Metabolic Reprogramming in Autosomal Dominant Polycystic Kidney Disease: Role in Cystogenesis and Novel Therapeutic Approaches
Abstract
1. Introduction
2. Metabolic Pathways Altered in ADPKD
2.1. Aerobic Glycolysis and Glucose Metabolism in Cystic Cells
2.2. Mitochondrial Dysfunction and Oxidative Phosphorylation
2.3. Altered Lipid Metabolism and Fatty Acid Oxidation
2.4. Amino Acid Metabolism and Autophagy
2.5. Redox Imbalance and Cellular Microenvironment
3. Molecular Mechanisms Linking Metabolism to Cystogenesis
3.1. cAMP/PKA Pathway
3.2. mTOR and AMPK
3.3. c-Myc and Other Oncogenic Signals
3.4. Polycystin Signaling and Metabolism
4. Therapeutic Approaches Targeting Metabolic Reprogramming
4.1. Dietary and Lifestyle Interventions
4.1.1. Caloric Restriction and Fasting
4.1.2. Ketogenic Diet and Ketone Supplementation
4.1.3. Protein or Amino Acid Restriction
4.1.4. Hydration and Caffeine
4.2. Pharmacological Metabolic Therapies
4.2.1. AMPK Activators
4.2.2. Glycolysis Inhibition
4.2.3. Targeting Glutamine and Amino Acid Metabolism
4.2.4. Inhibitors of Signaling with Metabolic Impact
mTOR Inhibitors
Somatostatin Analogues
HIF-1α Inhibitors
5. Discussion and Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ong, A.C.M.; Harris, P.C. Molecular Pathogenesis of ADPKD: The Polycystin Complex Gets Complex. Kidney Int. 2005, 67, 1234–1247. [Google Scholar] [CrossRef]
- Cornec-Le Gall, E.; Alam, A.; Perrone, R.D. Autosomal Dominant Polycystic Kidney Disease. Lancet 2019, 393, 919–935. [Google Scholar] [CrossRef] [PubMed]
- Nardozi, D.; Palumbo, S.; Khan, A.U.M.; Sticht, C.; Bieback, K.; Sadeghi, S.; Kluth, M.A.; Keese, M.; Gretz, N. Potential Therapeutic Effects of Long-Term Stem Cell Administration: Impact on the Gene Profile and Kidney Function of PKD/Mhm (Cy/+) Rats. J. Clin. Med. 2022, 11, 2601. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Pickel, L.; Sung, H.-K.; Scholey, J.; Pei, Y. Reprogramming of Energy Metabolism in Human PKD1 Polycystic Kidney Disease: A Systems Biology Analysis. Int. J. Mol. Sci. 2024, 25, 7173. [Google Scholar] [CrossRef] [PubMed]
- Lakhia, R.; Ramalingam, H.; Chang, C.-M.; Cobo-Stark, P.; Biggers, L.; Flaten, A.; Alvarez, J.; Valencia, T.; Wallace, D.P.; Lee, E.C.; et al. PKD1 and PKD2 mRNA Cis-Inhibition Drives Polycystic Kidney Disease Progression. Nat. Commun. 2022, 1, 4765. [Google Scholar] [CrossRef]
- Shaulian, E.; Karin, M. AP-1 as a Regulator of Cell Life and Death. Nat. Cell Biol. 2002, 4, E131–E136. [Google Scholar] [CrossRef]
- Qian, F.; Boletta, A.; Bhunia, A.K.; Xu, H.; Liu, L.; Ahrabi, A.K.; Watnick, T.J.; Zhou, F.; Germino, G.G. Cleavage of Polycystin-1 Requires the Receptor for Egg Jelly Domain and Is Disrupted by Human Autosomal-Dominant Polycystic Kidney Disease 1-Associated Mutations. Proc. Natl. Acad. Sci. USA 2002, 99, 16981–16986. [Google Scholar] [CrossRef]
- Chae, S.W.; Cho, E.-Y.; Park, M.S.; Lee, K.-B.; Kim, H.; Kim, U. Polycystin-1 Expression in Fetal, Adult and Autosomal Dominant Polycystic Kidney. J. Korean Med. Sci. 2006, 21, 425–429. [Google Scholar] [CrossRef]
- Delmas, P.; Nomura, H.; Li, X.; Lakkis, M.; Luo, Y.; Segal, Y.; Fernández-Fernández, J.M.; Harris, P.; Frischauf, A.-M.; Brown, D.A.; et al. Constitutive Activation of G-Proteins by Polycystin-1 Is Antagonized by Polycystin-2. J. Biol. Chem. 2002, 277, 11276–11283. [Google Scholar] [CrossRef]
- Arnould, T.; Kim, E.; Tsiokas, L.; Jochimsen, F.; Grüning, W.; Chang, J.D.; Walz, G. The Polycystic Kidney Disease 1 Gene Product Mediates Protein Kinase C Alpha-Dependent and c-Jun N-Terminal Kinase-Dependent Activation of the Transcription Factor AP-1. J. Biol. Chem. 1998, 273, 6013–6018. [Google Scholar] [CrossRef]
- Liu, X.; Vien, T.; Duan, J.; Sheu, S.-H.; DeCaen, P.G.; Clapham, D.E. Polycystin-2 Is an Essential Ion Channel Subunit in the Primary Cilium of the Renal Collecting Duct Epithelium. eLife 2018, 7, e33183. [Google Scholar] [CrossRef] [PubMed]
- Al-Bhalal, L.; Akhtar, M. Molecular Basis of Autosomal Dominant Polycystic Kidney Disease. Adv. Anat. Pathol. 2005, 12, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Shen, P.S.; Yang, X.; DeCaen, P.G.; Liu, X.; Bulkley, D.; Clapham, D.E.; Cao, E. The Structure of the Polycystic Kidney Disease Channel PKD2 in Lipid Nanodiscs. Cell 2016, 167, 763–773.e11. [Google Scholar] [CrossRef] [PubMed]
- Arif Pavel, M.; Lv, C.; Ng, C.; Yang, L.; Kashyap, P.; Lam, C.; Valentino, V.; Fung, H.Y.; Campbell, T.; Møller, S.G.; et al. Function and Regulation of TRPP2 Ion Channel Revealed by a Gain-of-Function Mutant. Proc. Natl. Acad. Sci. USA 2016, 113, E2363–E2372. [Google Scholar] [CrossRef]
- Nauli, S.M.; Alenghat, F.J.; Luo, Y.; Williams, E.; Vassilev, P.; Li, X.; Elia, A.E.H.; Lu, W.; Brown, E.M.; Quinn, S.J.; et al. Polycystins 1 and 2 Mediate Mechanosensation in the Primary Cilium of Kidney Cells. Nat. Genet. 2003, 33, 129–137. [Google Scholar] [CrossRef]
- Su, Q.; Hu, F.; Ge, X.; Lei, J.; Yu, S.; Wang, T.; Zhou, Q.; Mei, C.; Shi, Y. Structure of the Human PKD1-PKD2 Complex. Science 2018, 361, eaat9819. [Google Scholar] [CrossRef]
- Wang, Z.; Ng, C.; Liu, X.; Wang, Y.; Li, B.; Kashyap, P.; Chaudhry, H.A.; Castro, A.; Kalontar, E.M.; Ilyayev, L.; et al. The Ion Channel Function of Polycystin-1 in the Polycystin-1/Polycystin-2 Complex. EMBO Rep. 2019, 20, e48336. [Google Scholar] [CrossRef]
- Ha, K.; Nobuhara, M.; Wang, Q.; Walker, R.V.; Qian, F.; Schartner, C.; Cao, E.; Delling, M. The Heteromeric PC-1/PC-2 Polycystin Complex Is Activated by the PC-1 N-Terminus. eLife 2020, 9, e60684. [Google Scholar] [CrossRef]
- Mangolini, A.; de Stephanis, L.; Aguiari, G. Role of Calcium in Polycystic Kidney Disease: From Signaling to Pathology. World J. Nephrol. 2016, 5, 76–83. [Google Scholar] [CrossRef]
- Anyatonwu, G.I.; Ehrlich, B.E. Organic Cation Permeation through the Channel Formed by Polycystin-2. J. Biol. Chem. 2005, 280, 29488–29493. [Google Scholar] [CrossRef]
- Vassilev, P.M.; Guo, L.; Chen, X.Z.; Segal, Y.; Peng, J.B.; Basora, N.; Babakhanlou, H.; Cruger, G.; Kanazirska, M.; Ye, C.P.; et al. Polycystin-2 Is a Novel Cation Channel Implicated in Defective Intracellular Ca2+ Homeostasis in Polycystic Kidney Disease. Biochem. Biophys. Res. Commun. 2001, 282, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, T.; Hempson, S.J.; Reif, G.A.; Hedge, A.-M.; Wallace, D.P. Calcium Restores a Normal Proliferation Phenotype in Human Polycystic Kidney Disease Epithelial Cells. J. Am. Soc. Nephrol. 2006, 17, 178–187. [Google Scholar] [CrossRef] [PubMed]
- Paavola, J.; Schliffke, S.; Rossetti, S.; Kuo, I.Y.-T.; Yuan, S.; Sun, Z.; Harris, P.C.; Torres, V.E.; Ehrlich, B.E. Polycystin-2 Mutations Lead to Impaired Calcium Cycling in the Heart and Predispose to Dilated Cardiomyopathy. J. Mol. Cell. Cardiol. 2013, 58, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Torres, V.E.; Harris, P.C. Strategies Targeting cAMP Signaling in the Treatment of Polycystic Kidney Disease. J. Am. Soc. Nephrol. 2014, 25, 18–32. [Google Scholar] [CrossRef]
- Kennefick, T.M.; Al-Nimri, M.A.; Oyama, T.T.; Thompson, M.M.; Kelly, F.J.; Chapman, J.G.; Anderson, S. Hypertension and Renal Injury in Experimental Polycystic Kidney Disease. Kidney Int. 1999, 56, 2181–2190. [Google Scholar] [CrossRef]
- MacKay, C.E.; Leo, M.D.; Fernández-Peña, C.; Hasan, R.; Yin, W.; Mata-Daboin, A.; Bulley, S.; Gammons, J.; Mancarella, S.; Jaggar, J.H. Intravascular Flow Stimulates PKD2 (Polycystin-2) Channels in Endothelial Cells to Reduce Blood Pressure. eLife 2020, 9, e56655. [Google Scholar] [CrossRef]
- MacKay, C.E.; Floen, M.; Leo, M.D.; Hasan, R.; Garrud, T.A.; Fernández-Peña, C.; Singh, P.; Malik, K.U.; Jaggar, J.H. A Plasma Membrane-Localized Polycystin-1/Polycystin-2 Complex in Endothelial Cells Elicits Vasodilation. eLife 2022, 11, e74765. [Google Scholar] [CrossRef]
- Benck, U.; Krüger, B.; Schmitt, W.H. Blood Pressure in Early Autosomal Dominant Polycystic Kidney Disease. N. Engl. J. Med. 2015, 9, 7173. [Google Scholar] [CrossRef]
- Calvaruso, L.; Yau, K.; Akbari, P.; Nasri, F.; Khowaja, S.; Wang, B.; Haghighi, A.; Khalili, K.; Pei, Y. Real-Life Use of Tolvaptan in ADPKD: A Retrospective Analysis of a Large Canadian Cohort. Sci. Rep. 2023, 13, 22257. [Google Scholar] [CrossRef]
- Ho, H.-J.; Shirakawa, H. Oxidative Stress and Mitochondrial Dysfunction in Chronic Kidney Disease. Cells 2022, 12, 88. [Google Scholar] [CrossRef]
- Podrini, C.; Cassina, L.; Boletta, A. Metabolic Reprogramming and the Role of Mitochondria in Polycystic Kidney Disease. Cell. Signal. 2020, 67, 109495. [Google Scholar] [CrossRef] [PubMed]
- Podrini, C.; Rowe, I.; Pagliarini, R.; Costa, A.S.H.; Chiaravalli, M.; Di Meo, I.; Kim, H.; Distefano, G.; Tiranti, V.; Qian, F.; et al. Dissection of Metabolic Reprogramming in Polycystic Kidney Disease Reveals Coordinated Rewiring of Bioenergetic Pathways. Commun. Biol. 2018, 1, 194. [Google Scholar] [CrossRef] [PubMed]
- Iliuta, I.-A.; Song, X.; Pickel, L.; Haghighi, A.; Retnakaran, R.; Scholey, J.; Sung, H.-K.; Steinberg, G.R.; Pei, Y. Shared Pathobiology Identifies AMPK as a Therapeutic Target for Obesity and Autosomal Dominant Polycystic Kidney Disease. Front. Mol. Biosci. 2022, 9, 962933. [Google Scholar] [CrossRef] [PubMed]
- Ghazi, S.; Polesel, M.; Hall, A.M. Targeting Glycolysis in Proliferative Kidney Diseases. Am. J. Physiol. Ren. Physiol. 2019, 317, F1531–F1535. [Google Scholar] [CrossRef]
- Vasileva, V.Y.; Sultanova, R.F.; Sudarikova, A.V.; Ilatovskaya, D.V. Insights Into the Molecular Mechanisms of Polycystic Kidney Diseases. Front. Physiol. 2021, 12, 693130. [Google Scholar] [CrossRef]
- Zhou, X.; Torres, V.E. Emerging Therapies for Autosomal Dominant Polycystic Kidney Disease with a Focus on cAMP Signaling. Front. Mol. Biosci. 2022, 9, 981963. [Google Scholar] [CrossRef]
- Wang, X.-Y.; Wei, Y.; Hu, B.; Liao, Y.; Wang, X.; Wan, W.-H.; Huang, C.-X.; Mahabati, M.; Liu, Z.-Y.; Qu, J.-R.; et al. C-Myc-Driven Glycolysis Polarizes Functional Regulatory B Cells That Trigger Pathogenic Inflammatory Responses. Signal Transduct. Target. Ther. 2022, 7, 105. [Google Scholar] [CrossRef]
- Zhao, J.; Ma, Y.; Zhang, Y.; Fu, B.; Wu, X.; Li, Q.; Cai, G.; Chen, X.; Bai, X.-Y. Low-Dose 2-Deoxyglucose and Metformin Synergically Inhibit Proliferation of Human Polycystic Kidney Cells by Modulating Glucose Metabolism. Cell Death Discov. 2019, 5, 76. [Google Scholar] [CrossRef]
- Wu, H.; Ding, Z.; Hu, D.; Sun, F.; Dai, C.; Xie, J.; Hu, X. Central Role of Lactic Acidosis in Cancer Cell Resistance to Glucose Deprivation-induced Cell Death. J. Pathol. 2012, 67, 189–199. [Google Scholar] [CrossRef]
- Flowers, E.M.; Sudderth, J.; Zacharias, L.; Mernaugh, G.; Zent, R.; DeBerardinis, R.J.; Carroll, T.J. Lkb1 Deficiency Confers Glutamine Dependency in Polycystic Kidney Disease. Nat. Commun. 2018, 9, 814. [Google Scholar] [CrossRef]
- Padovano, V.; Podrini, C.; Boletta, A.; Caplan, M.J. Metabolism and Mitochondria in Polycystic Kidney Disease Research and Therapy. Nat. Rev. Nephrol. 2018, 14, 678–687. [Google Scholar] [CrossRef] [PubMed]
- Onuchic, L.; Padovano, V.; Schena, G.; Rajendran, V.; Dong, K.; Shi, X.; Pandya, R.; Rai, V.; Gresko, N.P.; Ahmed, O.; et al. The C-Terminal Tail of Polycystin-1 Suppresses Cystic Disease in a Mitochondrial Enzyme-Dependent Fashion. Nat. Commun. 2023, 14, 1790. [Google Scholar] [CrossRef] [PubMed]
- Collier, J.B.; Kang, H.S.; Roh, Y.-G.; Srivastava, C.; Grimm, S.A.; Jarmusch, A.K.; Jetten, A.M. GLIS3: A Novel Transcriptional Regulator of Mitochondrial Functions and Metabolic Reprogramming in Postnatal Kidney and Polycystic Kidney Disease. Mol. Metab. 2024, 90, 102052. [Google Scholar] [CrossRef] [PubMed]
- Ishimoto, Y.; Inagi, R.; Yoshihara, D.; Kugita, M.; Nagao, S.; Shimizu, A.; Takeda, N.; Wake, M.; Honda, K.; Zhou, J.; et al. Mitochondrial Abnormality Facilitates Cyst Formation in Autosomal Dominant Polycystic Kidney Disease. Mol. Cell. Biol. 2017, 37, e00337-17. [Google Scholar] [CrossRef]
- Cassina, L.; Chiaravalli, M.; Boletta, A. Increased Mitochondrial Fragmentation in Polycystic Kidney Disease Acts as a Modifier of Disease Progression. FASEB J. 2020, 34, 6493–6507. [Google Scholar] [CrossRef]
- Sudarshan, S.; Sourbier, C.; Kong, H.-S.; Block, K.; Romero, V.A.V.; Yang, Y.; Galindo, C.; Mollapour, M.; Scroggins, B.; Goode, N.; et al. Fumarate Hydratase Deficiency in Renal Cancer Induces Glycolytic Addiction and Hypoxia-Inducible Transcription Factor 1α Stabilization by Glucose-Dependent Generation of Reactive Oxygen Species. Mol. Cell. Biol. 2009, 29, 4080–4090. [Google Scholar] [CrossRef]
- Korsmo, H.W.; Ekperikpe, U.S.; Daehn, I.S. Emerging Roles of Xanthine Oxidoreductase in Chronic Kidney Disease. Antioxidants 2024, 13, 712. [Google Scholar] [CrossRef]
- Daneshgar, N.; Baguley, A.W.; Liang, P.-I.; Wu, F.; Chu, Y.; Kinter, M.T.; Benavides, G.A.; Johnson, M.S.; Darley-Usmar, V.; Zhang, J.; et al. Metabolic Derangement in Polycystic Kidney Disease Mouse Models Is Ameliorated by Mitochondrial-Targeted Antioxidants. Commun. Biol. 2021, 4, 1200. [Google Scholar] [CrossRef]
- Kahveci, A.S.; Barnatan, T.T.; Kahveci, A.; Adrian, A.E.; Arroyo, J.; Eirin, A.; Harris, P.C.; Lerman, A.; Lerman, L.O.; Torres, V.E.; et al. Oxidative Stress and Mitochondrial Abnormalities Contribute to Decreased Endothelial Nitric Oxide Synthase Expression and Renal Disease Progression in Early Experimental Polycystic Kidney Disease. Int. J. Mol. Sci. 2020, 21, 1994. [Google Scholar] [CrossRef]
- Zhou, J.X.; Torres, V.E. Drug Repurposing in Autosomal Dominant Polycystic Kidney Disease. Kidney Int. 2023, 103, 859–871. [Google Scholar] [CrossRef]
- de Almeida, R.M.C.; Clendenon, S.G.; Richards, W.G.; Boedigheimer, M.; Damore, M.; Rossetti, S.; Harris, P.C.; Herbert, B.-S.; Xu, W.M.; Wandinger-Ness, A.; et al. Transcriptome Analysis Reveals Manifold Mechanisms of Cyst Development in ADPKD. Hum. Genom. 2016, 10, 37. [Google Scholar] [CrossRef] [PubMed]
- Menezes, L.F.; Lin, C.-C.; Zhou, F.; Germino, G.G. Fatty Acid Oxidation Is Impaired in An Orthologous Mouse Model of Autosomal Dominant Polycystic Kidney Disease. EBioMedicine 2016, 5, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Yang, Q.; Che, L.; Sun, L.; Du, N. Acyl-CoA Thioesterase 13 (ACOT13) Attenuates the Progression of Autosomal Dominant Polycystic Kidney Disease in Vitro via Triggering Mitochondrial-Related Cell Apoptosis. Aging 2024, 16, 11877–11892. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Dawson, J.; Gunton, J.E. Therapeutic Potential of Ketogenic Interventions for Autosomal-Dominant Polycystic Kidney Disease: A Systematic Review. Nutrients 2024, 17, 145. [Google Scholar] [CrossRef]
- Szwed, A.; Kim, E.; Jacinto, E. Regulation and Metabolic Functions of mTORC1 and mTORC2. Physiol. Rev. 2021, 5, 1371–1426. [Google Scholar] [CrossRef]
- Düvel, K.; Yecies, J.L.; Menon, S.; Raman, P.; Lipovsky, A.I.; Souza, A.L.; Triantafellow, E.; Ma, Q.; Gorski, R.; Cleaver, S.; et al. Activation of a Metabolic Gene Regulatory Network Downstream of mTOR Complex 1. Mol. Cell 2010, 39, 171–183. [Google Scholar] [CrossRef]
- Soliman, G.A. The Integral Role of mTOR in Lipid Metabolism. Cell Cycle 2011, 5, 861–862. [Google Scholar] [CrossRef]
- Ricoult, S.J.H.; Yecies, J.L.; Ben-Sahra, I.; Manning, B.D. Oncogenic PI3K and K-Ras Stimulate de Novo Lipid Synthesis through mTORC1 and SREBP. Oncogene 2016, 35, 1250–1260. [Google Scholar] [CrossRef]
- Steele, C.; Nowak, K. Obesity, Weight Loss, Lifestyle Interventions, and Autosomal Dominant Polycystic Kidney Disease. Kidney Dial. 2022, 2, 106–122. [Google Scholar] [CrossRef]
- Nowak, K.L.; Moretti, F.; Bussola, N.; Steele, C.N.; Gregory, A.V.; Kline, T.L.; Ramanathan, S.; Trapletti, G.; Furlanello, C.; McCormick, L.; et al. Visceral Adiposity and Progression of ADPKD: A Cohort Study of Patients From the TEMPO 3:4 Trial. Am. J. Kidney Dis. 2024, 84, 275–285.e1. [Google Scholar] [CrossRef]
- Nowak, K.L.; Steele, C.; Gitomer, B.; Wang, W.; Ouyang, J.; Chonchol, M.B. Overweight and Obesity and Progression of ADPKD. CJASN 2021, 16, 908–915. [Google Scholar] [CrossRef] [PubMed]
- Lakhia, R.; Yheskel, M.; Flaten, A.; Quittner-Strom, E.B.; Holland, W.L.; Patel, V.; Anyatonwu, G.I.; Ehrlich, B.E. PPARα Agonist Fenofibrate Enhances Fatty Acid β-Oxidation and Attenuates Polycystic Kidney and Liver Disease in Mice. Am. J. Physiol. Ren. Physiol. 2018, 314, F122–F131. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, J.; Nishio, S.; Hattanda, F.; Nakazawa, D.; Kimura, T.; Sata, M.; Makita, M.; Ishikawa, Y.; Atsumi, T.; Lemos, F.O.; et al. Branched-Chain Amino Acids Enhance Cyst Development in Autosomal Dominant Polycystic Kidney Disease. Kidney Int. 2017, 92, 377–387. [Google Scholar] [CrossRef] [PubMed]
- Baliga, M.M.; Klawitter, J.; Christians, U.; Hopp, K.; Chonchol, M.; Gitomer, B.Y.; Cadnapaphornchai, M.A.; Klawitter, J. Metabolic Profiling in Children and Young Adults with Autosomal Dominant Polycystic Kidney Disease. Sci. Rep. 2021, 11, 6629. [Google Scholar] [CrossRef]
- Zhu, P.; Sieben, C.J.; Xu, X.; Harris, P.C.; Lin, X. Autophagy Activators Suppress Cystogenesis in an Autosomal Dominant Polycystic Kidney Disease Model. Hum. Mol. Genet. 2020, 26, ddw376. [Google Scholar] [CrossRef]
- Lu, Y.; Sun, Y.; Liu, Z.; Lu, Y.; Zhu, X.; Lan, B.; Mi, Z.; Dang, L.; Li, N.; Zhan, W.; et al. Activation of NRF2 Ameliorates Oxidative Stress and Cystogenesis in Autosomal Dominant Polycystic Kidney Disease. Sci. Transl. Med. 2020, 12, eaba3613. [Google Scholar] [CrossRef]
- Fedeles, B.I.; Bhardwaj, R.; Ishikawa, Y.; Khumsubdee, S.; Krappitz, M.; Gubina, N.; Volpe, I.; Andrade, D.C.; Westergerling, P.; Staudner, T.; et al. A Synthetic Agent Ameliorates Polycystic Kidney Disease by Promoting Apoptosis of Cystic Cells through Increased Oxidative Stress. Proc. Natl. Acad. Sci. USA 2024, 121, e2317344121. [Google Scholar] [CrossRef]
- Kraus, A.; Peters, D.J.M.; Klanke, B.; Weidemann, A.; Willam, C.; Schley, G.; Kunzelmann, K.; Eckardt, K.-U.; Buchholz, B.; Longo, V.D.; et al. HIF-1α Promotes Cyst Progression in a Mouse Model of Autosomal Dominant Polycystic Kidney Disease. Kidney Int. 2018, 94, 887–899. [Google Scholar] [CrossRef]
- Jl, H.; As, W.; Da, L. Angiogenesis and Autosomal Dominant Polycystic Kidney Disease. Pediatr. Nephrol. 2013, 28, 1749–1755. [Google Scholar] [CrossRef]
- Safi, W.; Kraus, A.; Grampp, S.; Schödel, J.; Buchholz, B.; Margaria, J.P.; Campa, C.C.; De Santis, M.C.; Hirsch, E.; Franco, I. Macrophage Migration Inhibitory Factor Is Regulated by HIF-1α and cAMP and Promotes Renal Cyst Cell Proliferation in a Macrophage-Independent Manner. J. Mol. Med. 2020, 98, 1547–1559. [Google Scholar] [CrossRef]
- Buchholz, B.; Schley, G.; Faria, D.; Kroening, S.; Willam, C.; Schreiber, R.; Klanke, B.; Burzlaff, N.; Jantsch, J.; Kunzelmann, K.; et al. Hypoxia-Inducible Factor-1α Causes Renal Cyst Expansion through Calcium-Activated Chloride Secretion. J. Am. Soc. Nephrol. 2014, 25, 465–474. [Google Scholar] [CrossRef] [PubMed]
- Lemos, F.O.; Ehrlich, B.E. Polycystin and Calcium Signaling in Cell Death and Survival. Cell Calcium 2018, 69, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Sussman, C.R.; Wang, X.; Chebib, F.T.; Torres, V.E. Modulation of Polycystic Kidney Disease by G-Protein Coupled Receptors and Cyclic AMP Signaling. Cell. Signal. 2020, 72, 109649. [Google Scholar] [CrossRef] [PubMed]
- Wallace, D.P. Cyclic AMP-Mediated Cyst Expansion. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2011, 1812, 1291–1300. [Google Scholar] [CrossRef]
- Mi, Z.; Song, Y.; Wang, J.; Liu, Z.; Cao, X.; Dang, L.; Lu, Y.; Sun, Y.; Xiong, H.; Zhang, L.; et al. cAMP-Induced Nuclear Condensation of CRTC2 Promotes Transcription Elongation and Cystogenesis in Autosomal Dominant Polycystic Kidney Disease. Adv. Sci. 2022, 9, e2104578. [Google Scholar] [CrossRef]
- Hopp, K.; Hommerding, C.J.; Wang, X.; Ye, H.; Harris, P.C.; Torres, V.E. Tolvaptan plus Pasireotide Shows Enhanced Efficacy in a PKD1 Model. J. Am. Soc. Nephrol. 2015, 26, 39–47. [Google Scholar] [CrossRef]
- Yu, Y.; Newman, H.; Shen, L.; Sharma, D.; Hu, G.; Mirando, A.J.; Zhang, H.; Knudsen, E.; Zhang, G.-F.; Hilton, M.J.; et al. Glutamine Metabolism Regulates Proliferation and Lineage Allocation in Skeletal Stem Cells. Cell Metab. 2019, 29, 966–978.e4. [Google Scholar] [CrossRef]
- Margaria, J.P.; Campa, C.C.; De Santis, M.C.; Hirsch, E.; Franco, I. The PI3K/Akt/mTOR Pathway in Polycystic Kidney Disease: A Complex Interaction with Polycystins and Primary Cilium. Cell. Signal. 2020, 66, 109468. [Google Scholar] [CrossRef]
- Yang, Y.; Kong, D.; Chen, M.; Lv, J.; Zhou, J.; Xue, C.; Song, S.; Song, M.; Ma, L.; Mao, Z.; et al. Monocyte/Macrophage Pyroptosis and C5b-9-Induced Cyst Enlargement in Pkd1−/− Mice. Nephrol. Dial. Transpl. 2025, 40, 1161–1174. [Google Scholar] [CrossRef]
- Malekshahabi, T.; Khoshdel Rad, N.; Serra, A.L.; Moghadasali, R. Autosomal Dominant Polycystic Kidney Disease: Disrupted Pathways and Potential Therapeutic Interventions. J. Cell. Physiol. 2019, 234, 12451–12470. [Google Scholar] [CrossRef]
- Canaud, G.; Knebelmann, B.; Harris, P.C.; Vrtovsnik, F.; Correas, J.-M.; Pallet, N.; Heyer, C.M.; Letavernier, E.; Bienaimé, F.; Thervet, E.; et al. Therapeutic mTOR Inhibition in Autosomal Dominant Polycystic Kidney Disease: What Is the Appropriate Serum Level? Am. J. Transpl. 2010, 10, 1710–1715. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Luo, J.; Zhang, Y.; Mao, X.; Wen, P.; Ding, H.; Xu, J.; Sun, Q.; He, W.; Dai, C.; et al. Tuberous Sclerosis 1 (Tsc1) Mediated mTORC1 Activation Promotes Glycolysis in Tubular Epithelial Cells in Kidney Fibrosis. Kidney Int. 2020, 98, 686–698. [Google Scholar] [CrossRef] [PubMed]
- Porstmann, T.; Santos, C.R.; Griffiths, B.; Cully, M.; Wu, M.; Leevers, S.; Griffiths, J.R.; Chung, Y.-L.; Schulze, A.; Arif Pavel, M.; et al. SREBP Activity Is Regulated by mTORC1 and Contributes to Akt-Dependent Cell Growth. Cell Metab. 2008, 8, 224–236. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Tsakiridis, E.; Steinberg, G.R.; Pei, Y. Targeting AMP-Activated Protein Kinase (AMPK) for Treatment of Autosomal Dominant Polycystic Kidney Disease. Cell. Signal. 2020, 73, 109704. [Google Scholar] [CrossRef]
- Pastor-Soler, N.M.; Li, H.; Pham, J.; Rivera, D.; Ho, P.-Y.; Mancino, V.; Saitta, B.; Hallows, K.R.; Yamaguchi, T.; Hempson, S.J.; et al. Metformin Improves Relevant Disease Parameters in an Autosomal Dominant Polycystic Kidney Disease Mouse Model. Am. J. Physiol. Ren. Physiol. 2022, 322, F27–F41. [Google Scholar] [CrossRef]
- Chang, M.-Y.; Ma, T.-L.; Hung, C.-C.; Tian, Y.-C.; Chen, Y.-C.; Yang, C.-W.; Cheng, Y.-C. Metformin Inhibits Cyst Formation in a Zebrafish Model of Polycystin-2 Deficiency. Sci. Rep. 2017, 7, 7161. [Google Scholar] [CrossRef]
- Parrot, C.; Kurbegovic, A.; Yao, G.; Couillard, M.; Côté, O.; Trudel, M. C-Myc Is a Regulator of the PKD1 Gene and PC1-Induced Pathogenesis. Hum. Mol. Genet. 2019, 28, 751–763. [Google Scholar] [CrossRef]
- Moist, L.M.; Al-Jaishi, A.A. The Upfront Risks of Vascular Access Complications. J. Am. Soc. Nephrol. 2013, 24, 1509–1511. [Google Scholar] [CrossRef]
- Thomas, W. Regulation of mTOR by Polycystin-1: Is Polycystic Kidney Disease a Case of Futile Repair? Cell Cycle 2006, 5, 2425–2429. [Google Scholar] [CrossRef]
- Reiterová, J.; Tesař, V. Autosomal Dominant Polycystic Kidney Disease: From Pathophysiology of Cystogenesis to Advances in the Treatment. Int. J. Mol. Sci. 2022, 23, 3317. [Google Scholar] [CrossRef]
- Capelli, I.; Lerario, S.; Aiello, V.; Provenzano, M.; Di Costanzo, R.; Squadrani, A.; Vella, A.; Vicennati, V.; Poli, C.; La Manna, G.; et al. Diet and Physical Activity in Adult Dominant Polycystic Kidney Disease: A Review of the Literature. Nutrients 2023, 15, 2621. [Google Scholar] [CrossRef]
- Pezzuoli, C.; Biagini, G.; Magistroni, R. Ketogenic Interventions in Autosomal Dominant Polycystic Kidney Disease: A Comprehensive Review of Current Evidence. Nutrients 2024, 16, 2676. [Google Scholar] [CrossRef]
- Kipp, K.R.; Rezaei, M.; Lin, L.; Dewey, E.C.; Weimbs, T. A Mild Reduction of Food Intake Slows Disease Progression in an Orthologous Mouse Model of Polycystic Kidney Disease. Am. J. Physiol. Ren. Physiol. 2016, 310, F726–F731. [Google Scholar] [CrossRef]
- Longo, V.D.; Panda, S. Fasting, Circadian Rhythms, and Time-Restricted Feeding in Healthy Lifespan. Cell Metab. 2016, 23, 1048–1059. [Google Scholar] [CrossRef]
- Longo, V.D.; Mattson, M.P. Fasting: Molecular Mechanisms and Clinical Applications. Cell Metab. 2014, 19, 181–192. [Google Scholar] [CrossRef]
- Saxton, R.A.; Sabatini, D.M. mTOR Signaling in Growth, Metabolism, and Disease. Cell 2017, 168, 960–976. [Google Scholar] [CrossRef]
- Hardie, D.G.; Ross, F.A.; Hawley, S.A. AMPK: A Nutrient and Energy Sensor That Maintains Energy Homeostasis. Nat. Rev. Mol. Cell. Biol. 2012, 13, 251–262. [Google Scholar] [CrossRef]
- Torres, J.A.; Kruger, S.L.; Broderick, C.; Amarlkhagva, T.; Agrawal, S.; Dodam, J.R.; Mrug, M.; Lyons, L.A.; Weimbs, T. Ketosis Ameliorates Renal Cyst Growth in Polycystic Kidney Disease. Cell Metab. 2019, 30, 1007–1023.e5. [Google Scholar] [CrossRef]
- Torres, J.A.; Holznecht, N.; Asplund, D.A.; Amarlkhagva, T.; Kroes, B.C.; Rebello, J.; Agrawal, S.; Weimbs, T. A Combination of β-Hydroxybutyrate and Citrate Ameliorates Disease Progression in a Rat Model of Polycystic Kidney Disease. Am. J. Physiol. Ren. Physiol. 2024, 326, F352–F368. [Google Scholar] [CrossRef]
- Torres, J.A.; Holznecht, N.; Asplund, D.A.; Kroes, B.C.; Amarlkhagva, T.; Haeffner, M.M.; Sharpe, E.H.; Koestner, S.; Strubl, S.; Schimmel, M.F.; et al. β-Hydroxybutyrate Recapitulates the Beneficial Effects of Ketogenic Metabolic Therapy in Polycystic Kidney Disease. iScience 2024, 27, 110773. [Google Scholar] [CrossRef]
- Huynh, C.; Ryu, J.; Lee, J.; Inoki, A.; Inoki, K. Nutrient-Sensing mTORC1 and AMPK Pathways in Chronic Kidney Diseases. Nat. Rev. Nephrol. 2023, 19, 102–122. [Google Scholar] [CrossRef]
- Cukoski, S.; Lindemann, C.H.; Arjune, S.; Todorova, P.; Brecht, T.; Kühn, A.; Oehm, S.; Strubl, S.; Becker, I.; Kämmerer, U.; et al. Feasibility and Impact of Ketogenic Dietary Interventions in Polycystic Kidney Disease: KETO-ADPKD—A Randomized Controlled Trial. Cell Rep. Med. 2023, 4, 101283. [Google Scholar] [CrossRef]
- Aukema, H.M.; Ogborn, M.R.; Tomobe, K.; Takahashi, H.; Hibino, T.; Holub, B.J. Effects of Dietary Protein Restriction and Oil Type on the Early Progression of Murine Polycystic Kidney Disease. Kidney Int. 1992, 42, 837–842. [Google Scholar] [CrossRef]
- Kramers, B.J.; Koorevaar, I.W.; Drenth, J.P.H.; de Fijter, J.W.; Neto, A.G.; Peters, D.J.M.; Vart, P.; Wetzels, J.F.; Zietse, R.; Gansevoort, R.T.; et al. Salt, but Not Protein Intake, Is Associated with Accelerated Disease Progression in Autosomal Dominant Polycystic Kidney Disease. Kidney Int. 2020, 98, 989–998. [Google Scholar] [CrossRef]
- Klemens, C.A.; Fedoriuk, M.; Semenikhina, M.; Stefanenko, M.; Zietara, A.; Levchenko, V.; Dissanayake, L.V.; Palygin, O.; Staruschenko, A. Electrolyte and Metabolite Composition of Cystic Fluid from a Rat Model of ARPKD. Commun. Biol. 2025, 8, 230. [Google Scholar] [CrossRef]
- Drummer, C.; Valenti, G.; Cirillo, M.; Perna, A.; Bellini, L.; Nenov, V.; De Santo, N.G. Vasopressin, Hypercalciuria and Aquaporin—The Key Elements for Impaired Renal Water Handling in Astronauts? Nephron 2023, 8, 467–477. [Google Scholar] [CrossRef]
- Wang, C.J.; Grantham, J.J.; Wetmore, J.B. The Medicinal Use of Water in Renal Disease. Kidney Int. 2013, 84, 45–53. [Google Scholar] [CrossRef]
- Jdiaa, S.S.; Mustafa, R.A.; Yu, A.S.L. Treatment of Autosomal-Dominant Polycystic Kidney Disease. Am. J. Kidney Dis. 2025, 85, 491–500. [Google Scholar] [CrossRef]
- Belibi, F.A.; Reif, G.; Wallace, D.P.; Yamaguchi, T.; Olsen, L.; Li, H.; Helmkamp, G.M.; Grantham, J.J. Cyclic AMP Promotes Growth and Secretion in Human Polycystic Kidney Epithelial Cells. Kidney Int. 2004, 66, 964–973. [Google Scholar] [CrossRef]
- Chapman, A.B.; Devuyst, O.; Eckardt, K.-U.; Gansevoort, R.T.; Harris, T.; Horie, S.; Kasiske, B.L.; Odland, D.; Pei, Y.; Perrone, R.D.; et al. Autosomal-Dominant Polycystic Kidney Disease (ADPKD): Executive Summary from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2015, 88, 17–27. [Google Scholar] [CrossRef]
- Takiar, V.; Nishio, S.; Seo-Mayer, P.; King, J.D.; Li, H.; Zhang, L.; Karihaloo, A.; Hallows, K.R.; Somlo, S.; Caplan, M.J. Activating AMP-Activated Protein Kinase (AMPK) Slows Renal Cystogenesis. Proc. Natl. Acad. Sci. USA 2011, 108, 2462–2467. [Google Scholar] [CrossRef]
- Pisani, A.; Riccio, E.; Bruzzese, D.; Sabbatini, M. Metformin in Autosomal Dominant Polycystic Kidney Disease: Experimental Hypothesis or Clinical Fact? BMC Nephrol. 2018, 19, 282. [Google Scholar] [CrossRef]
- Ong, A.C.M.; Gansevoort, R.T. TAMEing ADPKD with Metformin: Safe and Effective? Kidney Int. 2021, 100, 513–515. [Google Scholar] [CrossRef]
- Hallows, K.R.; Abebe, K.Z.; Li, H.; Saitta, B.; Althouse, A.D.; Bae, K.T.; Lalama, C.M.; Miskulin, D.C.; Perrone, R.D.; Seliger, S.L.; et al. Association of Longitudinal Urinary Metabolic Biomarkers With ADPKD Severity and Response to Metformin in TAME-PKD Clinical Trial Participants. Kidney Int. Rep. 2023, 8, 467–477. [Google Scholar] [CrossRef]
- Leonhard, W.N.; Song, X.; Kanhai, A.A.; Iliuta, I.-A.; Bozovic, A.; Steinberg, G.R.; Peters, D.J.M.; Pei, Y. Salsalate, but Not Metformin or Canagliflozin, Slows Kidney Cyst Growth in an Adult-Onset Mouse Model of Polycystic Kidney Disease. EBioMedicine 2019, 47, 436–445. [Google Scholar] [CrossRef]
- Song, X.; Leonhard, W.N.; Kanhai, A.A.; Steinberg, G.R.; Pei, Y.; Peters, D.J.M. Preclinical Evaluation of Tolvaptan and Salsalate Combination Therapy in a Pkd1-Mouse Model. Front. Mol. Biosci. 2023, 10, 1058825. [Google Scholar] [CrossRef]
- Rowe, I.; Chiaravalli, M.; Mannella, V.; Ulisse, V.; Quilici, G.; Pema, M.; Song, X.W.; Xu, H.; Mari, S.; Qian, F.; et al. Defective Glucose Metabolism in Polycystic Kidney Disease Identifies a New Therapeutic Strategy. Nat. Med. 2013, 19, 488–493. [Google Scholar] [CrossRef]
- Chiaravalli, M.; Rowe, I.; Mannella, V.; Quilici, G.; Canu, T.; Bianchi, V.; Gurgone, A.; Antunes, S.; D’Adamo, P.; Esposito, A.; et al. 2-Deoxy-d-Glucose Ameliorates PKD Progression. JASN 2016, 27, 1958–1969. [Google Scholar] [CrossRef]
- Minor, R.K.; Smith, D.L.; Sossong, A.M.; Kaushik, S.; Poosala, S.; Spangler, E.L.; Roth, G.S.; Lane, M.; Allison, D.B.; de Cabo, R.; et al. Chronic Ingestion of 2-Deoxy-D-Glucose Induces Cardiac Vacuolization and Increases Mortality in Rats. Toxicol. Appl. Pharmacol. 2010, 243, 332–339. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, S.; Liu, Y.; Spichtig, D.; Kapoor, S.; Koepsell, H.; Mohebbi, N.; Segerer, S.; Serra, A.L.; Rodriguez, D.; et al. Targeting of Sodium-Glucose Cotransporters with Phlorizin Inhibits Polycystic Kidney Disease Progression in Han:SPRD Rats. Kidney Int. 2013, 84, 962–968. [Google Scholar] [CrossRef]
- Kapoor, S.; Rodriguez, D.; Riwanto, M.; Edenhofer, I.; Segerer, S.; Mitchell, K.; Wüthrich, R.P. Effect of Sodium-Glucose Cotransport Inhibition on Polycystic Kidney Disease Progression in PCK Rats. PLoS ONE 2015, 10, e0125603. [Google Scholar] [CrossRef]
- Bahlmann-Kroll, E.; Häckl, S.; Kramer, S.; Wulfmeyer, V.C.; Glandorf, J.; Kaufeld, J.; Koch, A.; Hartung, D.; Schmidt, B.M.W.; Schmidt-Ott, K.; et al. Empagliflozin in Patients with Autosomal Dominant Polycystic Kidney Disease (EMPA-PKD): Study Protocol for a Randomised Controlled Trial. BMJ Open 2024, 88, e088317. [Google Scholar] [CrossRef]
- Delage, B.; Fennell, D.A.; Nicholson, L.; McNeish, I.; Lemoine, N.R.; Crook, T.; Szlosarek, P.W. Arginine Deprivation and Argininosuccinate Synthetase Expression in the Treatment of Cancer. Int. J. Cancer 2010, 126, 2762–2772. [Google Scholar] [CrossRef]
- Trott, J.F.; Hwang, V.J.; Ishimaru, T.; Chmiel, K.J.; Zhou, J.X.; Shim, K.; Stewart, B.J.; Mahjoub, M.R.; Jen, K.-Y.; Barupal, D.K.; et al. Arginine Reprogramming in ADPKD Results in Arginine-Dependent Cystogenesis. Am. J. Physiol. Ren. Physiol. 2018, 315, F1855–F1868. [Google Scholar] [CrossRef]
- Steidl, M.E.; Nigro, E.A.; Nielsen, A.K.; Pagliarini, R.; Cassina, L.; Lampis, M.; Podrini, C.; Chiaravalli, M.; Mannella, V.; Distefano, G.; et al. Primary Cilia Sense Glutamine Availability and Respond via Asparagine Synthetase. Nat. Metab. 2023, 5, 385–397. [Google Scholar] [CrossRef]
- Van Trimpont, M.; Peeters, E.; De Visser, Y.; Schalk, A.M.; Mondelaers, V.; De Moerloose, B.; Lavie, A.; Lammens, T.; Goossens, S.; Van Vlierberghe, P. Novel Insights on the Use of L-Asparaginase as an Efficient and Safe Anti-Cancer Therapy. Cancers 2022, 14, 902. [Google Scholar] [CrossRef]
- Shillingford, J.M.; Murcia, N.S.; Larson, C.H.; Low, S.H.; Hedgepeth, R.; Brown, N.; Flask, C.A.; Novick, A.C.; Goldfarb, D.A.; Kramer-Zucker, A.; et al. The mTOR Pathway Is Regulated by Polycystin-1, and Its Inhibition Reverses Renal Cystogenesis in Polycystic Kidney Disease. Proc. Natl. Acad. Sci. 2015, 14, e088317. [Google Scholar] [CrossRef]
- Serra, A.L.; Poster, D.; Kistler, A.D.; Krauer, F.; Raina, S.; Young, J.; Rentsch, K.M.; Spanaus, K.S.; Senn, O.; Kristanto, P.; et al. Sirolimus and Kidney Growth in Autosomal Dominant Polycystic Kidney Disease. N. Engl. J. Med. 2010, 363, 820–829. [Google Scholar] [CrossRef]
- Walz, G.; Budde, K.; Mannaa, M.; Nürnberger, J.; Wanner, C.; Sommerer, C.; Kunzendorf, U.; Banas, B.; Hörl, W.H.; Obermüller, N.; et al. Everolimus in Patients with Autosomal Dominant Polycystic Kidney Disease. N. Engl. J. Med. 2010, 363, 830–840. [Google Scholar] [CrossRef]
- Liu, Y.; Pejchinovski, M.; Wang, X.; Fu, X.; Castelletti, D.; Watnick, T.J.; Arcaro, A.; Siwy, J.; Mullen, W.; Mischak, H.; et al. Dual mTOR/PI3K Inhibition Limits PI3K-Dependent Pathways Activated upon mTOR Inhibition in Autosomal Dominant Polycystic Kidney Disease. Sci. Rep. 2018, 8, 5584. [Google Scholar] [CrossRef]
- Gulieva, R.E.; Ahmadvand, P.; Freedman, B.S. A Novel Rapalog Shows Improved Safety vs. Efficacy in a Human Organoid Model of Polycystic Kidney Disease. Stem Cell Rep. 2025, 20, 102395. [Google Scholar] [CrossRef] [PubMed]
- van Keimpema, L.; Nevens, F.; Vanslembrouck, R.; van Oijen, M.G.H.; Hoffmann, A.L.; Dekker, H.M.; de Man, R.A.; Drenth, J.P.H. Lanreotide Reduces the Volume of Polycystic Liver: A Randomized, Double-Blind, Placebo-Controlled Trial. Gastroenterology 2009, 137, 1661–1668.e1–2. [Google Scholar] [CrossRef] [PubMed]
- Meijer, E.; Visser, F.W.; van Aerts, R.M.M.; Blijdorp, C.J.; Casteleijn, N.F.; D’Agnolo, H.M.A.; Dekker, S.E.I.; Drenth, J.P.H.; de Fijter, J.W.; van Gastel, M.D.A.; et al. Effect of Lanreotide on Kidney Function in Patients with Autosomal Dominant Polycystic Kidney Disease. JAMA 2018, 14, 2010–2019. [Google Scholar] [CrossRef] [PubMed]
- Perico, N.; Ruggenenti, P.; Perna, A.; Caroli, A.; Trillini, M.; Sironi, S.; Pisani, A.; Riccio, E.; Imbriaco, M.; Dugo, M.; et al. Octreotide-LAR in Later-Stage Autosomal Dominant Polycystic Kidney Disease (ALADIN 2): A Randomized, Double-Blind, Placebo-Controlled, Multicenter Trial. PLoS Med. 2019, 16, e1002777. [Google Scholar] [CrossRef]
- Courtney, K.D.; Infante, J.R.; Lam, E.T.; Figlin, R.A.; Rini, B.I.; Brugarolas, J.; Zojwalla, N.J.; Lowe, A.M.; Wang, K.; Wallace, E.M.; et al. Phase I Dose-Escalation Trial of PT2385, a First-in-Class Hypoxia-Inducible Factor-2α Antagonist in Patients with Previously Treated Advanced Clear Cell Renal Cell Carcinoma. J. Clin. Oncol. 2018, 33, 129–137. [Google Scholar] [CrossRef]
- Nowak, K.L.; You, Z.; Gitomer, B.; Brosnahan, G.; Torres, V.E.; Chapman, A.B.; Perrone, R.D.; Steinman, T.I.; Abebe, K.Z.; Rahbari-Oskoui, F.F.; et al. Overweight and Obesity Are Predictors of Progression in Early Autosomal Dominant Polycystic Kidney Disease. J. Am. Soc. Nephrol. 2018, 29, 571–578. [Google Scholar] [CrossRef]
- Chen, L.-C.; Chu, Y.-C.; Lu, T.; Lin, H.Y.-H.; Chan, T.-C. Cardiometabolic Comorbidities in Autosomal Dominant Polycystic Kidney Disease: A 16-Year Retrospective Cohort Study. BMC Nephrol. 2023, 24, 333. [Google Scholar] [CrossRef]
- Koska-Ścigała, A.; Jankowska, H.; Jankowska, M.; Dudziak, M.; Hellmann, M.; Dębska-Ślizień, A. Echocardiographic Characteristics of Autosomal Dominant Polycystic Kidney Disease. Sci. Rep. 2024, 14, 29867. [Google Scholar] [CrossRef]
- Gorriz, J.L.; Arroyo, D.; D’Marco, L.; Torra, R.; Tomás, P.; Puchades, M.J.; Panizo, N.; Pantoja, J.; Montomoli, M.; Llisterri, J.L.; et al. Cardiovascular Risk Factors and the Impact on Prognosis in Patients with Chronic Kidney Disease Secondary to Autosomal Dominant Polycystic Kidney Disease. BMC Nephrol. 2021, 22, 110. [Google Scholar] [CrossRef]
- Ghanem, A.; Borghol, A.H.; Munairdjy Debeh, F.G.; Paul, S.; AlKhatib, B.; Harris, P.C.; Garimella, P.S.; Hanna, C.; Kline, T.L.; Dahl, N.K.; et al. Biomarkers of Kidney Disease Progression in ADPKD. Kidney Int. Rep. 2024, 9, 2860–2882. [Google Scholar] [CrossRef]
- Manolis, A.S.; Manolis, T.A.; Manolis, A.A. Ketone Bodies and Cardiovascular Disease: An Alternate Fuel Source to the Rescue. Int. J. Mol. Sci. 2023, 24, 3534. [Google Scholar] [CrossRef]
- Ding, Y.; Zhou, Y.; Ling, P.; Feng, X.; Luo, S.; Zheng, X.; Little, P.J.; Xu, S.; Weng, J. Metformin in Cardiovascular Diabetology: A Focused Review of Its Impact on Endothelial Function. Theranostics 2021, 11, 9376–9396. [Google Scholar] [CrossRef] [PubMed]
Therapeutic Strategy | Metabolic Target | Drug/Intervention | Reference |
---|---|---|---|
Caloric Restriction and Fasting | Induce ketosis, inhibit mTOR, activate AMPK | Fasting, TRF, CR | [91,92,93,94,95,96,97,98] |
Ketogenic Diet and Ketone Supplementation | Sustain ketosis, inhibit glycolysis, activate AMPK | Ketogenic diet, β-hydroxybutyrate (BHB), citrate supplementation | [99,100,101,102] |
Protein or Amino Acid Restriction | Reduce amino acid availability (glutamine, arginine) | Low-protein diet, BPTES (glutaminase inhibitor) | [40,103,104,105] |
Hydration and Caffeine Avoidance | Reduce vasopressin and cAMP levels | Increased water intake, caffeine avoidance | [106,107,108,109] |
AMPK Activators (Metformin, Salsalate) | Activate AMPK, inhibit mTOR, improve mitochondrial function | Metformin, salsalate | [111,112,113,114,115,116] |
Glycolysis Inhibition (2DG, SGLT Inhibitors) | Inhibit glycolysis, reduce ATP supply to cyst cells | 2DG, Phlorizin, dapagliflozin, empagliflozin | [117,118,119,120,121,122] |
Arginine Deprivation | Reduce polyamine synthesis, inhibit mTOR signaling | Arginase inhibitors | [124] |
Asparagine Targeting | Disrupt glutamine-derived asparagine metabolism | L-asparaginase (theoretical) | [64,125,126] |
mTOR Inhibitors (Rapamycin, Everolimus) | Inhibit mTORC1 signaling, suppress cell growth | Rapamycin, sirolimus, everolimus, NVP-BEZ235, AV457 | [127,128,129,130,131] |
Somatostatin Analogues (Octreotide, Lanreotide) | Suppress cAMP production | Octreotide-LAR, lanreotide | [132,133,134] |
HIF-1α Inhibitors | Suppress glycolysis and cystic proliferation | HIF-1α genetic deletion, HIF inhibitors (PT2385 for HIF-2α) | [68,71,135] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, J.; Yu, X. Metabolic Reprogramming in Autosomal Dominant Polycystic Kidney Disease: Role in Cystogenesis and Novel Therapeutic Approaches. Biomedicines 2025, 13, 1596. https://doi.org/10.3390/biomedicines13071596
Gao J, Yu X. Metabolic Reprogramming in Autosomal Dominant Polycystic Kidney Disease: Role in Cystogenesis and Novel Therapeutic Approaches. Biomedicines. 2025; 13(7):1596. https://doi.org/10.3390/biomedicines13071596
Chicago/Turabian StyleGao, Jingyuan, and Xiaoyong Yu. 2025. "Metabolic Reprogramming in Autosomal Dominant Polycystic Kidney Disease: Role in Cystogenesis and Novel Therapeutic Approaches" Biomedicines 13, no. 7: 1596. https://doi.org/10.3390/biomedicines13071596
APA StyleGao, J., & Yu, X. (2025). Metabolic Reprogramming in Autosomal Dominant Polycystic Kidney Disease: Role in Cystogenesis and Novel Therapeutic Approaches. Biomedicines, 13(7), 1596. https://doi.org/10.3390/biomedicines13071596