ****N; ***C | 80.23 ± 5.31 ****N; ***C |
Necrotic sperm [%] | 3.06 ± 0.26 | 14.75 ± 2.45 ****N | 8.44 ± 0.77 ***N; **C | 6.37 ± 0.42 **N; ***C | 6.99 ± 0.49 **N; ***C |
Acrosome integrity [%] | 91.83 ± 3.47 | 69.76 ± 2.52 ***N | 79.01 ± 7.10 **N; *C | 81.83 ± 5.37 *N; **C | 80.04 ± 5.27 *N; **C |
Mitochondrial activity [%] | 3.16 ± 0.29 | 1.59 ± 0.16 ****N | 2.61 ± 0.32 *N; ***C | 2.64 ± 0.26 *N; ***C | 2.63 ± 0.37 *N; ***C |
DNA damage [%] | 6.13 ± 2.47 | 33.23 ± 2.58 ****N | 18.40 ± 1.69 ***N; ***C | 16.14 ± 1.53 ***N; ***C | 17.09 ± 1.52 ***N; ***C |
Group/Parameter | CtrlN | CtrlC | 12.5 µM TBR | 25 µM TBR | 50 µM TBR |
---|---|---|---|---|---|
Non-capacitated sperm [%] | 87.86 ± 1.81 | 52.87 ± 3.32 ****N | 71.01 ± 4.08 **N; ***C | 77.51 ± 3.10 **N; ****C | 76.26 ± 4.00 **N; **C |
Capacitated sperm [%] | 6.12 ± 1.28 | 35.52 ± 4.66 ****N | 17.34 ± 4.08 ***N; ***C | 14.17 ± 3.68 ***N; ***C | 14.58 ± 3.06 ***N; ***C |
Acrosome-reacted sperm [%] | 6.02 ± 0.58 | 14.61 ± 1.44 **N | 11.65 ± 1.03 | 8.32 ± 1.86 *C | 9.17 ± 1.64 |
Group/Parameter | CtrlN | CtrlC | 12.5 µM TBR | 25 µM TBR | 50 µM TBR |
---|---|---|---|---|---|
ROS levels [RLU/s/106 sperm] | 4.93 ± 0.45 | 15.11 ± 0.49 ****N | 10.94 ± 0.90 ***N; **C | 9.52 ± 0.49 ***N; **C | 9.39 ± 0.53 ***N; **C |
O2−• levels [%] | 100.00 ± 9.33 | 185.40 ± 23.85 ***N | 128.80 ± 15.24 | 127.10 ± 10.48 | 127.80 ± 7.79 |
H2O2 levels [RFU/106 sperm] | 2.00 ± 0.68 | 7.62 ± 0.88 ****N | 5.33 ± 0.92 **N; *C | 4.73 ± 0.35 *N; **C | 4.82 ± 0.87 *N; **C |
•OH levels [RFU/106 sperm] | 3.86 ± 0.61 | 15.85 ± 0.86 ****N | 9.51 ± 0.81 **N; **C | 9.36 ± 1.03 **N; **C | 9.23 ± 0.87 **N; **C |
Groups | Identified Bacteria (Sample Positivity) | Bacterial Count TSA (log10 CFU/mL) | Bacterial Count BA (log10 CFU/mL) |
---|---|---|---|
CtrlN | Arthrobacter koreensis (5/30), Kocuria rhizophila (4/30), Micrococcus luteus (4/30), Neisseria elongata (3/30), Rothia aeria (4/30), Rhodotorula mucilaginosa (5/30), Staphylococcus aureus (2/30), Staphylococcus epidermidis (8/30), Staphylococcus hominis (12/30), Staphylococcus warneri (4/30) | 9.22 ± 1.03 | 6.44 ± 0.51 |
CtrlC | Arthrobacter koreensis (3/30), Kocuria rhizophila (2/30), Micrococcus luteus (2/30), Staphylococcus aureus (2/30), Staphylococcus epidermidis (3/30), Staphylococcus hominis (5/30), Staphylococcus warneri (2/30) | 2.15 ± 0.49 ****N | 2.10 ± 0.44 ****N |
12.5 µM TBR | Arthrobacter koreensis (2/30), Kocuria rhizophila (2/30), Micrococcus luteus (1/30), Staphylococcus aureus (1/30), Staphylococcus epidermidis (3/30), Staphylococcus hominis (4/30), Staphylococcus warneri (2/30) | 1.65 ± 0.13 ****N; *C | 1.54 ± 0.12 ****N |
25 µM TBR | Arthrobacter koreensis (2/30), Kocuria rhizophila (1/30), Micrococcus luteus (1/30), Staphylococcus aureus (1/30), Staphylococcus epidermidis (2/30), Staphylococcus hominis (4/30), Staphylococcus warneri (1/30) | 1.64 ± 0.10 ****N; *C | 1.51 ± 0.12 ****N |
50 µM TBR | Micrococcus luteus (1/30), Staphylococcus hominis (2/30), Staphylococcus warneri (1/30) | 1.48 ± 0.07 ****N; ***C | 1.37 ± 0.08 ****N; *C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benko, F.; Baňas, Š.; Ďuračka, M.; Kačániová, M.; Tvrdá, E. Cryoprotective Potential of Theobromine in the Improvement of the Post-Thaw Quality of Bovine Spermatozoa. Cells 2024, 13, 1710. https://doi.org/10.3390/cells13201710
Benko F, Baňas Š, Ďuračka M, Kačániová M, Tvrdá E. Cryoprotective Potential of Theobromine in the Improvement of the Post-Thaw Quality of Bovine Spermatozoa. Cells. 2024; 13(20):1710. https://doi.org/10.3390/cells13201710
Chicago/Turabian StyleBenko, Filip, Štefan Baňas, Michal Ďuračka, Miroslava Kačániová, and Eva Tvrdá. 2024. "Cryoprotective Potential of Theobromine in the Improvement of the Post-Thaw Quality of Bovine Spermatozoa" Cells 13, no. 20: 1710. https://doi.org/10.3390/cells13201710
APA StyleBenko, F., Baňas, Š., Ďuračka, M., Kačániová, M., & Tvrdá, E. (2024). Cryoprotective Potential of Theobromine in the Improvement of the Post-Thaw Quality of Bovine Spermatozoa. Cells, 13(20), 1710. https://doi.org/10.3390/cells13201710