Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,520)

Search Parameters:
Keywords = PET-CT imaging

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1361 KiB  
Article
Radiomics with Clinical Data and [18F]FDG-PET for Differentiating Between Infected and Non-Infected Intracavitary Vascular (Endo)Grafts: A Proof-of-Concept Study
by Gijs D. van Praagh, Francine Vos, Stijn Legtenberg, Marjan Wouthuyzen-Bakker, Ilse J. E. Kouijzer, Erik H. J. G. Aarntzen, Jean-Paul P. M. de Vries, Riemer H. J. A. Slart, Lejla Alic, Bhanu Sinha and Ben R. Saleem
Diagnostics 2025, 15(15), 1944; https://doi.org/10.3390/diagnostics15151944 (registering DOI) - 2 Aug 2025
Abstract
Objective: We evaluated the feasibility of a machine-learning (ML) model based on clinical features and radiomics from [18F]FDG PET/CT images to differentiate between infected and non-infected intracavitary vascular grafts and endografts (iVGEI). Methods: Three ML models were developed: one based on [...] Read more.
Objective: We evaluated the feasibility of a machine-learning (ML) model based on clinical features and radiomics from [18F]FDG PET/CT images to differentiate between infected and non-infected intracavitary vascular grafts and endografts (iVGEI). Methods: Three ML models were developed: one based on pre-treatment criteria to diagnose a vascular graft infection (“MAGIC-light features”), another using radiomics features from diagnostic [18F]FDG-PET scans, and a third combining both datasets. The training set included 92 patients (72 iVGEI-positive, 20 iVGEI-negative), and the external test set included 20 iVGEI-positive and 12 iVGEI-negative patients. The abdominal aorta and iliac arteries in the PET/CT scans were automatically segmented using SEQUOIA and TotalSegmentator and manually adjusted, extracting 96 radiomics features. The best-performing models for the MAGIC-light features and PET-radiomics features were selected from 343 unique models. Most relevant features were combined to test three final models using ROC analysis, accuracy, sensitivity, and specificity. Results: The combined model achieved the highest AUC in the test set (mean ± SD: 0.91 ± 0.02) compared with the MAGIC-light-only model (0.85 ± 0.06) and the PET-radiomics model (0.73 ± 0.03). The combined model also achieved a higher accuracy (0.91 vs. 0.82) than the diagnosis based on all the MAGIC criteria and a comparable sensitivity and specificity (0.70 and 1.00 vs. 0.76 and 0.92, respectively) while providing diagnostic information at the initial presentation. The AUC for the combined model was significantly higher than the PET-radiomics model (p = 0.02 in the bootstrap test), while other comparisons were not statistically significant. Conclusions: This study demonstrated the potential of ML models in supporting diagnostic decision making for iVGEI. A combined model using pre-treatment clinical features and PET-radiomics features showed high diagnostic performance and specificity, potentially reducing overtreatment and enhancing patient outcomes. Full article
(This article belongs to the Special Issue Artificial Intelligence-Driven Radiomics in Medical Diagnosis)
Show Figures

Figure 1

34 pages, 2929 KiB  
Review
Recent Advances in PET and Radioligand Therapy for Lung Cancer: FDG and FAP
by Eun Jeong Lee, Hyun Woo Chung, Young So, In Ae Kim, Hee Joung Kim and Kye Young Lee
Cancers 2025, 17(15), 2549; https://doi.org/10.3390/cancers17152549 (registering DOI) - 1 Aug 2025
Abstract
Lung cancer is one of the most common cancers and the leading cause of cancer-related death worldwide. Despite advancements, the overall survival rate for lung cancer remains between 10% and 20% in most countries. However, recent progress in diagnostic tools and therapeutic strategies [...] Read more.
Lung cancer is one of the most common cancers and the leading cause of cancer-related death worldwide. Despite advancements, the overall survival rate for lung cancer remains between 10% and 20% in most countries. However, recent progress in diagnostic tools and therapeutic strategies has led to meaningful improvements in survival outcomes, highlighting the growing importance of personalized management based on accurate disease assessment. 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) has become essential in the management of lung cancer, serving as a key imaging modality for initial diagnosis, staging, treatment response assessment, and follow-up evaluation. Recent developments in radiomics and artificial intelligence (AI), including machine learning and deep learning, have revolutionized the analysis of complex imaging data, enhancing the diagnostic and predictive capabilities of FDG PET/CT in lung cancer. However, the limitations of FDG, including its low specificity for malignancy, have driven the development of novel oncologic radiotracers. One such target is fibroblast activation protein (FAP), a type II transmembrane glycoprotein that is overexpressed in activated cancer-associated fibroblasts within the tumor microenvironment of various epithelial cancers. As a result, FAP-targeted radiopharmaceuticals represent a novel theranostic approach, offering the potential to integrate PET imaging with radioligand therapy (RLT). In this review, we provide a comprehensive overview of FDG PET/CT in lung cancer, along with recent advances in AI. Additionally, we discuss FAP-targeted radiopharmaceuticals for PET imaging and their potential application in RLT for the personalized management of lung cancer. Full article
(This article belongs to the Special Issue Molecular PET Imaging in Cancer Metabolic Studies)
29 pages, 28274 KiB  
Article
Long-Term Neuroprotective Effects of Hydrogen-Rich Water and Memantine in Chronic Radiation-Induced Brain Injury: Behavioral, Histological, and Molecular Insights
by Kai Xu, Huan Liu, Yinhui Wang, Yushan He, Mengya Liu, Haili Lu, Yuhao Wang, Piye Niu and Xiujun Qin
Antioxidants 2025, 14(8), 948; https://doi.org/10.3390/antiox14080948 (registering DOI) - 1 Aug 2025
Abstract
Hydrogen-rich water (HRW) has shown neuroprotective effects in acute brain injury, but its role in chronic radiation-induced brain injury (RIBI) remains unclear. This study investigated the long-term efficacy of HRW in mitigating cognitive impairment and neuronal damage caused by chronic RIBI. Fifty male [...] Read more.
Hydrogen-rich water (HRW) has shown neuroprotective effects in acute brain injury, but its role in chronic radiation-induced brain injury (RIBI) remains unclear. This study investigated the long-term efficacy of HRW in mitigating cognitive impairment and neuronal damage caused by chronic RIBI. Fifty male Sprague Dawley rats were randomly divided into five groups: control, irradiation (IR), IR with memantine, IR with HRW, and IR with combined treatment. All but the control group received 20 Gy whole-brain X-ray irradiation, followed by daily interventions for 60 days. Behavioral assessments, histopathological analyses, oxidative stress measurements, 18F-FDG PET/CT imaging, transcriptomic sequencing, RT-qPCR, Western blot, and serum ELISA were performed. HRW significantly improved anxiety-like behavior, memory, and learning performance compared to the IR group. Histological results revealed that HRW reduced neuronal swelling, degeneration, and loss and enhanced dendritic spine density and neurogenesis. PET/CT imaging showed increased hippocampal glucose uptake in the IR group, which was alleviated by HRW treatment. Transcriptomic and molecular analyses indicated that HRW modulated key genes and proteins, including CD44, CD74, SPP1, and Wnt1, potentially through the MIF, Wnt, and SPP1 signaling pathways. Serum CD44 levels were also lower in treated rats, suggesting its potential as a biomarker for chronic RIBI. These findings demonstrate that HRW can alleviate chronic RIBI by preserving neuronal structure, reducing inflammation, and enhancing neuroplasticity, supporting its potential as a therapeutic strategy for radiation-induced cognitive impairment. Full article
Show Figures

Graphical abstract

16 pages, 1188 KiB  
Article
Delta Changes in [18F]FDG PET/CT Parameters Can Prognosticate Clinical Outcomes in Recurrent NSCLC Patients Who Have Undergone Reirradiation–Chemoimmunotherapy
by Brane Grambozov, Nazanin Zamani-Siahkali, Markus Stana, Mohsen Beheshti, Elvis Ruznic, Zarina Iskakova, Josef Karner, Barbara Zellinger, Sabine Gerum, Falk Roeder, Christian Pirich and Franz Zehentmayr
Biomedicines 2025, 13(8), 1866; https://doi.org/10.3390/biomedicines13081866 - 31 Jul 2025
Abstract
Background and Purpose: Stratification based on specific image biomarkers applicable in clinical settings could help optimize treatment outcomes for recurrent non-small cell lung cancer patients. For this purpose, we aimed to determine the clinical impact of positive delta changes (any difference above [...] Read more.
Background and Purpose: Stratification based on specific image biomarkers applicable in clinical settings could help optimize treatment outcomes for recurrent non-small cell lung cancer patients. For this purpose, we aimed to determine the clinical impact of positive delta changes (any difference above zero > 0) between baseline [18F]FDG PET/CT metrics before the first treatment course and reirradiation. Material/Methods: Forty-seven patients who underwent thoracic reirradiation with curative intent at our institute between 2013 and 2021 met the inclusion criteria. All patients had histologically verified NSCLC, ECOG (Eastern Cooperative Oncology Group) ≤ 2, and underwent [18F]FDG PET/CT for initial staging and re-staging before primary radiotherapy and reirradiation, respectively. The time interval between radiation treatments was at least nine months. Quantitative metabolic volume and intensity parameters were measured before first irradiation and before reirradiation, and the difference above zero (>0; delta change) between them was statistically correlated to locoregional control (LRC), progression-free survival (PFS), and overall survival (OS). Results: Patients were followed for a median time of 33 months after reirradiation. The median OS was 21.8 months (95%-CI: 16.3–27.3), the median PFS was 12 months (95%-CI: 6.7–17.3), and the median LRC was 13 months (95%-CI: 9.0–17.0). Multivariate analysis revealed that the delta changes in SULpeak, SUVmax, and SULmax of the lymph nodes significantly impacted OS (SULpeak p = 0.017; SUVmax p = 0.006; SULmax p = 0.006), PFS (SULpeak p = 0.010; SUVmax p = 0.009; SULmax p = 0.009), and LRC (SULpeak p < 0.001; SUVmax p = 0.003; SULmax p = 0.003). Conclusions: Delta changes in SULpeak, SUVmax, and SULmax of the metastatic lymph nodes significantly impacted all clinical endpoints (OS, PFS and LRC) in recurrent NSCLC patients treated with reirradiation. Hence, these imaging biomarkers could be helpful with regard to patient selection in this challenging clinical situation. Full article
Show Figures

Figure 1

12 pages, 1472 KiB  
Article
Furosemide Reduces Radionuclide Activity in the Bladder in 18F-PSMA-1007-PET/CT: A Single-Center Retrospective Intra-Individual Comparative Study
by Martin A. Cahenzli, Andreas S. Kreusch, Philipp Huber, Marco Dressler, Janusch P. Blautzik and Gregor Sommer
Diagnostics 2025, 15(15), 1931; https://doi.org/10.3390/diagnostics15151931 - 31 Jul 2025
Abstract
Background/Objectives: 18F-PSMA-1007 is one of the more widely used radioligands in prostate cancer imaging with PET/CT. Its major advantage lies in the low urinary tracer activity due to primarily hepatobiliary clearance, but unexpectedly high tracer accumulation in the bladder can occur, [...] Read more.
Background/Objectives: 18F-PSMA-1007 is one of the more widely used radioligands in prostate cancer imaging with PET/CT. Its major advantage lies in the low urinary tracer activity due to primarily hepatobiliary clearance, but unexpectedly high tracer accumulation in the bladder can occur, potentially hindering assessment of lesions near the prostate bed. This study assesses the impact of furosemide on 18F-PSMA-1007 tracer accumulation in the bladder. Methods: In this single-center, retrospective, intra-individual comparative analysis, 18 patients undergoing two consecutive 18F-PSMA-1007 PET/CT scans for biochemical relapse (BCR) or persistence (BCP)—one with and one without prior furosemide administration—were included. Images were acquired 60 min post-injection of 250 MBq of tracer activity. Standardized Uptake Values (SUVmax, SUVpeak, SUVmean) were measured in the bladder and in tissues with physiological uptake by three readers. Differences were analyzed using Wilcoxon signed-rank tests. The inter-reader agreement was assessed using intraclass correlation coefficient. Results: Furosemide significantly decreased bladder SUVmax, SUVpeak, and SUVmean (all p < 0.001). Mean bladder SUVmax decreased from 13.20 ± 10.40 to 3.92 ± 3.47, SUVpeak from 10.94 ± 8.02 to 3.47 ± 3.13, and SUVmean from 8.74 ± 6.66 to 2.81 ± 2.56, representing a large effect size (r ≈ 0.55). Physiological tracer uptake in most organs was not significantly influenced by furosemide (all p > 0.05). Conclusions: Despite the predominantly hepatobiliary clearance of 18F-PSMA-1007, furosemide-induced forced diuresis leads to a significant reduction in tracer activity in the bladder, which in clinical practice could help in early detection of tumor recurrence. Full article
(This article belongs to the Special Issue Research Update on Nuclear Medicine)
Show Figures

Figure 1

20 pages, 2382 KiB  
Article
The Impact of the Injected Mass of the Gastrin-Releasing Peptide Receptor Antagonist on Uptake in Breast Cancer: Lessons from a Phase I Trial of [99mTc]Tc-DB8
by Olga Bragina, Vladimir Chernov, Mariia Larkina, Ruslan Varvashenya, Roman Zelchan, Anna Medvedeva, Anastasiya Ivanova, Liubov Tashireva, Theodosia Maina, Berthold A. Nock, Panagiotis Kanellopoulos, Jens Sörensen, Anna Orlova and Vladimir Tolmachev
Pharmaceutics 2025, 17(8), 1000; https://doi.org/10.3390/pharmaceutics17081000 - 31 Jul 2025
Abstract
Background/Objectives: Gastrin-releasing peptide receptor (GRPR) is overexpressed in breast cancer and might be used as a theranostics target. The expression of GRPR strongly correlates with estrogen receptor (ER) expression. Visualization of GRPR-expressing breast tumors might help to select the optimal treatment. Developing GRPR-specific [...] Read more.
Background/Objectives: Gastrin-releasing peptide receptor (GRPR) is overexpressed in breast cancer and might be used as a theranostics target. The expression of GRPR strongly correlates with estrogen receptor (ER) expression. Visualization of GRPR-expressing breast tumors might help to select the optimal treatment. Developing GRPR-specific probes for SPECT would permit imaging-guided therapy in regions with restricted access to PET facilities. In this first-in-human study, we evaluated the safety, biodistribution, and dosimetry of the [99mTc]Tc-DB8 GRPR-antagonistic peptide. We also addressed the important issue of finding the optimal injected peptide mass. Methods: Fifteen female patients with ER-positive primary breast cancer were enrolled and divided into three cohorts receiving [99mTc]Tc-DB8 (corresponding to three distinct doses of 40, 80, or 120 µg DB8) comprising five patients each. Additionally, four patients with ER-negative primary tumors were injected with 80 µg [99mTc]Tc-DB8. The injected activity was 360 ± 70 MBq. Planar scintigraphy was performed after 2, 4, 6, and 24 h, and SPECT/CT scans followed planar imaging 2, 4, and 6 h after injection. Results: No adverse events were associated with [99mTc]Tc-DB8 injections. The effective dose was 0.009–0.014 mSv/MBq. Primary tumors and all known lymph node metastases were visualized irrespective of injected peptide mass. The highest uptake in the ER-positive tumors was 2 h after injection of [99mTc]Tc-DB8 at a 80 µg DB8 dose (SUVmax 5.3 ± 1.2). Injection of [99mTc]Tc-DB8 with 80 µg DB8 provided significantly (p < 0.01) higher uptake in primary ER-positive breast cancer lesions than injection with 40 µg DB8 (SUVmax 2.0 ± 0.3) or 120 µg (SUVmax 3.2 ± 1.4). Tumor-to-contralateral breast ratio after injection of 80 μg was also significantly (p < 0.01, ANOVA test) higher than ratios after injection of other peptide masses. The uptake in ER-negative lesions was significantly lower (SUVmax 2.0 ± 0.3) than in ER-positive tumors. Conclusions: Imaging using [99mTc]Tc-DB8 is safe, tolerable, and associated with low absorbed doses. The tumor uptake is dependent on the injected peptide mass. The injection of an optimal mass (80 µg) provides the highest uptake in ER-positive tumors. At optimal dosing, the uptake was significantly higher in ER-positive than in ER-negative lesions. Full article
Show Figures

Graphical abstract

16 pages, 1194 KiB  
Systematic Review
Artificial Intelligence in the Diagnosis of Tongue Cancer: A Systematic Review with Meta-Analysis
by Seorin Jeong, Hae-In Choi, Keon-Il Yang, Jin Soo Kim, Ji-Won Ryu and Hyun-Jeong Park
Biomedicines 2025, 13(8), 1849; https://doi.org/10.3390/biomedicines13081849 - 30 Jul 2025
Viewed by 176
Abstract
Background: Tongue squamous cell carcinoma (TSCC) is an aggressive oral malignancy characterized by early submucosal invasion and a high risk of cervical lymph node metastasis. Accurate and timely diagnosis is essential, but it remains challenging when relying solely on conventional imaging and [...] Read more.
Background: Tongue squamous cell carcinoma (TSCC) is an aggressive oral malignancy characterized by early submucosal invasion and a high risk of cervical lymph node metastasis. Accurate and timely diagnosis is essential, but it remains challenging when relying solely on conventional imaging and histopathology. This systematic review aimed to evaluate studies applying artificial intelligence (AI) in the diagnostic imaging of TSCC. Methods: This review was conducted under PRISMA 2020 guidelines and included studies from January 2020 to December 2024 that utilized AI in TSCC imaging. A total of 13 studies were included, employing AI models such as Convolutional Neural Networks (CNNs), Support Vector Machines (SVMs), and Random Forest (RF). Imaging modalities analyzed included MRI, CT, PET, ultrasound, histopathological whole-slide images (WSI), and endoscopic photographs. Results: Diagnostic performance was generally high, with area under the curve (AUC) values ranging from 0.717 to 0.991, sensitivity from 63.3% to 100%, and specificity from 70.0% to 96.7%. Several models demonstrated superior performance compared to expert clinicians, particularly in delineating tumor margins and estimating the depth of invasion (DOI). However, only one study conducted external validation, and most exhibited moderate risk of bias in patient selection or index test interpretation. Conclusions: AI-based diagnostic tools hold strong potential for enhancing TSCC detection, but future research must address external validation, standardization, and clinical integration to ensure their reliable and widespread adoption. Full article
(This article belongs to the Special Issue Recent Advances in Oral Medicine—2nd Edition)
Show Figures

Figure 1

24 pages, 1408 KiB  
Systematic Review
Fear Detection Using Electroencephalogram and Artificial Intelligence: A Systematic Review
by Bladimir Serna, Ricardo Salazar, Gustavo A. Alonso-Silverio, Rosario Baltazar, Elías Ventura-Molina and Antonio Alarcón-Paredes
Brain Sci. 2025, 15(8), 815; https://doi.org/10.3390/brainsci15080815 - 29 Jul 2025
Viewed by 266
Abstract
Background/Objectives: Fear detection through EEG signals has gained increasing attention due to its applications in affective computing, mental health monitoring, and intelligent safety systems. This systematic review aimed to identify the most effective methods, algorithms, and configurations reported in the literature for detecting [...] Read more.
Background/Objectives: Fear detection through EEG signals has gained increasing attention due to its applications in affective computing, mental health monitoring, and intelligent safety systems. This systematic review aimed to identify the most effective methods, algorithms, and configurations reported in the literature for detecting fear from EEG signals using artificial intelligence (AI). Methods: Following the PRISMA 2020 methodology, a structured search was conducted using the string (“fear detection” AND “artificial intelligence” OR “machine learning” AND NOT “fnirs OR mri OR ct OR pet OR image”). After applying inclusion and exclusion criteria, 11 relevant studies were selected. Results: The review examined key methodological aspects such as algorithms (e.g., SVM, CNN, Decision Trees), EEG devices (Emotiv, Biosemi), experimental paradigms (videos, interactive games), dominant brainwave bands (beta, gamma, alpha), and electrode placement. Non-linear models, particularly when combined with immersive stimulation, achieved the highest classification accuracy (up to 92%). Beta and gamma frequencies were consistently associated with fear states, while frontotemporal electrode positioning and proprietary datasets further enhanced model performance. Conclusions: EEG-based fear detection using AI demonstrates high potential and rapid growth, offering significant interdisciplinary applications in healthcare, safety systems, and affective computing. Full article
(This article belongs to the Special Issue Neuropeptides, Behavior and Psychiatric Disorders)
Show Figures

Figure 1

21 pages, 14138 KiB  
Case Report
Multi-Level Oncological Management of a Rare, Combined Mediastinal Tumor: A Case Report
by Vasileios Theocharidis, Thomas Rallis, Apostolos Gogakos, Dimitrios Paliouras, Achilleas Lazopoulos, Meropi Koutourini, Myrto Tzinevi, Aikaterini Vildiridi, Prokopios Dimopoulos, Dimitrios Kasarakis, Panagiotis Kousidis, Anastasia Nikolaidou, Paraskevas Vrochidis, Maria Mironidou-Tzouveleki and Nikolaos Barbetakis
Curr. Oncol. 2025, 32(8), 423; https://doi.org/10.3390/curroncol32080423 - 28 Jul 2025
Viewed by 188
Abstract
Malignant mediastinal tumors are a group representing some of the most demanding oncological challenges for early, multi-level, and successful management. The timely identification of any suspicious clinical symptomatology is urgent in achieving an accurate, staged histological diagnosis, in order to follow up with [...] Read more.
Malignant mediastinal tumors are a group representing some of the most demanding oncological challenges for early, multi-level, and successful management. The timely identification of any suspicious clinical symptomatology is urgent in achieving an accurate, staged histological diagnosis, in order to follow up with an equally detailed medical therapeutic plan (interventional or not) and determine the principal goals regarding efficient overall treatment in these patients. We report a case of a 24-year-old male patient with an incident-free prior medical history. An initial chest X-ray was performed after the patient reported short-term, consistent moderate chest pain symptomatology, early work fatigue, and shortness of breath. The following imaging procedures (chest CT, PET-CT) indicated the presence of an anterior mediastinal mass (meas. ~11 cm × 10 cm × 13 cm, SUV: 8.7), applying additional pressure upon both right heart chambers. The Alpha-Fetoprotein (aFP) blood levels had exceeded at least 50 times their normal range. Two consecutive diagnostic attempts with non-specific histological results, a negative-for-malignancy fine-needle aspiration biopsy (FNA-biopsy), and an additional tumor biopsy, performed via mini anterior (R) thoracotomy with “suspicious” cellular gatherings, were performed elsewhere. After admission to our department, an (R) Video-Assisted Thoracic Surgery (VATS) was performed, along with multiple tumor biopsies and moderate pleural effusion drainage. The tumor’s measurements had increased to DMax: 16 cm × 9 cm × 13 cm, with a severe degree of atelectasis of the Right Lower Lobe parenchyma (RLL) and a pressure-displacement effect upon the Superior Vena Cava (SVC) and the (R) heart sinus, based on data from the preoperative chest MRA. The histological report indicated elements of a combined, non-seminomatous germ-cell mediastinal tumor, posthuberal-type teratoma, and embryonal carcinoma. The imminent chemotherapeutic plan included a “BEP” (Bleomycin®/Cisplatin®/Etoposide®) scheme, which needed to be modified to a “VIP” (Cisplatin®/Etoposide®/Ifosfamide®) scheme, due to an acute pulmonary embolism incident. While the aFP blood levels declined, even reaching normal measurements, the tumor’s size continued to increase significantly (DMax: 28 cm × 25 cm × 13 cm), with severe localized pressure effects, rapid weight loss, and a progressively worsening clinical status. Thus, an emergency surgical intervention took place via median sternotomy, extended with a complementary “T-Shaped” mini anterior (R) thoracotomy. A large, approx. 4 Kg mediastinal tumor was extracted, with additional RML and RUL “en-bloc” segmentectomy and partial mediastinal pleura decortication. The following histological results, apart from verifying the already-known posthuberal-type teratoma, indicated additional scattered small lesions of combined high-grade rabdomyosarcoma, chondrosarcoma, and osteosarcoma, as well as numerous high-grade glioblastoma cellular gatherings. No visible findings of the previously discovered non-seminomatous germ-cell and embryonal carcinoma elements were found. The patient’s postoperative status progressively improved, allowing therapeutic management to continue with six “TIP” (Cisplatin®/Paclitaxel®/Ifosfamide®) sessions, currently under his regular “follow-up” from the oncological team. This report underlines the importance of early, accurate histological identification, combined with any necessary surgical intervention, diagnostic or therapeutic, as well as the appliance of any subsequent multimodality management plan. The diversity of mediastinal tumors, especially for young patients, leaves no place for complacency. Such rare examples may manifest, with equivalent, unpredictable evolution, obliging clinical physicians to stay constantly alert and not take anything for granted. Full article
(This article belongs to the Section Thoracic Oncology)
Show Figures

Graphical abstract

16 pages, 5172 KiB  
Article
LAMP1 as a Target for PET Imaging in Adenocarcinoma Xenograft Models
by Bahar Ataeinia, Arvin Haj-Mirzaian, Lital Ben-Naim, Shadi A. Esfahani, Asier Marcos Vidal, Umar Mahmood and Pedram Heidari
Pharmaceuticals 2025, 18(8), 1122; https://doi.org/10.3390/ph18081122 - 27 Jul 2025
Viewed by 382
Abstract
Background: Lysosomal-associated membrane protein 1 (LAMP1), typically localized to the lysosomal membrane, is increasingly implicated as a marker of cancer aggressiveness and metastasis when expressed on the cell surface. This study aimed to develop a LAMP1-targeted antibody-based PET tracer and assess its efficacy [...] Read more.
Background: Lysosomal-associated membrane protein 1 (LAMP1), typically localized to the lysosomal membrane, is increasingly implicated as a marker of cancer aggressiveness and metastasis when expressed on the cell surface. This study aimed to develop a LAMP1-targeted antibody-based PET tracer and assess its efficacy in mouse models of human breast and colon adenocarcinoma. Methods: To determine the source of LAMP1 expression, we utilized human single-cell RNA sequencing and spatial transcriptomics, complemented by in-house flow cytometry on xenografted mouse models. Tissue microarrays of multiple epithelial cancers and normal tissue were stained for LAMP-1, and staining was quantified. An anti-LAMP1 monoclonal antibody was conjugated with desferrioxamine (DFO) and labeled with zirconium-89 (89Zr). Human triple-negative breast cancer (MDA-MB-231) and colon cancer (Caco-2) cell lines were implanted in nude mice. PET/CT imaging was conducted at 24, 72, and 168 h post-intravenous injection of 89Zr-DFO-anti-LAMP1 and 89Zr-DFO-IgG (negative control), followed by organ-specific biodistribution analyses at the final imaging time point. Results: Integrated single-cell and spatial RNA sequencing demonstrated that LAMP1 expression was localized to myeloid-derived suppressor cells (MDSCs) and cancer-associated fibroblasts (CAFs) in addition to the cancer cells. Tissue microarray showed significantly higher staining for LAMP-1 in tumor tissue compared to normal tissue (3986 ± 2635 vs. 1299 ± 1291, p < 0.001). Additionally, xenograft models showed a significantly higher contribution of cancer cells than the immune cells to cell surface LAMP1 expression. In vivo, PET imaging with 89Zr-DFO-anti-LAMP1 PET/CT revealed detectable tumor uptake as early as 24 h post-injection. The 89Zr-DFO-anti-LAMP1 tracer demonstrated significantly higher uptake than the control 89Zr-DFO-IgG in both models across all time points (MDA-MB-231 SUVmax at 168 h: 12.9 ± 5.7 vs. 4.4 ± 2.4, p = 0.003; Caco-2 SUVmax at 168 h: 8.53 ± 3.03 vs. 3.38 ± 1.25, p < 0.01). Conclusions: Imaging of cell surface LAMP-1 in breast and colon adenocarcinoma is feasible by immuno-PET. LAMP-1 imaging can be expanded to adenocarcinomas of other origins, such as prostate and pancreas. Full article
Show Figures

Figure 1

15 pages, 1231 KiB  
Review
Endoscopic Ultrasound (EUS) in Gastric Cancer: Current Applications and Future Perspectives
by Dimitrios I. Ziogas, Nikolaos Kalakos, Anastasios Manolakis, Theodoros Voulgaris, Ioannis Vezakis, Mario Tadic and Ioannis S. Papanikolaou
Diseases 2025, 13(8), 234; https://doi.org/10.3390/diseases13080234 - 24 Jul 2025
Viewed by 1137
Abstract
Gastric cancer remains the fourth leading cause of cancer-related mortality worldwide. Advanced disease is associated with a poor prognosis, emphasizing the critical importance of early diagnosis through endoscopy. In addition to prognosis, disease extent also plays a pivotal role in guiding management strategies. [...] Read more.
Gastric cancer remains the fourth leading cause of cancer-related mortality worldwide. Advanced disease is associated with a poor prognosis, emphasizing the critical importance of early diagnosis through endoscopy. In addition to prognosis, disease extent also plays a pivotal role in guiding management strategies. Therefore, accurate locoregional staging (T and N staging) is vital for optimal prognostic and therapeutic planning. Endoscopic ultrasound (EUS) has long been an essential tool in this regard, with computed tomography (CT) and, more recently, positron emission tomography–computed tomography (PET–CT) serving as alternative imaging modalities. EUS is particularly valuable in the assessment of early gastric cancer, defined as tumor invasion confined to the mucosa or submucosa. These tumors are increasingly managed by endoscopic resection techniques offering improved post-treatment quality of life. EUS has also recently been utilized in the restaging process after neoadjuvant chemotherapy, aiding in the evaluation of tumor resectability and prognosis. Its performance may be further enhanced through the application of emerging techniques such as contrast-enhanced endosonography, EUS elastography, and artificial intelligence systems. In advanced, unresectable disease, complications such as gastric outlet obstruction (GOO) severely impact patient quality of life. In this setting, EUS-guided gastroenterostomy (EUS-GE) offers a less invasive alternative to surgical gastrojejunostomy. This review summarizes and critically analyzes the role of EUS in the context of gastric cancer, highlighting its applications across different stages of the disease and evaluating its performance relative to other diagnostic modalities. Full article
(This article belongs to the Section Gastroenterology)
Show Figures

Figure 1

16 pages, 2427 KiB  
Review
Pancreatic Cancer Resectability After Neoadjuvant Treatment: An Imaging Challenge
by Ioannis Christofilis, Charikleia Triantopoulou and Spiros Delis
Diagnostics 2025, 15(14), 1810; https://doi.org/10.3390/diagnostics15141810 - 18 Jul 2025
Viewed by 399
Abstract
Background: Assessing pancreatic ductal adenocarcinoma (PDAC) resectability after neoadjuvant therapy (NAT) remains a diagnostic challenge. Traditional computed tomography (CT) criteria often fail to distinguish viable tumor from fibrosis, necessitating a reassessment of imaging-based standards. Methods: A comprehensive literature review was conducted using PubMed, [...] Read more.
Background: Assessing pancreatic ductal adenocarcinoma (PDAC) resectability after neoadjuvant therapy (NAT) remains a diagnostic challenge. Traditional computed tomography (CT) criteria often fail to distinguish viable tumor from fibrosis, necessitating a reassessment of imaging-based standards. Methods: A comprehensive literature review was conducted using PubMed, focusing on prospective and retrospective studies over the past 25 years that evaluated the role of CT and complementary imaging modalities (MRI, PET-CT) in predicting resectability post-NAT in non-metastatic PDAC. Studies with small sample sizes or case reports were excluded. Results: Across studies, conventional CT parameters—particularly >180° vascular encasement—showed a limited correlation with histologic invasion or surgical outcomes after NAT. Persistent vessel contact on CT often reflected fibrosis, rather than active tumor. Dynamic changes, such as regression in the tumor–vessel interface and vessel lumen restoration, correlated more accurately with R0 resection. Adjunct markers like CA 19-9 response and patient performance status further improved resectability prediction. Conclusions: CT-based resectability assessment after NAT should transition from static morphologic criteria to response-based interpretation. Multidisciplinary evaluation integrating radiologic, biochemical, and clinical findings is essential to guide surgical decision-making and improve patient outcomes. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

16 pages, 810 KiB  
Review
Synergizing Liquid Biopsy and Hybrid PET Imaging for Prognostic Assessment in Prostate Cancer: A Focus Review
by Federica Stracuzzi, Sara Dall’ Armellina, Gayane Aghakhanyan, Salvatore C. Fanni, Giacomo Aringhieri, Lorenzo Faggioni, Emanuele Neri, Duccio Volterrani and Dania Cioni
Biomolecules 2025, 15(7), 1041; https://doi.org/10.3390/biom15071041 - 18 Jul 2025
Viewed by 350
Abstract
Positron emission tomography (PET) and liquid biopsy have independently transformed prostate cancer management. This review explores the complementary roles of PET imaging and liquid biopsy in prostate cancer, focusing on their combined diagnostic, monitoring, and prognostic potential. A systematic search of PubMed, Scopus, [...] Read more.
Positron emission tomography (PET) and liquid biopsy have independently transformed prostate cancer management. This review explores the complementary roles of PET imaging and liquid biopsy in prostate cancer, focusing on their combined diagnostic, monitoring, and prognostic potential. A systematic search of PubMed, Scopus, and Cochrane Library databases was conducted to identify human studies published in English up to January 2025. Seventeen studies met the inclusion criteria and were analyzed according to PRISMA guidelines. Across the included studies, PET-derived imaging metrics, such as metabolic activity and radiotracer uptake, correlated consistently with liquid biopsy biomarkers, including circulating tumor cells and cell-free DNA. Their joint application demonstrated added value in early detection, treatment monitoring, and outcome prediction, particularly in castration-resistant prostate cancer. Independent and synergistic prognostic value was noted for both modalities, including survival outcomes such as overall survival and progression-free survival. Combining PET imaging and liquid biopsy emerges as a promising, non-invasive strategy for improving prostate cancer diagnosis, monitoring, and therapeutic stratification. While preliminary findings are encouraging, large-scale prospective studies are essential to validate their integrated clinical utility. Full article
(This article belongs to the Special Issue Spotlight on Hot Cancer Biological Biomarkers)
Show Figures

Figure 1

15 pages, 1645 KiB  
Article
Total Lesion Glycolysis (TLG) on 18F-FDG PET/CT as a Potential Predictor of Pathological Complete Response in Locally Advanced Rectal Cancer After Total Neoadjuvant Therapy: A Retrospective Study
by Handan Tokmak, Nurhan Demir and Hazal Cansu Çulpan
Diagnostics 2025, 15(14), 1800; https://doi.org/10.3390/diagnostics15141800 - 16 Jul 2025
Viewed by 315
Abstract
Background: The accurate prediction of pathological complete response (pCR) following total neoadjuvant therapy (TNT) is crucial for optimising treatment protocols in locally advanced rectal cancer (LARC). Although conventional imaging techniques such as MRI show limitations in assessing treatment response, metabolic imaging utilising 18F-fluorodeoxyglucose [...] Read more.
Background: The accurate prediction of pathological complete response (pCR) following total neoadjuvant therapy (TNT) is crucial for optimising treatment protocols in locally advanced rectal cancer (LARC). Although conventional imaging techniques such as MRI show limitations in assessing treatment response, metabolic imaging utilising 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET-CT) provides distinctive information by quantifying tumour glycolytic activity. This study investigates the predictive value of sequential 18F-FDG PET-CT parameters, focusing on Total Lesion Glycolysis (TLG), in predicting pCR after TNT. Methods: We conducted a retrospective analysis of 33 LARC patients (T3–4/N0–1) treated with TNT (neoadjuvant-chemoradiation followed by consolidation FOLFOX chemotherapy). Sequential PET-CT scans were performed at baseline, interim (after 4 cycles of FOLFOX), and post-TNT. Metabolic parameters, including maximum standardised uptake value (SUVmax) and TLG, were measured. Receiver operating characteristic (ROC) analysis assessed the predictive performance of these parameters for pCR. Results: The pCR rate was 21.2% (7/33). Post-TNT TLG ≤ 10 demonstrated excellent predictive accuracy for pCR (AUC 0.887, 92.3% sensitivity, 85.7% specificity, and 96.0% PPV), outperforming SUVmax (AUC 0.843). Interim TLG ≤ 10 also showed a strong predictive value (AUC 0.824, 100% sensitivity, and 71.4% specificity). Conclusions: TLG may serve as a reliable metabolic biomarker for predicting pathologic complete response (pCR) after total neoadjuvant therapy (TNT) in locally advanced rectal cancer (LARC). Its inclusion in clinical decision-making could improve patient selection for organ preservation strategies, thereby reducing the need for unnecessary surgeries in the future. However, given that the study is based on a small retrospective design, the findings should be interpreted with caution and used alongside other decision-making tools until more comprehensive data are collected from larger studies. Full article
(This article belongs to the Special Issue Applications of PET/CT in Clinical Diagnostics)
Show Figures

Figure 1

26 pages, 7406 KiB  
Review
Cardiac Imaging in the Diagnosis and Management of Heart Failure
by Mayuresh Chaudhari and Mahi Lakshmi Ashwath
J. Clin. Med. 2025, 14(14), 5002; https://doi.org/10.3390/jcm14145002 - 15 Jul 2025
Viewed by 632
Abstract
Heart failure (HF) is a complex clinical syndrome that results from any structural or functional impairment of ventricular filling or ejection of blood. The etiology of heart failure is multifactorial, encompassing ischemic heart disease, hypertension, valvular disorders, cardiomyopathies, and metabolic and infiltrative diseases. [...] Read more.
Heart failure (HF) is a complex clinical syndrome that results from any structural or functional impairment of ventricular filling or ejection of blood. The etiology of heart failure is multifactorial, encompassing ischemic heart disease, hypertension, valvular disorders, cardiomyopathies, and metabolic and infiltrative diseases. Despite advances in pharmacologic and device-based therapies, heart failure continues to carry a substantial burden of morbidity, mortality, and healthcare utilization. With the advancement and increased accessibility of cardiac imaging modalities, the diagnostic accuracy for identifying the underlying etiologies of nonischemic cardiomyopathy has significantly improved, allowing for more precise classification and tailored management strategies. This review aims to provide a comprehensive analysis of the current understanding of heart failure, encompassing epidemiology, etiological factors, with a specific focus on diagnostic imaging modalities including the role of echocardiography and strain imaging, cardiac magnetic resonance imaging (CMR), cardiac computed tomography (CT), and nuclear positron emission tomography (PET) imaging and recent advances in the diagnosis and management of heart failure. Full article
(This article belongs to the Special Issue Cardiac Imaging in the Diagnosis and Management of Heart Failure)
Show Figures

Figure 1

Back to TopTop