Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = PERCLOS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 5101 KB  
Article
Embodied Visual Perception for Driver Fatigue Monitoring Systems: A Hierarchical Decoupling Framework for Robust Fatigue Detection and Scenario Understanding
by Siyu Chen, Juhua Huang, Yinyin Liu, Saier Ye and Yuqi Bai
Electronics 2026, 15(3), 689; https://doi.org/10.3390/electronics15030689 - 5 Feb 2026
Viewed by 153
Abstract
As intelligent vehicle technologies evolve, reliable driver monitoring systems have become increasingly critical for ensuring the safety of human drivers and operational reliability. This paper proposes a novel visual computing framework for Driver Fatigue Monitoring Systems (DFMSs) based on hierarchical decoupling and scenario [...] Read more.
As intelligent vehicle technologies evolve, reliable driver monitoring systems have become increasingly critical for ensuring the safety of human drivers and operational reliability. This paper proposes a novel visual computing framework for Driver Fatigue Monitoring Systems (DFMSs) based on hierarchical decoupling and scenario element analysis, specifically designed for intelligent transportation environments. By treating the monitoring system as an engineering-level embodied perception–decision system deployed within the vehicle, rather than a purely disembodied vision module, the framework decouples low-level algorithmic perception from application-layer decision logic, enabling a more granular evaluation of visual computing performance in real-world scenarios. We leverage Python 3.9-driven automated test case generation to simulate diverse environmental variables, improving testing efficiency by 50% over traditional manual methods. The system utilizes deep learning-based visual computing to achieve high-fidelity monitoring of eye closure (PERCLOS, EAR), yawning (MAR), and head pose dynamics, enabling real-time assessment of the driver’s state within the embodied system loop. Comparative benchmarking reveals that our framework significantly outperforms existing models in visual understanding accuracy, achieving perfect confidence scores (1.000) for eye closure and smoking behavior detection, while drastically reducing false positives in mobile phone usage detection (misidentification rate: 0.016 vs. 0.805). These results demonstrate that an embodied approach to visual perception enhances the robustness and reliability of driver monitoring systems deployed in real vehicles, providing a scalable pathway for the development of next-generation intelligent transportation safety standards. Full article
Show Figures

Figure 1

28 pages, 6153 KB  
Article
Research on the Prediction of Driver Fatigue Degree Based on EEG Signals
by Zhanyang Wang, Xin Du, Chengbin Jiang and Junyang Sun
Sensors 2025, 25(23), 7316; https://doi.org/10.3390/s25237316 - 1 Dec 2025
Viewed by 975
Abstract
Objective: Predicting driver fatigue degree is crucial for traffic safety. This study proposes a deep learning model utilizing electroencephalography (EEG) signals and multi-step temporal data to predict the next time-step fatigue degree indicator percentage of eyelid closure (PERCLOS) while exploring the impact of [...] Read more.
Objective: Predicting driver fatigue degree is crucial for traffic safety. This study proposes a deep learning model utilizing electroencephalography (EEG) signals and multi-step temporal data to predict the next time-step fatigue degree indicator percentage of eyelid closure (PERCLOS) while exploring the impact of different EEG features on prediction performance. Approach: A CTL-ResFNet model integrating CNN, Transformer Encoder, LSTM, and residual connections is proposed. Its effectiveness is validated through two experimental paradigms, Leave-One-Out Cross-Validation (LOOCV) and pretraining–finetuning, with comparisons against baseline models. Additionally, the performance of four EEG features—differential entropy, α/β band power ratio, wavelet entropy, and Hurst exponent—is evaluated, using RMSE and MAE as metrics. Main Results: The combined input of EEG and PERCLOS significantly outperforms using PERCLOS alone validated by LSTM, and CTL-ResFNet surpasses baseline models under both experimental paradigms. In LOOCV experiments, the α/β band power ratio performs best, whereas differential entropy excels in pretraining–finetuning. Significance: This study presents a high-performance hybrid deep learning framework for predicting driver fatigue degree and reveals the applicability differences in EEG features across experimental paradigms, offering guidance for feature selection and model deployment in practical applications. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

25 pages, 2630 KB  
Article
Lightweight and Real-Time Driver Fatigue Detection Based on MG-YOLOv8 with Facial Multi-Feature Fusion
by Chengming Chen, Xinyue Liu, Meng Zhou, Zhijian Li, Zhanqi Du and Yandan Lin
J. Imaging 2025, 11(11), 385; https://doi.org/10.3390/jimaging11110385 - 1 Nov 2025
Cited by 1 | Viewed by 1095
Abstract
Driver fatigue is a primary factor in traffic accidents and poses a serious threat to road safety. To address this issue, this paper proposes a multi-feature fusion fatigue detection method based on an improved YOLOv8 model. First, the method uses an enhanced YOLOv8 [...] Read more.
Driver fatigue is a primary factor in traffic accidents and poses a serious threat to road safety. To address this issue, this paper proposes a multi-feature fusion fatigue detection method based on an improved YOLOv8 model. First, the method uses an enhanced YOLOv8 model to achieve high-precision face detection. Then, it crops the detected face regions. Next, the lightweight PFLD (Practical Facial Landmark Detector) model performs keypoint detection on the cropped images, extracting 68 facial feature points and calculating key indicators related to fatigue status. These indicators include the eye aspect ratio (EAR), eyelid closure percentage (PERCLOS), mouth aspect ratio (MAR), and head posture ratio (HPR). To mitigate the impact of individual differences on detection accuracy, the paper introduces a novel sliding window model that combines a dynamic threshold adjustment strategy with an exponential weighted moving average (EWMA) algorithm. Based on this framework, blink frequency (BF), yawn frequency (YF), and nod frequency (NF) are calculated to extract time-series behavioral features related to fatigue. Finally, the driver’s fatigue state is determined using a comprehensive fatigue assessment algorithm. Experimental results on the WIDER FACE and YAWDD datasets demonstrate this method’s significant advantages in improving detection accuracy and computational efficiency. By striking a better balance between real-time performance and accuracy, the proposed method shows promise for real-world driving applications. Full article
Show Figures

Figure 1

20 pages, 1253 KB  
Article
Multimodal Detection of Emotional and Cognitive States in E-Learning Through Deep Fusion of Visual and Textual Data with NLP
by Qamar El Maazouzi and Asmaa Retbi
Computers 2025, 14(8), 314; https://doi.org/10.3390/computers14080314 - 2 Aug 2025
Cited by 2 | Viewed by 2439
Abstract
In distance learning environments, learner engagement directly impacts attention, motivation, and academic performance. Signs of fatigue, negative affect, or critical remarks can warn of growing disengagement and potential dropout. However, most existing approaches rely on a single modality, visual or text-based, without providing [...] Read more.
In distance learning environments, learner engagement directly impacts attention, motivation, and academic performance. Signs of fatigue, negative affect, or critical remarks can warn of growing disengagement and potential dropout. However, most existing approaches rely on a single modality, visual or text-based, without providing a general view of learners’ cognitive and affective states. We propose a multimodal system that integrates three complementary analyzes: (1) a CNN-LSTM model augmented with warning signs such as PERCLOS and yawning frequency for fatigue detection, (2) facial emotion recognition by EmoNet and an LSTM to handle temporal dynamics, and (3) sentiment analysis of feedback by a fine-tuned BERT model. It was evaluated on three public benchmarks: DAiSEE for fatigue, AffectNet for emotion, and MOOC Review (Coursera) for sentiment analysis. The results show a precision of 88.5% for fatigue detection, 70% for emotion detection, and 91.5% for sentiment analysis. Aggregating these cues enables an accurate identification of disengagement periods and triggers individualized pedagogical interventions. These results, although based on independently sourced datasets, demonstrate the feasibility of an integrated approach to detecting disengagement and open the door to emotionally intelligent learning systems with potential for future work in real-time content personalization and adaptive learning assistance. Full article
(This article belongs to the Special Issue Present and Future of E-Learning Technologies (2nd Edition))
Show Figures

Figure 1

18 pages, 1761 KB  
Article
Computer Vision-Based Drowsiness Detection Using Handcrafted Feature Extraction for Edge Computing Devices
by Valerius Owen and Nico Surantha
Appl. Sci. 2025, 15(2), 638; https://doi.org/10.3390/app15020638 - 10 Jan 2025
Cited by 3 | Viewed by 4307
Abstract
Drowsy driving contributes to over 6000 fatal incidents annually in the US, underscoring the need for effective, non-intrusive drowsiness detection. This study seeks to address detection challenges, particularly in non-standard head positions. Our innovative approach leverages computer vision by combining facial feature detection [...] Read more.
Drowsy driving contributes to over 6000 fatal incidents annually in the US, underscoring the need for effective, non-intrusive drowsiness detection. This study seeks to address detection challenges, particularly in non-standard head positions. Our innovative approach leverages computer vision by combining facial feature detection using Dlib, head pose estimation with the HOPEnet model, and analyses of the percentage of eyelid closure over time (PERCLOS) and the percentage of mouth opening over time (POM). These are integrated with traditional machine learning models, such as Support Vector Machines, Random Forests, and XGBoost. These models were chosen for their ability to process detailed information from facial landmarks, head poses, PERCLOS, and POM. They achieved a high overall accuracy of 86.848% in detecting drowsiness, with a small overall model size of 5.05 MB and increased computational efficiency. The models were trained on the National Tsing Hua University Driver Drowsiness Detection Dataset, making them highly suitable for devices with a limited computational capacity. Compared to the baseline model from the literature, which achieved an accuracy of 84.82% and a larger overall model size of 37.82 MB, the method proposed in this research shows a notable improvement in the efficiency of the model with relatively similar accuracy. These findings provide a framework for future studies, potentially improving sleepiness detection systems and ultimately saving lives by enhancing road safety. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

21 pages, 8023 KB  
Article
Proposal of a Cost-Effective and Adaptive Customized Driver Inattention Detection Model Using Time Series Analysis and Computer Vision
by Sangwook Sim and Changgyun Kim
World Electr. Veh. J. 2024, 15(9), 400; https://doi.org/10.3390/wevj15090400 - 3 Sep 2024
Cited by 7 | Viewed by 2454
Abstract
Advanced Driver Assistance Systems, such as Forward Collision Warning and Lane Departure Warning, play a crucial role in accident prevention by alerting drivers to potential hazards. With the advent of fully autonomous driving technology that requires no driver input, there is now a [...] Read more.
Advanced Driver Assistance Systems, such as Forward Collision Warning and Lane Departure Warning, play a crucial role in accident prevention by alerting drivers to potential hazards. With the advent of fully autonomous driving technology that requires no driver input, there is now a greater emphasis on monitoring the state of vehicle occupants. This is particularly important because, in emergency situations where control must suddenly be transferred to an unprepared occupant, the risk of accidents increases significantly. To mitigate this risk, new monitoring technologies are being developed to analyze driver behavior and detect states of inattention or drowsiness. In response to the emerging demands of driver monitoring technology, we have developed the Customized Driver Inattention Detection Model (CDIDM). This model employs video analysis and statistical techniques to accurately and rapidly classify information on drivers’ gazes. The CDIDM framework defines the components of inattentive or drowsy driving based on the Driver Monitoring System (DMS) safety standards set by the European New Car Assessment Programme (EuroNCAP). By defining six driving behavior-related scenarios, we have improved the accuracy of driver inattention assessment. The CDIDM estimates the driver’s gaze while simultaneously analyzing data in real-time. To minimize computational resource usage, this model incorporates a series of preprocessing steps that facilitate efficient time series data analysis, utilizing techniques such as DTW Barycenter Averaging (DBA) and K-means clustering. This results in a robust driver attention monitoring model based on time series classification. Full article
Show Figures

Figure 1

22 pages, 4831 KB  
Article
Association of Visual-Based Signals with Electroencephalography Patterns in Enhancing the Drowsiness Detection in Drivers with Obstructive Sleep Apnea
by Riaz Minhas, Nur Yasin Peker, Mustafa Abdullah Hakkoz, Semih Arbatli, Yeliz Celik, Cigdem Eroglu Erdem, Beren Semiz and Yuksel Peker
Sensors 2024, 24(8), 2625; https://doi.org/10.3390/s24082625 - 19 Apr 2024
Cited by 8 | Viewed by 4254
Abstract
Individuals with obstructive sleep apnea (OSA) face increased accident risks due to excessive daytime sleepiness. PERCLOS, a recognized drowsiness detection method, encounters challenges from image quality, eyewear interference, and lighting variations, impacting its performance, and requiring validation through physiological signals. We propose visual-based [...] Read more.
Individuals with obstructive sleep apnea (OSA) face increased accident risks due to excessive daytime sleepiness. PERCLOS, a recognized drowsiness detection method, encounters challenges from image quality, eyewear interference, and lighting variations, impacting its performance, and requiring validation through physiological signals. We propose visual-based scoring using adaptive thresholding for eye aspect ratio with OpenCV for face detection and Dlib for eye detection from video recordings. This technique identified 453 drowsiness (PERCLOS ≥ 0.3 || CLOSDUR ≥ 2 s) and 474 wakefulness episodes (PERCLOS < 0.3 and CLOSDUR < 2 s) among fifty OSA drivers in a 50 min driving simulation while wearing six-channel EEG electrodes. Applying discrete wavelet transform, we derived ten EEG features, correlated them with visual-based episodes using various criteria, and assessed the sensitivity of brain regions and individual EEG channels. Among these features, theta–alpha-ratio exhibited robust mapping (94.7%) with visual-based scoring, followed by delta–alpha-ratio (87.2%) and delta–theta-ratio (86.7%). Frontal area (86.4%) and channel F4 (75.4%) aligned most episodes with theta–alpha-ratio, while frontal, and occipital regions, particularly channels F4 and O2, displayed superior alignment across multiple features. Adding frontal or occipital channels could correlate all episodes with EEG patterns, reducing hardware needs. Our work could potentially enhance real-time drowsiness detection reliability and assess fitness to drive in OSA drivers. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

24 pages, 6587 KB  
Article
Remote Photoplethysmography and Motion Tracking Convolutional Neural Network with Bidirectional Long Short-Term Memory: Non-Invasive Fatigue Detection Method Based on Multi-Modal Fusion
by Lingjian Kong, Kai Xie, Kaixuan Niu, Jianbiao He and Wei Zhang
Sensors 2024, 24(2), 455; https://doi.org/10.3390/s24020455 - 11 Jan 2024
Cited by 23 | Viewed by 5468
Abstract
Existing vision-based fatigue detection methods commonly utilize RGB cameras to extract facial and physiological features for monitoring driver fatigue. These features often include single indicators such as eyelid movement, yawning frequency, and heart rate. However, the accuracy of RGB cameras can be affected [...] Read more.
Existing vision-based fatigue detection methods commonly utilize RGB cameras to extract facial and physiological features for monitoring driver fatigue. These features often include single indicators such as eyelid movement, yawning frequency, and heart rate. However, the accuracy of RGB cameras can be affected by factors like varying lighting conditions and motion. To address these challenges, we propose a non-invasive method for multi-modal fusion fatigue detection called RPPMT-CNN-BiLSTM. This method incorporates a feature extraction enhancement module based on the improved Pan–Tompkins algorithm and 1D-MTCNN. This enhances the accuracy of heart rate signal extraction and eyelid features. Furthermore, we use one-dimensional neural networks to construct two models based on heart rate and PERCLOS values, forming a fatigue detection model. To enhance the robustness and accuracy of fatigue detection, the trained model data results are input into the BiLSTM network. This generates a time-fitting relationship between the data extracted from the CNN, allowing for effective dynamic modeling and achieving multi-modal fusion fatigue detection. Numerous experiments validate the effectiveness of the proposed method, achieving an accuracy of 98.2% on the self-made MDAD (Multi-Modal Driver Alertness Dataset). This underscores the feasibility of the algorithm. In comparison with traditional methods, our approach demonstrates higher accuracy and positively contributes to maintaining traffic safety, thereby advancing the field of smart transportation. Full article
(This article belongs to the Special Issue Deep Learning for Information Fusion and Pattern Recognition)
Show Figures

Figure 1

16 pages, 4294 KB  
Article
Analyzing Multi-Mode Fatigue Information from Speech and Gaze Data from Air Traffic Controllers
by Lin Xu, Shanxiu Ma, Zhiyuan Shen, Shiyu Huang and Ying Nan
Aerospace 2024, 11(1), 15; https://doi.org/10.3390/aerospace11010015 - 24 Dec 2023
Cited by 3 | Viewed by 2152
Abstract
In order to determine the fatigue state of air traffic controllers from air talk, an algorithm is proposed for discriminating the fatigue state of controllers based on applying multi-speech feature fusion to voice data using a Fuzzy Support Vector Machine (FSVM). To supplement [...] Read more.
In order to determine the fatigue state of air traffic controllers from air talk, an algorithm is proposed for discriminating the fatigue state of controllers based on applying multi-speech feature fusion to voice data using a Fuzzy Support Vector Machine (FSVM). To supplement the basis for discrimination, we also extracted eye-fatigue-state discrimination features based on Percentage of Eyelid Closure Duration (PERCLOS) eye data. To merge the two classes of discrimination results, a new controller fatigue-state evaluation index based on the entropy weight method is proposed, based on a decision-level fusion of fatigue discrimination results for speech and the eyes. The experimental results show that the fatigue-state recognition accuracy rate was 86.0% for the fatigue state evaluation index, which was 3.5% and 2.2%higher than those for speech and eye assessments, respectively. The comprehensive fatigue evaluation index provides important reference values for controller scheduling and mental-state evaluations. Full article
Show Figures

Figure 1

22 pages, 5540 KB  
Article
Research on Fatigued-Driving Detection Method by Integrating Lightweight YOLOv5s and Facial 3D Keypoints
by Xiansheng Ran, Shuai He and Rui Li
Sensors 2023, 23(19), 8267; https://doi.org/10.3390/s23198267 - 6 Oct 2023
Cited by 8 | Viewed by 3186
Abstract
In response to the problem of high computational and parameter requirements of fatigued-driving detection models, as well as weak facial-feature keypoint extraction capability, this paper proposes a lightweight and real-time fatigued-driving detection model based on an improved YOLOv5s and Attention Mesh 3D keypoint [...] Read more.
In response to the problem of high computational and parameter requirements of fatigued-driving detection models, as well as weak facial-feature keypoint extraction capability, this paper proposes a lightweight and real-time fatigued-driving detection model based on an improved YOLOv5s and Attention Mesh 3D keypoint extraction method. The main strategies are as follows: (1) Using Shufflenetv2_BD to reconstruct the Backbone network to reduce parameter complexity and computational load. (2) Introducing and improving the fusion method of the Cross-scale Aggregation Module (CAM) between the Backbone and Neck networks to reduce information loss in shallow features of closed-eyes and closed-mouth categories. (3) Building a lightweight Context Information Fusion Module by combining the Efficient Multi-Scale Module (EAM) and Depthwise Over-Parameterized Convolution (DoConv) to enhance the Neck network’s ability to extract facial features. (4) Redefining the loss function using Wise-IoU (WIoU) to accelerate model convergence. Finally, the fatigued-driving detection model is constructed by combining the classification detection results with the thresholds of continuous closed-eye frames, continuous yawning frames, and PERCLOS (Percentage of Eyelid Closure over the Pupil over Time) of eyes and mouth. Under the premise that the number of parameters and the size of the baseline model are reduced by 58% and 56.3%, respectively, and the floating point computation is only 5.9 GFLOPs, the average accuracy of the baseline model is increased by 1%, and the Fatigued-recognition rate is 96.3%, which proves that the proposed algorithm can achieve accurate and stable real-time detection while lightweight. It provides strong support for the lightweight deployment of vehicle terminals. Full article
(This article belongs to the Special Issue Deep Learning Based Face Recognition and Feature Extraction)
Show Figures

Figure 1

14 pages, 1332 KB  
Article
The Effect of Partial Sleep Deprivation and Time-on-Task on Young Drivers’ Subjective and Objective Sleepiness
by Nicola Cellini, Giovanni Bruno, Federico Orsini, Giulio Vidotto, Massimiliano Gastaldi, Riccardo Rossi and Mariaelena Tagliabue
Int. J. Environ. Res. Public Health 2023, 20(5), 4003; https://doi.org/10.3390/ijerph20054003 - 23 Feb 2023
Cited by 9 | Viewed by 3953
Abstract
Despite sleepiness being considered one of the main factors contributing to road crashes, and even though extensive efforts have been made in the identification of techniques able to detect it, the assessment of fitness-to-drive regarding driving fatigue and sleepiness is still an open [...] Read more.
Despite sleepiness being considered one of the main factors contributing to road crashes, and even though extensive efforts have been made in the identification of techniques able to detect it, the assessment of fitness-to-drive regarding driving fatigue and sleepiness is still an open issue. In the literature on driver sleepiness, both vehicle-based measures and behavioral measures are used. Concerning the former, the one considered more reliable is the Standard Deviation of Lateral Position (SDLP) while the PERcent of eye CLOSure over a defined period of time (PERCLOS) seems to be the most informative behavioral measure. In the present study, using a within-subject design, we assessed the effect of a single night of partial sleep deprivation (PSD, less than 5 h sleeping time) compared to a control condition (full night of sleep, 8 h sleeping time) on SDLP and PERCLOS, in young adults driving in a dynamic car simulator. Results show that time-on-task and PSD affect both subjective and objective sleepiness measures. Moreover, our data confirm that both objective and subjective sleepiness increase through a monotonous driving scenario. Considering that SDLP and PERCLOS were often used separately in studies on driver sleepiness and fatigue detection, the present results have potential implications for fitness-to-drive assessment in that they provide useful information allowing to combine the advantages of the two measures for drowsiness detection while driving. Full article
(This article belongs to the Special Issue Methods and Techniques in Applied Psychology: Health and Well-Being)
Show Figures

Figure 1

14 pages, 2744 KB  
Article
Detection of Operator Fatigue in the Main Control Room of a Nuclear Power Plant Based on Eye Blink Rate, PERCLOS and Mouse Velocity
by Licao Dai, Yu Li and Meihui Zhang
Appl. Sci. 2023, 13(4), 2718; https://doi.org/10.3390/app13042718 - 20 Feb 2023
Cited by 18 | Viewed by 4235
Abstract
Fatigue affects operators’ safe operation in a nuclear power plant’s (NPP) main control room (MCR). An accurate and rapid detection of operators’ fatigue status is significant to safe operation. The purpose of the study is to explore a way to detect operator fatigue [...] Read more.
Fatigue affects operators’ safe operation in a nuclear power plant’s (NPP) main control room (MCR). An accurate and rapid detection of operators’ fatigue status is significant to safe operation. The purpose of the study is to explore a way to detect operator fatigue using trends in eyes’ blink rate, number of frames closed in a specified time (PERCLOS) and mouse velocity changes of operators. In experimental tasks of simulating operations, the clustering method of Toeplitz Inverse Covariance-Based Clustering (TICC) is used for the relevant data captured by non-invasive techniques to determine fatigue levels. Based on the determined results, the data samples are given labeled fatigue levels. Then, the data of fatigue samples with different levels are identified using supervised learning techniques. Supervised learning is used to classify different fatigue levels of operators. According to the supervised learning algorithm in different time windows (20 s–60 s), different time steps (10 s–50 s) and different feature sets (eye, mouse, eye-plus-mouse) classification performance show that K-Nearest Neighbor (KNN) perform the best in the combination of the above multiple indexes. It has an accuracy rate of 91.83%. The proposed technique can detect operators’ fatigue level in real time within 10 s. Full article
Show Figures

Figure 1

20 pages, 5767 KB  
Article
Driver Emotion and Fatigue State Detection Based on Time Series Fusion
by Yucheng Shang, Mutian Yang, Jianwei Cui, Linwei Cui, Zizheng Huang and Xiang Li
Electronics 2023, 12(1), 26; https://doi.org/10.3390/electronics12010026 - 21 Dec 2022
Cited by 24 | Viewed by 6648
Abstract
Studies have shown that driver fatigue or unpleasant emotions significantly increase driving risks. Detecting driver emotions and fatigue states and providing timely warnings can effectively minimize the incidence of traffic accidents. However, existing models rarely combine driver emotion and fatigue detection, and there [...] Read more.
Studies have shown that driver fatigue or unpleasant emotions significantly increase driving risks. Detecting driver emotions and fatigue states and providing timely warnings can effectively minimize the incidence of traffic accidents. However, existing models rarely combine driver emotion and fatigue detection, and there is space to improve the accuracy of recognition. In this paper, we propose a non-invasive and efficient detection method for driver fatigue and emotional state, which is the first time to combine them in the detection of driver state. Firstly, the captured video image sequences are preprocessed, and Dlib (image open source processing library) is used to locate face regions and mark key points; secondly, facial features are extracted, and fatigue indicators, such as driver eye closure time (PERCLOS) and yawn frequency are calculated using the dual-threshold method and fused by mathematical methods; thirdly, an improved lightweight RM-Xception convolutional neural network is introduced to identify the driver’s emotional state; finally, the two indicators are fused based on time series to obtain a comprehensive score for evaluating the driver’s state. The results show that the fatigue detection algorithm proposed in this paper has high accuracy, and the accuracy of the emotion recognition network reaches an accuracy rate of 73.32% on the Fer2013 dataset. The composite score calculated based on time series fusion can comprehensively and accurately reflect the driver state in different environments and make a contribution to future research in the field of assisted safe driving. Full article
(This article belongs to the Topic Computer Vision and Image Processing)
Show Figures

Figure 1

24 pages, 5660 KB  
Article
Environmental and Work Factors That Drive Fatigue of Individual Haul Truck Drivers
by Elaheh Talebi, W. Pratt Rogers and Frank A. Drews
Mining 2022, 2(3), 542-565; https://doi.org/10.3390/mining2030029 - 26 Aug 2022
Cited by 5 | Viewed by 4074
Abstract
Many factors influence the fatigue state of human beings, and fatigue has a significant adverse effect on the health and safety of the haulage operators in the mine. Among various fatigue monitoring systems in mine operations, currently, the Percentage of Eye Closure (PERCLOS) [...] Read more.
Many factors influence the fatigue state of human beings, and fatigue has a significant adverse effect on the health and safety of the haulage operators in the mine. Among various fatigue monitoring systems in mine operations, currently, the Percentage of Eye Closure (PERCLOS) is common. However, work and other environmental factors influence the fatigue state of haul truck drivers; PERCLOS systems do not consider these factors in their modeling of fatigue. Therefore, modeling work and environmental factors’ impact on individual operations fatigue state could yield interesting insights into managing fatigue. This study provides an approach of using operational data sets to find the leading indicators of the operators’ fatigue. A machine learning algorithm is used to model the fatigue of the individual. eXtreme Gradient Boosting (XGBoost) algorithm is chosen for this model because of its efficiency, accuracy, and feasibility, which integrates multiple tree models and has stronger interpretability. A significant number of negative and positive samples are created from the available data to increase the number of datasets. Then, the results are compared with other existing models. A selected algorithm, along with a big data set was able to create a comprehensive model. The model was able to find the importance of the individual factors along with work and environmental factors among operational data sets. Full article
(This article belongs to the Special Issue Envisioning the Future of Mining)
Show Figures

Figure 1

21 pages, 6918 KB  
Article
Drowsiness Detection System Based on PERCLOS and Facial Physiological Signal
by Robert Chen-Hao Chang, Chia-Yu Wang, Wei-Ting Chen and Cheng-Di Chiu
Sensors 2022, 22(14), 5380; https://doi.org/10.3390/s22145380 - 19 Jul 2022
Cited by 27 | Viewed by 7828
Abstract
Accidents caused by fatigue occur frequently, and numerous scholars have devoted tremendous efforts to investigate methods to reduce accidents caused by fatigued driving. Accordingly, the assessment of the spirit status of the driver through the eyes blinking frequency and the measurement of physiological [...] Read more.
Accidents caused by fatigue occur frequently, and numerous scholars have devoted tremendous efforts to investigate methods to reduce accidents caused by fatigued driving. Accordingly, the assessment of the spirit status of the driver through the eyes blinking frequency and the measurement of physiological signals have emerged as effective methods. In this study, a drowsiness detection system is proposed to combine the detection of LF/HF ratio from heart rate variability (HRV) of photoplethysmographic imaging (PPGI) and percentage of eyelid closure over the pupil over time (PERCLOS), and to utilize the advantages of both methods to improve the accuracy and robustness of drowsiness detection. The proposed algorithm performs three functions, including LF/HF ratio from HRV status judgment, eye state detection, and drowsiness judgment. In addition, this study utilized a near-infrared webcam to obtain a facial image to achieve non-contact measurement, alleviate the inconvenience of using a contact wearable device, and for use in a dark environment. Furthermore, we selected the appropriate RGB channel under different light sources to obtain LF/HF ratio from HRV of PPGI. The main drowsiness judgment basis of the proposed drowsiness detection system is the use of algorithm to obtain sympathetic/parasympathetic nervous balance index and percentage of eyelid closure. In the experiment, there are 10 awake samples and 30 sleepy samples. The sensitivity is 88.9%, the specificity is 93.5%, the positive predictive value is 80%, and the system accuracy is 92.5%. In addition, an electroencephalography signal was used as a contrast to validate the reliability of the proposed method. Full article
Show Figures

Figure 1

Back to TopTop