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Abstract: Existing vision-based fatigue detection methods commonly utilize RGB cameras to extract
facial and physiological features for monitoring driver fatigue. These features often include single
indicators such as eyelid movement, yawning frequency, and heart rate. However, the accuracy of
RGB cameras can be affected by factors like varying lighting conditions and motion. To address
these challenges, we propose a non-invasive method for multi-modal fusion fatigue detection called
RPPMT-CNN-BiLSTM. This method incorporates a feature extraction enhancement module based
on the improved Pan–Tompkins algorithm and 1D-MTCNN. This enhances the accuracy of heart
rate signal extraction and eyelid features. Furthermore, we use one-dimensional neural networks to
construct two models based on heart rate and PERCLOS values, forming a fatigue detection model.
To enhance the robustness and accuracy of fatigue detection, the trained model data results are
input into the BiLSTM network. This generates a time-fitting relationship between the data extracted
from the CNN, allowing for effective dynamic modeling and achieving multi-modal fusion fatigue
detection. Numerous experiments validate the effectiveness of the proposed method, achieving an
accuracy of 98.2% on the self-made MDAD (Multi-Modal Driver Alertness Dataset). This underscores
the feasibility of the algorithm. In comparison with traditional methods, our approach demonstrates
higher accuracy and positively contributes to maintaining traffic safety, thereby advancing the field
of smart transportation.

Keywords: intelligent traffic; fatigue detection; multi-modal feature fusion; heart rate;
bidirectional LSTM

1. Introduction

Recently, with the rapid expansion of the transportation industry and the widespread
use of vehicles, instances of traffic accidents resulting from fatigue driving have become
increasingly common. Prolonged periods of driving or insufficient sleep can induce fatigue
in drivers, significantly elevating the risk of accidents. Research indicates that driver
drowsiness and sleep deprivation are primary contributors to road traffic accidents [1],
accounting for approximately 25% to 30% of such incidents [2]. The ramifications of traffic
accidents extend beyond individual safety and property loss, permeating into the broader
stability of both a nation and society. Consequently, the timely detection of fatigue in
drivers and the provision of alerts to prompt breaks are critical measures for upholding
traffic safety and ensuring secure travel. In light of these considerations, addressing the
issue of fatigue-related accidents assumes paramount importance. Developing effective
methods for detecting and mitigating driver fatigue can substantially contribute to reducing
accident rates, thereby safeguarding lives, property, and the overall stability of society.
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Currently, fatigue driving detection methods can be broadly categorized into advan-
tage detection, single-mode feature detection, and multi-mode feature detection [3]. Ad-
vantages are primarily assessed with public questionnaires and advantage scales. However,
these individual methods exhibit significant differences, and their time-consuming nature
renders them insufficient for real-time detection and prevention. This article addresses
fatigue characteristics in two other dimensions.

Single-modal feature detection relies on individual features to assess fatigue. Among
the current methods focusing on single-modal features, utilizing facial features has proven
to be effective in determining a driver’s fatigue status. Facial features encompass expres-
sions, eye states, head posture, etc., extracted from a driver’s facial images or videos.
For instance, Zhuang [4] introduced an efficient fatigue detection method based on eye
status, utilizing pupil and iris segmentation. Yang et al. [5] proposed a yawn detection
method based on subtle facial action recognition, utilizing 3D convolution and bidirectional
long short-term memory networks to detect a driver’s fatigue state. Liu [6] presented a
fatigue detection algorithm based on facial expression analysis. Xing [7] applied a con-
volutional neural network to face recognition, implementing a straightforward eye state
judgment method using the PERCLOS algorithm to determine a driver’s fatigue state,
with experimental results demonstrating an 87.5% fatigue recognition rate. Moujahid [8]
introduced a face monitoring system based on compact facial texture descriptors, capable of
encompassing the most discriminative drowsy features. Bai [9] utilized the facial landmark
detection method to extract a driver’s facial landmarks from real-time videos, subsequently
obtaining driver drowsiness detection results with 2s-STGCN and significantly improving
driver drowsiness detection. Ahmed [10] proposed an ensemble deep learning architecture
operating on merged features of eye and mouth subsamples, along with decision structures,
to ascertain driver fitness.

The exploration of fatigue driving detection based on physiological characteristics has
evolved into a significant research direction. In recent years, traditional heart rate detection
has predominantly relied on wearable devices utilizing electroencephalogram (EEG) or
electrocardiogram (ECG). For instance, Zhu [11] proposed a wearable EEG-based vehicle
driver drowsiness detection method using a convolutional neural network (CNN). Gao [12]
developed a novel EEG-based spatiotemporal convolutional neural network (ESTCNN) for
driver fatigue detection, achieving a high classification accuracy of 97.37%. Despite their
accuracy, traditional methods are hindered by issues such as expensive equipment and
inconvenient wearing. In response to these challenges, non-contact physiological feature
extraction has emerged as a research hotspot. Heart rate (HR) and heart rate variability
(HRV) are crucial vital signs, with their changes directly or indirectly reflecting information
on the physiological state of the human body. Research indicates that heart rate and HRV
can objectively indicate fatigue. For instance, Dobbs [13] used a portable device to conve-
niently record HRV, showing a small absolute error compared with electrocardiography.
Monitoring changes in heart rate and HRV is crucial for determining driver fatigue. Lu [14]
emphasized the significance of HRV as a physiological marker for detecting driver fatigue,
measurable during real-life driving. Systematic reviews, such as the one conducted by
Persson [15], explore the relationship between HRV measurements and driver fatigue, as
well as the performance of HRV-based fatigue detection systems. In medical contexts,
Allado et al. [16] evaluated the accuracy of imaging photoplethysmography compared
to existing contact point measurement methods in clinical settings, demonstrating that
rPPG can accurately and reliably assess heart rate. Cao [17] et al. introduced a drowsi-
ness detection system using low-cost photoplethysmography (PPG) sensors and motion
sensors integrated into wrist-worn devices. Comas [18] proposed a lightweight neural
model for remote heart rate estimation, focusing on efficient spatiotemporal learning of
facial photoplethysmography (PPG). Patel [19] introduced an artificial intelligence-based
system designed to detect early driver fatigue by leveraging heart rate variability (HRV) as
a physiological measurement. Experimental results demonstrated that this HRV-based fa-
tigue detection technology served as an effective countermeasure against fatigue. Gao [20]
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proposed a novel remote heart estimation algorithm incorporating a signal quality attention
mechanism and a long short-term memory (LSTM) network. Experiments indicated that the
LSTM with an attention mechanism accurately estimated heart rate from corrupted rPPG
signals, performing well across cross-subject and cross-dataset tasks. Additionally, the sig-
nal quality model’s predicted scores were found to be valuable for extracting reliable heart
rates. The accuracy of existing heart rate detection based on RGB cameras is susceptible to
various factors such as lighting conditions and motion, leading to challenges in achieving
precise heart rate estimation. Recent advancements have addressed these challenges. For
instance, Yin [21] and colleagues proposed a new multi-task learning model combining the
strengths of signal-based methods and deep learning methods to achieve accurate heart
rate estimation, even in scenarios with changing lighting and head movement. Given the
dynamic lighting changes typical in vehicle cabins, heart rate measurement in automotive
contexts presents specific challenges. To tackle these issues, Ming [22] and collaborators
introduced a method named Illumination Variation Robust Remote Photoplethysmography
(Ivrr-PPG) for monitoring a driver’s heart rate during road driving. Rao [23] proposed a
distracted driving recognition method based on a deep convolutional neural network using
in-vehicle camera-captured driving image data. Experimental analysis indicated an accu-
racy of 97.31%, surpassing existing machine learning algorithms. Consequently, methods
based on deep convolutional neural networks prove effective in enhancing the accuracy
of distracted driving identification. Addressing challenges related to dramatic lighting
changes and significant driver head movements during driving, Nowara [24] demonstrated
that narrowband near-infrared (NIR) video recordings can mitigate external light variations
and yield reliable heart rate estimates. Rajesh [25] utilized the Pan–Tompkins method
for R-peak detection to identify irregularities in human heart rate (DIIHR), achieving an
average accuracy of 96.

The above-mentioned fatigue driving detection methods mainly rely on single modal
data, which limits the adaptability to various scenarios and the reliability of model pro-
cessing. Each parameter has its advantages and disadvantages. Therefore, identifying how
to effectively combine and utilize multiple driver characteristics is an important research
direction for real-time and accurate driver detection.

There are currently some methods that combine multi-modal data together for fatigue
detection, which involve multi-modal feature fusion models. Most of the existing multi-
modal fusion is implemented based on decision fusion and feature fusion methods of RGB
cameras. For example, Kassem [26] proposed a low-cost driver fatigue level prediction
framework (DFLP) for detecting driver fatigue at the earliest stage. Experimental results
show that this method can predict the driver fatigue level with an overall accuracy of
93.3%. Du [27] proposed a novel non-invasive method for driver multi-modal fusion
fatigue detection by extracting eyelid features and heart rate signals from RGB videos.
The results show that the multi-modal feature fusion method can significantly improve
the accuracy of fatigue detection. Dua and colleagues [28] proposed a driver drowsiness
detection system in their paper. They use the driver’s RGB video as input to help detect
drowsiness. The results show that the accuracy of the system reaches 85%. Liu [29] focused
on RGB-D cameras and deep learning generative adversarial networks and utilized multi-
channel schemes to improve fatigue detection performance. Research indicates that fatigue
features extracted with convolutional neural networks outperform traditional manual
fatigue features. However, relying on a single feature may not guarantee robustness.
Du [30] and colleagues used a single RGB-D camera to extract three fatigue features:
heart rate, eye-opening, and mouth-opening. They proposed a novel multi-modal fusion
recurrent neural network (MFRNN) that integrates these three features to enhance the
accuracy of driver fatigue detection. To address issues such as poor comfort, susceptibility
to external factors, and poor real-time performance in existing fatigue driving detection
algorithms, Jia [31] designed a system for detecting driver facial features (FFD-System) and
an algorithm for judging driver fatigue status (MF-Algorithm). Akrout [32] proposed a
fusion system based on yawn detection, drowsiness detection, and 3D head pose estimation.
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Traditional fatigue detection methods often require the connection of inconvenient sensors
(such as EEG and ECG) or use video camera systems sensitive to light, compromising
privacy. Akrout suggests accounting for changes in lighting conditions during the day and
night to avoid limiting the fusion system. Using an infrared camera could be a potential
solution. Zhang [33] introduced Ubi-Fatigue, a non-contact fatigue monitoring system
combining vital signs and facial features to achieve reliable fatigue detection. The results
demonstrated that Fatigue-Radio’s detection accuracy reached 81.4%, surpassing ECG or
visual fatigue detection systems. Ouzar [34] and colleagues compared the performance of a
single-modal approach using facial expressions or physiological data with a multi-modal
system fusing facial expressions with video-based physiological cues. The multi-modal
fusion model improved emotion recognition accuracy, with the fusion of facial expression
features and iPPG signals achieving the best accuracy of 71.90%. This underscores the
efficacy of multi-modal fusion, particularly in combining facial expression features with
iPPG signals for enhanced emotion recognition accuracy.

To summarize, the existing fatigue driving detection systems face limitations in equip-
ment deployment, environmental changes, and real-time monitoring. Addressing these
challenges represents a crucial research direction for the future development of driving
fatigue detection systems [35]. Consequently, this article will concentrate on resolving the
following three problems:

1. The problem of the low fatigue detection accuracy of a single feature. Traditional
vision-based fatigue detection methods usually only use a single feature, such as facial
features, physiological features, etc., resulting in low fatigue detection accuracy.

2. The problem of low feature extraction accuracy. Existing multi-modal fusion is mostly
implemented based on RGB camera methods, and its detection accuracy will be
affected by different lighting conditions, motion, etc., resulting in the inability to
correctly detect a driver’s fatigue state.

3. The problem of the poor robustness and temporal nature of detection models. In
the actual driving environment, a driver’s fatigue state changes dynamically, and
the fatigue state is continuous time series data. The existing methods focus on pro-
cessing the characteristics of a certain moment while ignoring the changes in fatigue
characteristics over time, which affects the robustness of the detection model.

It can be seen that it is very important to design a multi-modal fatigue driving detection
system with high accuracy, strong robustness, portability, and real-time performance.

To address the aforementioned challenges, we propose a non-invasive method for
multi-modal fusion fatigue detection based on heart rate features and eye and face features.
Our approach involves the use of an infrared camera in conjunction with rPPG and MTCNN
to extract a driver’s physiological features and eye and face features, respectively. This
combination aims to reduce errors in extracting physiological signals and facial features
caused by varying lighting conditions during the day and night. To enhance feature
extraction accuracy, we implemented feature extraction enhancement modules based on
an improved Pan–Tompkins algorithm and 1D-MTCNN. These modules aim to more
accurately extract heart rate signals and eyelid features. Subsequently, we utilize one-
dimensional convolutional neural networks (1D CNNs) to establish two models based
on PERCLOS values and heart rate signals for fatigue detection. Heart rate signals and
PERCLOS are critical analysis objects, and their accurate extraction is pivotal for driver
fatigue detection. For the extraction of heart rate signals, we use singular spectrum analysis
(SSA) and filtering technology to process rPPG physiological signals. This process aims to
extract relatively pure heart rate signals and enhance detection accuracy. The heart rate
signal is then analyzed in the time–frequency domain, and the time–frequency domain
temporal feature matrix related to fatigue is extracted. This matrix is input into a one-
dimensional convolutional neural network (1D CNN) to establish a fatigue detection model
based on heart rate. For PERCLOS extraction, 1D-MTCNN is utilized to calculate the
PERCLOS value. Specifically, the MTCNN algorithm is used for face detection and key
point positioning, offering faster and more accurate results compared with traditional
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algorithms while minimizing the impact of varying lighting conditions. Finally, the trained
data results from the two models are input into the BiLSTM network, and the outputs of
the two models are weighted to achieve multi-modal fusion fatigue detection.

2. Principles and Methods

This paper proposes a non-invasive method for multi-modal fusion fatigue detection
based on heart rate features and eye and face features: RPPMT-CNN-BiLSTM. The overall
framework of the multi-modal fusion fatigue driving detection model can be seen in
Figure 1.
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The model mainly includes the following 3 parts:

(1) Non-contact multi-modal feature extraction. We apply real-time face detection and
ROI area tracking, utilizing infrared cameras in conjunction with rPPG and MTCNN
combined with the BiFPN pyramid network to extract a driver’s physiological charac-
teristics and facial features, thereby reducing errors in extracting the driver’s physio-
logical signals and facial features caused by lighting changes during the day and night.

(2) An RPPMT-CNN feature extraction enhanced network. We introduce an infrared-
based enhanced network for RPPMT-CNN feature extraction. In this paper, we estab-
lish an improved feature extraction enhancement module based on Pan–Tompkins
and 1D-MTCNN. This module aims to extract heart rate signals and eyelid features
more accurately. Subsequently, we create two fatigue detection models based on heart
rate and PERCLOS values, utilizing one-dimensional convolutional neural networks
(1D CNNs) for each model, respectively.

(3) A multi-modal feature fusion fatigue driving recognition model. To enhance the
robustness and timeliness of fatigue detection, we introduce a multi-modal feature
fusion fatigue driving recognition model. The outcomes of the trained model data are
fed into the Bidirectional Long Short-Term Memory (BiLSTM) network. This allows
the BiLSTM network to learn the temporal relationships between the data extracted
from the 1D CNN, facilitating effective dynamic modeling of the input and output
data. Ultimately, the outputs of the two models are weighted to achieve multi-modal
fusion fatigue detection.

2.1. Non-Contact Multi-Modal Feature Extraction
2.1.1. Face Detection and ROI Area Tracking

When collecting a real-time driver video, accounting for the driver’s head movement is
crucial. Fixed-face Region of Interest (ROI) areas may inadvertently include non-skin areas
alongside the actual skin area, thereby compromising the quality of subsequently extracted
remote photoplethysmography (rPPG) signals. To address this, we use the Haar-Cascade
face detector to identify faces in all frames of the video stream. Subsequently, we utilize the
SLIC algorithm for superpixel skin segmentation on the detected face areas. This process
determines the face ROI area for each frame in the picture, ensuring its precise position.
The input video stream is segmented into multiple regions called superpixels. Superpixels
corresponding to the cheek region, with the highest achromaticity in the forehead region,
are selected as ROI. rPPG is then calculated for these selected superpixels, and the remain-
ing superpixels are eliminated. This approach significantly reduces computation time.
The method guarantees that during the extraction of physiological signals, the ROI area
exclusively encompasses facial skin, thereby minimizing interference from motion artifacts.

2.1.2. Physiological Feature Extraction

Remote photoplethysmography (rPPG) is a non-contact method for extracting human
physiological signals, developed based on the traditional photoplethysmography (PPG)
principle. This approach leverages the periodic changes in blood flow induced by the
human heartbeat within the skin capillaries, causing the absorption or reflection of periodic
light signals. While these periodic signals are not directly observable by the human eye,
high-definition cameras can capture facial data, enabling the analysis and monitoring of
human physiological characteristics.

The advantage of rPPG technology lies in its non-invasive nature, as it eliminates
the need for subjects to wear sensors, thereby avoiding interference with the human body.
Additionally, the widespread availability and use of ordinary high-definition cameras have
significantly reduced the cost of implementing rPPG technology, making it highly promis-
ing for various applications. For instance, in the context of driving fatigue monitoring,
rPPG technology can be used to monitor a driver’s heart rate and heart rate variability in
real time. This real-time monitoring allows for the determination of the degree of fatigue,



Sensors 2024, 24, 455 7 of 24

enabling timely reminders for the driver to take necessary rest measures and ensuring
overall driving safety.

For rPPG signal extraction, the approach involves calculating the average of the pixel
intensity values within the Region of Interest (ROI) area. In each frame of the facial video,
assumed to correspond to time t, all pixels within the infrared single channel in the selected
ROI area are spatially averaged. The spatial average value of the ROI area at time t can be
expressed as:

at =
M

∑
i=0

ai
M

(1)

where is the total pixels in the selected ROI area and is the value of the i − th pixel in the
ROI area.

A 30s video (a total of 900 frames) is collected starting from time t at a frame rate
of 30 frames/second. The sequence of skin areas in consecutive image frames can be
expressed as:

At = [at, at+τ , at+2τ , · · · , at+(N−1)τ ], N = 900 (2)

where is the time interval used to obtain one frame of video, which is the reciprocal of the
sampling frequency.

The obtained signal is defined as the original input rPPG physiological signal at time t,
and every 1 s (30 frames) thereafter, the original input rPPG physiological signal starting
from the next second is obtained.

2.1.3. Facial Feature Extraction

To extract facial features from drivers in a fatigued state during driving, this article
uses the MTCNN algorithm in conjunction with the BiFPN pyramid network as the core
of the facial feature extraction module. The MTCNN algorithm comprises three cascaded
networks (P-Net, R-Net, O-Net) and is utilized for face detection and key point localiza-
tion. However, in complex driving environments, factors such as lighting changes, facial
postures, gender, and partial occlusion may impact its performance. To enhance the al-
gorithm’s robustness, the BiFPN pyramid network is introduced, which better captures
multi-scale features and improves adaptability to illumination changes. The output of
BiFPN is connected with the cascade network of MTCNN to form a comprehensive facial
feature extraction module. This approach yields a richer and more accurate representation
of facial features. The algorithm demonstrates faster and more accurate performance than
traditional methods, reducing the impact of varying lighting conditions. It maintains accu-
rate face and key point detection even when a face is tilted, pitched, or partially obscured.
Consequently, it is highly suitable for driver detection during driving. The structure of the
BiFPN pyramid network is illustrated in Figure 2.
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The input N videos are sampled at 30 frames/s to obtain n groups of frame images.
The size of these images is reduced to 0.5 times the original images and formed into n
sample sets. The sample set is used as the input of the MTCNN network and is calculated
as follows:

Li(det, box, landmark) = MTCNN(Xi) (3)

where i ∈ [1, n] Li(det, box, landmark) represents the face candidate frames and key points
Xi obtained using the network output. Among them, Li(det, box, landmark) includes the
coordinate values of 5 key points on the face (left eye, right eye, nose, and left and right
corners of the lips).

2.2. The RPPMT-CNN Feature Extraction Enhancement Network

After acquiring the initial facial information and original physiological signals, we
incorporated the RPPMT-CNN feature extraction enhancement network. This method is
grounded in an improved algorithm and devises a 1D CNN (convolutional neural network)
structure tailored for facial feature processing, enabling the capture of spatiotemporal
relationships inherent in facial features. Concurrently, a distinct 1D CNN structure was
formulated for processing physiological features, aiming to more precisely capture the
time–frequency domain characteristics of physiological signals. Following the separate
optimization of facial and physiological features, their characteristic information can be
maximally captured. The combination of facial and physiological information yields
more accurate and comprehensive features, establishing the groundwork for subsequent
comprehensive analysis and application.

2.2.1. Singular Spectrum Analysis

Due to the non-orthogonal characteristics of physiological sources, the usual blind
source separation method cannot directly extract the heart rate pulse signal from the
original rPPG signal. Therefore, based on singular spectrum analysis, we propose the
following method to separate the target signal. The data matrix A of each time series A_t
of length N can be expressed as:

A =


at at+τ · · · at+(K−1)τ

at+τ at+2τ · · · at+Kτ
... · · · . . .

...
at+(M−1)τ at+Mτ · · · at+(N−1)τ

 (4)

where K = N − M + 1.
Then, we perform singular value decomposition (SVD) on the data matrix to solve the

characteristic matrix of A. Its singular value decomposition expression is:

A = U∑ VT (5)

A =
M

∑
i=1

UiPT
i (6)

Pi =
√

λiVi (7)

where U and V are the two orthogonal bases representing the left singular matrix and right
singular matrix, respectively. The diagonal matrix ∑ is composed of singular values σi. It
satisfies the relationship with the eigenvalue λ of AAT (covariance matrix) in eigenvalue
decomposition (EVD): σi =

√
λi.

After singular value decomposition, the data matrix A is decomposed into M compo-
nents. Then, we extract the heart rate pulse signal Ri from the M independent components,



Sensors 2024, 24, 455 9 of 24

where Ri = PiUT
i (i < r). Finally, we recover the output time series gi(t) from Ri using

anti-angle averaging.

gi(t) =


1
m

m
∑

h=1
Ri

h,t+1−h ,(t≤K)

1
m

m
∑

h=1
Ri

t+h−K,K−h+1,(t>K)
(8)

Due to significant noise corruption in the heart rate pulse signal obtained with singular
spectrum analysis, further filtering is necessary. In this case, a moving average filter is
used for low-pass filtering to eliminate low-frequency interference caused by factors such
as breathing. The original sampled data forms a one-dimensional queue of length N,
and a sliding window of length L is applied to it. The average value of the data within
the window is computed as the output of the filter at the current moment. The window
progresses in the positive direction of the time axis, generating filter outputs for subsequent
moments until all the data points are covered. The calculation formula for the moving
average filter at the i − th moment is given by:

G(i) =
1
L

j=i+L−1

∑
j=1

g(j)(i = 1, 2, 3, . . . , N − L + 1) (9)

Subsequently, a Hamming window bandpass filter with a passband frequency of
0.8~4 Hz is applied to eliminate high-frequency and low-frequency noise outside the heart
rate range, aiming to minimize noise interference.

2.2.2. Time Domain Analysis of Heart Rate Signals

Building upon [10], this paper uses the enhanced Pan–Tompkins algorithm for primary
wave detection and localization. The main wave detection involves a combination of
Shannon energy and adaptive dual threshold methods to accurately identify the main
wave and pinpoint its peak for extracting the target signal. The detailed algorithmic flow is
illustrated in Figure 3.
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Figure 3. Time domain analysis of heart rate signals.

The time difference between two adjacent main wave peaks is called the DD interval,
denoted as DDi(i = 1, 2, 3 . . . . . .). By integrating the physiological characteristics of the
heart rate signal with pertinent medical insights, we designate the interval between the
peaks of the main waves as the duration of one heartbeat, constituting a single cardiac cycle.
According to existing research, the standard deviation of the cardiac cycle in the human
body tends to notably increase as fatigue intensifies. Hence, this paper uses the standard
deviation (SD) of the RR interval as the time domain analysis index, with its calculation
formula as follows:

MEAN =
N

∑
i=1

DDi
N

(10)

SD =

√√√√ 1
N

N

∑
i=1

(DDi − MEAN)2 (11)

The flow chart and specific implementation process of the improved algorithm are
shown in Figure 4.
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We initially differentiate the filtered heart rate pulse signal to extract waveform slope
information, using the five-point numerical differentiation formula:

y′(i) = x[i − 2 : i + 2] · [ 1
12

,− 8
12

, 0,
8

12
,− 1

12
]
T

(12)

where y′(i), y′(i) represents the slope of the heart rate pulse signal at the i − th time point,
the symbol “:” is used to represent an array or vector, and the symbol “·” is used to represent
matrix or vector multiplication. Before performing the Shannon energy calculation, the
differentiated data are standardized as follows:

ỹ(n) = y(n)/max
i

(|y(n)|) (13)

Then, the output of the derivative undergoes nonlinear amplification using the Shan-
non energy formula. This process ensures that all data points become positive, accentuates
high- and medium-intensity components, and attenuates other intensity values. This en-
hancement aids in better locating the main wave and detecting its peak. The Shannon
energy formula is as follows:

y(nT) = −[x(nT)]2 ln([x(nT)]2) (14)

Following the calculation of Shannon energy, numerous closely spaced and small wave
peaks are obtained. To enhance the concentration of energy, a moving window integration
is applied to smooth the waveform. The choice of window size is crucial for main wave
detection. If the selected window is too small, the resulting signal waveform after moving
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integration may lack smoothness, hindering main wave peak detection and potentially
leading to false detections. Conversely, if the window is too large, the energy of the main
wave in the signal may be dispersed, increasing the risk of missed detection.

Typically, the size of the moving window integral after Shannon energy processing is
correlated with the sampling frequency. The window size is generally chosen as 0.18 times
the sampling frequency of 0.18 fs. For instance, with a sampling rate of 200 samples/s, the
window width is set to 30 samples (150 MS).

The rising edge peak of the signal waveform obtained after moving window integra-
tion is marked as the main wave peak to be detected, and it is then adjusted using adaptive
dual-threshold technology to determine the true main wave peak. If the peak value DP to
be detected is greater than the threshold T1, it is the main wave peak value; otherwise, it is
the noise peak value. The driver’s heart rate signal extracted in the first 3 s is selected as
the initial data, one-third of the maximum detected peak value is used as the initial signal
threshold (ST), and half of the average value of all detected peak values is used as the initial
noise threshold (NT). The adaptive dual threshold adjustment process is as follows:

If DP is the peak of the main wave:
If H is the main wave peak:

ST =
1
8

DP +
7
8

ST (15)

If DP is the noise peak:

NT =
1
8

DP +
7
8

NT (16)

Our dual thresholds, denoted as T1 and T2 for discrimination, vary with ST and NT.
As ST and NT change, T1 and T2 dynamically adjust accordingly. This relationship can be
expressed by the following formula:

T1 = NT +
1
4
(ST − NT) (17)

T2 =
1
2

T1 (18)

Considering the refractory period between two adjacent main waves and the phys-
iological characteristics of the human heartbeat, we set the refractory period to 200 MS.
During this period, redundant detection points are removed to prevent errors.

The average of the last eight DD intervals serves as the reference for the average
interval. If the presently detected DD interval exceeds 1.66 times the average interval,
indicating a potential detection miss, we initiate a backcheck using threshold T2 and
update the signal threshold as follows:

ST =
1
4

DP +
3
4

ST (19)

2.2.3. Frequency Domain Analysis of Heart Rate Signals

Frequency domain analysis is used to depict the fundamental information regarding
the changes in signal energy concerning frequency. The frequency domain component
of the heart rate variability signal is intricately linked to the physiological state of the
human body. Notably, high-frequency power mirrors the regulatory influence of the vagus
nerve on the heart rate, while low-frequency power reflects the intricate interplay between
sympathetic and parasympathetic nerves in the heart rate regulation process. The LF/HF
ratio is a metric used to quantify the balance between sympathetic and parasympathetic
tension. When the body is fatigued, sympathetic tension tends to dominate. Studies have
indicated that the power spectral ratio of low-frequency power values (LF) and LF/HF
to the heart rate variability signal significantly increases during fatigue, while the high-
frequency power value diminishes. The LF/HF index serves as a crucial indicator of driver
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sleepiness and fatigue status. Therefore, LF/HF is utilized as the frequency domain analysis
index for the target signal. The specific algorithm flow is illustrated in Figure 5.
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Given the target signal’s inherent variability associated with a driver’s heart rate and
its substantial randomness, we use the Welch method to estimate the power spectrum of
the target signal. The Welch method is an enhanced periodogram power spectral density
estimation technique that is well-suited for rapid Fourier calculations. This method involves
selecting window data, segmentally obtaining the power spectrum, and subsequently
averaging it. The specific steps for our frequency domain analysis are outlined as follows.

First, we sample the obtained target signal to obtain the discretized signal y(n) (0 ≤ n ≤ N).
The window size is positioned as L, and y(n) is divided into J segments when a quarter
overlap is allowed, J = (N − L/4)/(L/4). For the data in paragraph i:

yi(m) = y[m +
(i − 1)L

4
] (20)

where 0 ≤ m ≤ L − 1, 1 ≤ i ≤ J.
Consider the i − th segment as an example to calculate the power spectrum of each

segment of the data:

Ŷi(w) =
1

LU
|

L−1

∑
m=0

yi(m)D(m)e−jwm|2 (21)

where, in this formula, U = 1
L ∑L−1

m=0 D2(m) is the normalization factor, which ensures that
the obtained spectrum is an asymptotically unbiased estimate, and D(m) is the added
window function. Next, we add the power spectra of all segments and take the average
value to obtain the power spectrum y(n):

Ỹ(w) =
1

LUJ

J

∑
i=1

|
L−1

∑
m=0

yi(m)D(m)e−jwm|2 (22)

The extracted time–frequency domain feature matrix is input into 1D CNN for process-
ing. The 1D CNN method is effective in capturing the correlation between time–frequency
domain features using convolution and pooling operations. HRV (heart rate variability)
refers to the change in the heart rate over a period of time. The current HRV-based fatigue
detection method typically obtains an ECG signal by attaching electrodes to the subject’s
skin and then converts the signal into HRV. However, obtaining HRV directly from the
heart rate is not feasible. Since our goal is to learn how the heart rate signal changes over
time, considering the heart rate of the sliding window over time can aid in achieving
fatigue driving detection. Therefore, we designed a method to extract heart rate changes at
adjacent moments during fatigue activities and established a 1D CNN-based model.

We utilize the 1D CNN for fatigue detection, as illustrated in Figure 6. The network
comprises an input layer, three convolutional layers, and two fully connected layers. The
input size is 1024 × 1. There are three convolutional layers with a filter length of 32, each
utilizing the ReLU activation function. The convolution kernel sizes for layer 1, layer 2,
and layer 3 are 16 × 1, 8 × 1, and 4 × 1, respectively. Following the convolutional layers,
two fully connected layers (FCLs) with 256 and 128 neurons, respectively, are added for
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classification. To prevent overfitting, a dropout layer is introduced after the fully connected
layer. Finally, the SoftMax classifier calculates the probability of two fatigue states.
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2.2.4. Using 1D-MTCNN to Extract PERCOLS

Leveraging insights from [25], our approach acquires accurate key point coordinates
with MTCNN. Subsequently, these key point coordinates are used to extract images of the
eye and mouth regions. The extracted eye areas serve as input for the 1D CNN model to
extract features. The detailed implementation process is depicted in Figure 7.
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Local patterns and correlation information in sequence data can be captured using 1D
CNN; therefore, it is suitable for processing video data from consecutive frames. The eye
and mouth status of the region image is then classified. First, we connect the center points
of the left and right eyes to obtain line a and define the angle between the connecting line a
and the horizontal line as α. The width and height of the eye area frame are defined as w
and h = w/2, respectively. Then, we connect the left and right corners of the lips to obtain
line b and draw a vertical line b from the key point of the nose to the connecting line c. The
vertical distance is defined as d; then, the upper edge of the mouth area frame is d/2, and
the lower edge is the vertical line c. At the extension line 5d/3, after obtaining the eye and
mouth area frames, we perform two classifications. With an interval of 60 s, there are a
total of 1200 frames of images. Based on the PECLOS criterion and prior knowledge, we
can state that:

P =
Eyes closed frames

The total number of frames in the detection period
× 100% (23)

L =
yawn frames

The total number of frames in the detection period
× 100% (24)

The PERCOLS algorithm has been proven to be able to accurately determine driver
fatigue in real time. At the same time, based on prior knowledge, it can be determined
whether the driver is in a fatigue state by detecting the number of times the subject yawns
per minute. Therefore, the p value and the L value are selected as facial features.

Our proposed one-dimensional CNN architecture for fatigue detection is depicted in
Figure 3. The architecture is composed of an input layer, three convolutional layers, and
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two fully connected layers. The input size is specified as 600 × 1. The convolutional layers
feature filter lengths of 24, using the ReLU activation function. The size of the convolution
kernel is set at 10 × 1 for convolution layer 1, 5 × 1 for layer 2, and 3 × 1 for convolution
layer 3. To finalize the network, two fully connected layers (FCLs) are added, containing 128
and 64 neurons, respectively, for classification. In order to mitigate overfitting, the SoftMax
classifier is utilized to compute the probability of two fatigue states. The initialization of
the network’s values is accomplished by assigning random values. Given that PERCLOS
and heart rate features are represented by one-dimensional signals, and considering the
time and performance advantages of one-dimensional CNN in processing such signals, our
choice of one-dimensional CNN for fatigue detection is well-founded.

2.3. Multi-modal Feature Fusion Fatigue Driving Identification Model

The LSTM network has shown unique advantages in the fields of text generation,
machine translation, speech recognition, generated image description, and video tagging,
demonstrating its powerful functions in processing and searching for spatio-temporal data.
The schematic representation of the LSTM cell structure is shown in Figure 8.
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The control gate mechanism of LSTM solves the problem of gradient disappearance
when the RNN is processing a long sequence. The working principles of the three control
gates are as follows:

The forget gate:
Γf = σ(W f [ht−1, xt] + b f ) (25)

the input gate:
Γu = σ(Wu[ht−1, xt] + bu) (26)

C̃t = tanh(Wc[ht−1, xt] + bc) (27)

Ct = Γu × C̃t + Γ f × Ct−1 (28)

and the output gate:
Γo = σ(Wo[ht−1, xt] + bo) (29)

ht = Γo × Ct (30)

where xt is the input at time t. Γu, Γ f , Γo are the input, forget, and output gates at time t,
respectively. The output gate passes the activation function values Wu, W f , Wc, Wo, and
bu, b f , bo are the weights and deviations of the gates, respectively. C̃t is the state of the
memory element at time t, and ht is the final output.

A driver’s driving state is a dynamic process, with the driver’s physiological signal
data changing over time, representing standard time series data. When utilizing LSTM to
process the time–frequency domain time series feature matrix reflecting the driver’s state,
only past information is considered, and future information is disregarded [20], potentially
impacting the accurate assessment of the current state. To address this limitation, Bi-LSTM
emerges as a solution. Bi-LSTM comprises two LSTMs operating in opposite directions.
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One LSTM processes information in a forward pass to retain past information, while the
other LSTM processes information in a backward pass to incorporate future information.
The outputs of these two LSTMs are then combined to derive the driver’s status judgment
using Softmax. The network structure of Bi-LSTM is illustrated in Figure 9. In driver fatigue
detection, the time–frequency domain time series feature matrix reflecting the driver’s state
is fed into Bi-LSTM in real time. The forward and backward propagation layers in Bi-LSTM
work together to precisely determine the driver’s status by incorporating both past and
future information.
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process the time–frequency domain time series feature matrix reflecting the driver’s state, 
only past information is considered, and future information is disregarded [20], poten-
tially impacting the accurate assessment of the current state. To address this limitation, 
Bi-LSTM emerges as a solution. Bi-LSTM comprises two LSTMs operating in opposite di-
rections. One LSTM processes information in a forward pass to retain past information, 
while the other LSTM processes information in a backward pass to incorporate future in-
formation. The outputs of these two LSTMs are then combined to derive the driver’s status 
judgment using Softmax. The network structure of Bi-LSTM is illustrated in Figure 9. In 
driver fatigue detection, the time–frequency domain time series feature matrix reflecting 
the driver’s state is fed into Bi-LSTM in real time. The forward and backward propagation 
layers in Bi-LSTM work together to precisely determine the driver’s status by incorporat-
ing both past and future information. 
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Figure 9. Bidirectional LSTM.

3. Experimental Results and Discussion

This section encompasses an introduction to the experimental environment, collected
in-vehicle driving datasets, evaluation indicators, currently prevalent models, and a con-
clusive analysis of the experimental results. The experimental flow chart is depicted in
Figure 10.
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In this section, we elaborate on the details of the experiment. Figure 10 illustrates the
entire experimental process, which is segmented into four parts. Initially, we introduce
some fundamental experimental settings and datasets. Subsequently, utilizing the ECG
signal as a reference, we measure the error induced by infrared rPPG, analyze heart
rate variability, and calculate its correlation. Following that, the Bi-LSTM and LSTM
networks are trained using time–frequency domain feature indicators, emphasizing the
distinctive advantages of Bi-LSTM in detecting driver fatigue through comparison. Finally,
we evaluate and analyze our model against existing physiological feature-based driver
fatigue detection models.

3.1. Experiment Platform
3.1.1. Experimental Equipment

The experimental equipment and environment include an infrared camera, Windows11
64-bit operating system, Intel i9 2.20 GHz processor, 16 GB memory, NVIDIA RTX 4060
(GPU), Python (3.7), and the Keras (Tensorflow2.1) framework.

In this research, the infrared camera serves as the pivotal hardware component for
extracting the infrared rPPG signal. The original infrared time signal is derived from the
video data collected with the infrared camera and utilized as the input for the rPPG signal.
Consequently, the quality of the infrared camera profoundly influences the accuracy and
reliability of heart rate signal extraction.

In selecting the appropriate infrared camera, several factors were taken into consid-
eration, encompassing signal quality, performance, and cost. To guarantee the extraction
of high-quality infrared rPPG signals, a cost-effective yet high-performance infrared cam-
era with a superior signal-to-noise ratio was chosen, namely, the Oni S500 model. The
Oni S500 infrared camera was selected for its advantageous cost-performance ratio and
notable signal-to-noise ratio. This attribute proves pivotal in extracting delicate biological
signals, as a high signal-to-noise ratio aids in diminishing interference and noise, ultimately
enhancing the accuracy and stability of heart rate signal extraction.

The utilization of the Oni S500 infrared camera, known for its high performance
and cost-effectiveness, allowed us to acquire high-quality infrared time signals for our
research. This serves as a robust foundation for the subsequent processing and analysis
of rPPG signals. Additionally, considering cost implications, the selection of the Oni S500
presents an economical hardware solution for our research, ensuring that this study can
yield accurate and reliable experimental results.

3.1.2. Experimental Dataset

In this study, due to the limited availability of public RGB and infrared multi-modal
fatigue driving datasets, we opted to create our dataset, named the MDAD (Multi-Modal
Driver Alertness Dataset). The dataset is illustrated in Figure 11. Our data collection used
the Oni S500 binocular infrared camera, equipped with color RGB and infrared IR sensors.
This binocular camera, capable of flexible installation on the rearview mirror or dashboard,
simultaneously captures RGB and infrared images at a sampling rate of 30 Hz, with an
image resolution of 640 × 480. Despite a minor offset in the positions of the RGB and IR
cameras, it has been validated that this difference insignificantly impacts the effectiveness
of data collection.

To ensure the diversity of the dataset, we collected real driving scenarios involving
different types of vehicles (private cars, taxis, trucks, etc.) during both the daytime and
nighttime. Throughout the data collection phase, a total of 52 participants (28 men and
24 women) with ages ranging from 22 to 53 years were involved. Each participant drove
once on different road segments, engaging in typical driving activities. The entire driving
session lasted approximately 2 h. Various real-world complexities, including changes in
lighting conditions, driver head deflection, and partial occlusion, were intentionally intro-
duced during the data collection to guarantee the diversity and randomness of the samples.
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Following the completion of data collection, we organized and segmented the videos
into 60 s short video clips. These videos were then precisely labeled as either awake or
fatigued based on the Karolinska Sleepiness Scale (KSS) in chronological order. The entire
dataset comprises a total of 4000 1200 × 650 RGB-IR driving videos. Among these, 2530 are
labeled as awake, while 1470 are labeled as fatigued.

The self-made MDAD serves as a crucial experimental foundation and resource for
this research. Encompassing a diverse range of real driving scenarios, the dataset facilitates
robust testing and evaluation of fatigue driving detection algorithms. This initiative
contributes to enhancing the model’s resilience and generalization. The utilization of this
dataset is anticipated to drive further advancements in the field of fatigue driving detection.

3.2. HRV Time–Frequency Domain Analysis Experiment

In this section, we perform experiments to evaluate the accuracy and stability of our
proposed HRV time–frequency domain analysis method for assessing driver fatigue. For the
comparative analysis, we selected a widely used and advanced contact electrocardiogram
(ECG) monitoring system. Fifteen participants, randomly chosen from a total of 52 subjects,
were involved in the experiment. Subjects numbered 1–7 conducted the experiment at
12:00 noon, while subjects numbered 8–15 conducted it at 23:00 in the evening. This timing
variation allowed us to accurately extract their heart rate (HR) and heart rate variability
(HRV), including low frequency (LF) and high frequency (HF) data. Subjects were required
to wear ECG monitors, ensuring correct placement for accurate signal extraction. The
collected electrocardiogram and infrared video signals were then processed to extract
heartbeat intervals for calculating heart rate variability.

3.2.1. Comparison of the RPPG and Infrared RPPG Signal Intensities

In the case of the long-distance extracted remote photoplethysmography (rPPG) signal,
its signal strength is weakened due to the extended transmission distance, making it
susceptible to environmental factors like lighting. The extraction of rPPG signals is crucial
for our fatigue recognition task, particularly in relation to the extraction of heart rate
variability (HRV) signals. If the obtained HRV signal is too weak or significantly affected by
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noise interference, it can directly impact our subsequent data analysis, ultimately reducing
the accuracy of driver fatigue assessment.

To mitigate this issue, we used both infrared rPPG and traditional rPPG methods
for heart rate extraction. The experimental results, depicted in Figure 12, indicate that in
comparison with the traditional rPPG signal, the heart rate signal obtained with infrared
rPPG is less influenced by noise. Moreover, the heart rate signal acquired with infrared
rPPG exhibits enhanced anti-interference capabilities. This implies that the rPPG signal,
after minimizing environmental interference, is more robust, thus aiding in the extraction
of accurate heart rate signals during subsequent data processing. Consequently, this
contributes to an improved accuracy in assessing the driver’s fatigue state.
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3.2.2. Verification of the Reliability of HRV Signal Extraction with Infrared RPPG

We assessed the reliability of HRV signal extraction using infrared rPPG by comparing
the time–frequency domain index values of the ECG signal and the infrared rPPG signal,
as illustrated in Figure 13. A comparison with the literature [16] reveals a high degree of
overlap in the upper points of the polyline in Figure 13a,b for the SD value obtained from
the infrared rPPG signal and the LF/HF ratio, which is consistent with the ECG signal.
This suggests that the HRV signal can be effectively extracted from the infrared rPPG signal.
Using electrocardiogram results as the standard, the accuracy of infrared rPPG, measured
after 25 rounds of experiments, is approximately 95%.
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3.2.3. Verification of the Relationship between Time–Frequency Domain Indicators and
Driver Fatigue

We conducted tests and verified, as indicated in the literature [14], that when transi-
tioning from a normal state to a fatigue state, there are changes in time domain features such
as SD and frequency domain features like the LF/HF ratio. This validates the feasibility of
utilizing HRV time–frequency domain indices to detect driver fatigue.

The observations in Figure 14 indicate that when subjects transition from a normal
state to a fatigue state, there are notable changes in both the SD value and the LF/HF value.
With increasing fatigue, both SD and LF/HF values are higher than in the normal state,
exhibiting a clear upward trend.
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Figure 14. Verification of the relationship between time–frequency domain indicators and driver
fatigue. (a) The value of SD changes between alarm and fatigue. (b) The LF/HF ratio changes
between alarm and fatigue.

3.3. Experimental Evaluation of the Fatigue Driving Detection System
3.3.1. Comparison of the Effects of BI-LSTM and LSTM Network Training

The experiment aimed to assess the training effect of the Bi-LSTM network. Thirty
sets of 30 s facial videos were utilized to train both the Bi-LSTM and LSTM network
models. A comparison of the loss function and accuracy between the two networks is
presented in Figure 10. The results reveal that in most cases, Bi-LSTM outperforms LSTM,
demonstrating superiority in fatigue detection. This suggests that integrating both past
and future physiological signals of the driver enhances the judgment process, leading to
improved results. As shown in Figure 15, after the 15th training cycle, the loss function
approaches 0, and around the 20th cycle, the accuracy of Bi-LSTM approaches 98%.
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3.3.2. Model Evaluation

The sensitivity (Se), true positive rate (+P), and accuracy rate (Acc) were used to
evaluate the overall performance of the proposed algorithm. The calculation formulas are
as follows:

Se =
TP

TP + FN
(31)

+P =
TP

TP + FP
(32)

Acc =
TP

TP + FP + FN
(33)

where true positive (TP) represents the number of correctly detected fatigue states or non-
fatigue states, false positive (FP) represents the number of non-fatigue states judged as
fatigue states, and false negative (FN) indicates the number of fatigue states judged as
non-fatigue.

The average absolute error is the average of the sum of the absolute differences
between the DD interval values of all test samples in the test sample and the RR interval
control value, which can be expressed as:

Error =
1
N

N

∑
i=1

|DDi − RRi| (34)

where N represents the total number of test samples.

3.3.3. Comparative Experiments on Different Modal Feature Input Algorithms

By comparing the literature [34], this study aims to more effectively evaluate the
classification effect after multi-modal data fusion and the single-modal classification effect.
To ensure consistency in the experimental environment and subjects, different modal
features were input into various algorithms for comparison. The feature categories were
divided into four groups: physiological features, visual features, mixed visual features, and
mixed features. These four groups of feature types were categorized into a fatigue state and
an awake state based on given labels. They were then input into traditional SVM, DBN,
random forest, and CNN networks simultaneously to compare the obtained classification
accuracy with the method proposed in this paper. The experimental results are shown in
Table 1.

Table 1. Comparison of the accuracy rates of different algorithms input with different feature types.

Category Feature Index SVM Random Forest DBN CNN Ours

Physiological
characteristics

ECG HR, HRV 0.792 0.827 0.853 0.874 0.894
rPPG HRV 0.778 0.817 0.827 0.864 0.895

Visual characteristics
Eyes PERCLOS 0.785 0.822 0.849 0.868 0.877

Mouth Yawn frequency 0.757 0.783 0.806 0.855 0.895

Mixed visual
features Eyes + Mouth PERCLOS, yawn

frequency 0.814 0.836 0.869 0.896 0.948

Mixing multi-class
features

Eyes + Mouth
+ rPPG

PERCLOS, yawn
frequency, HRV 0.774 0.842 0.871 0.949 0.972

Note: Bold is the best result.

According to Table 1, the proposed method in this paper achieves the highest classifica-
tion accuracy across all feature types. Concerning physiological characteristics, our method
demonstrates relatively high accuracy rates when utilizing both ECG and rPPG, achieving
0.894 and 0.895, respectively. Regarding visual features, the accuracy of our method using
eye and mouth features is 0.877 and 0.895, respectively, also surpassing the traditional clas-
sification algorithms. Notably, the combination of visual features (Eyes + Mouth) performs



Sensors 2024, 24, 455 21 of 24

exceptionally well in our method, achieving an accuracy of 0.948, significantly outperform-
ing other algorithms. Additionally, we observe that compared with traditional algorithms
(SVM and random forest), the deep learning models (DBN and CNN) exhibit superior
performance, affirming the advantages of deep learning in processing multi-modal data. In
the case of mixed multi-class features (Eyes + Mouth + rPPG), our method excels with an
accuracy of 0.972, surpassing the other traditional algorithms.

In summary, based on the data results from the comparative experiments, we can
confidently conclude that the multi-modal fusion fatigue detection method proposed in this
article demonstrates high accuracy across various feature types. The optimal performance
is achieved when combining multiple types of features, establishing the effectiveness and
promising application prospects of this method in fatigue detection.

3.3.4. Comparative Experiments on Different Fatigue Driving Detection Methods

In order to enhance the generalization and reliability of the experimental results, we
conducted a comparison between the algorithm proposed in this paper and the existing
mainstream fatigue driving detection algorithms. This comparison includes the multi-
class support vector machine (MCSVM) presented in [20] and the multi-granularity deep
convolution model (RF-DCM) introduced in [27]. The dataset utilized for experimentation
is our self-compiled MDAD, comprising continuous facial videos of drivers navigating
diverse and challenging driving scenarios. The accuracy of each algorithm in fatigue
detection was evaluated, and the results are presented in Table 2 below.

Table 2. Comparison of the accuracy of fatigue driving detection methods in complex environments.

Method Acc (%)

MCSVM [36] 87.3%
RF-DCM [37] 94.6%

Drowsiness detection system [28] 85%
Fatigue-Radio [33] 81.4%

FFD system [31] 97.8%
MTCNN + InceptionV3 [10] 91.1%

HDDD [38] 88.9%
CNN + DF-LSTM [39] 88.9%

Fusion system [32] 97.3%
Ours 98.2%

Note: Bold is the best result.

4. Conclusions

To address the challenges associated with the low accuracy and poor robustness of
traditional fatigue detection methods, particularly under varying lighting conditions, we
propose a non-invasive approach for multi-modal fusion fatigue detection that integrates
heart rate features with eye and face features. Leveraging an infrared camera in conjunc-
tion with rPPG and MTCNN combined with the BiFPN pyramid network, we extract
a driver’s physiological characteristics and facial features, mitigating errors introduced
by day-to-night lighting changes and enhancing the stability and reliability of fatigue
detection. Furthermore, we introduce a feature extraction enhancement module based
on an improved Pan–Tompkins algorithm and 1D-MTCNN to more accurately extract
heart rate signals and eyelid features. These enhancement modules contribute to elevating
the quality and precision of the data, forming a solid foundation for subsequent fatigue
detection models. Two independent fatigue detection models are established using a one-
dimensional convolutional neural network (1D CNN), where one model is based on the
PERCLOS value, and the other is based on the heart rate signal. After training these models,
accurate detection and classification of different fatigue characteristics are achieved. To
enhance robustness, real-time performance, and accuracy, the BiLSTM network is used
to input the data results from the two trained models, allowing it to learn the temporal
relationships between the data. This dynamic modeling approach effectively processes
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forecast time series input data, improves the model’s applicability in real-world scenarios,
and realizes multi-modal fatigue detection. Extensive experiments and comparisons of
the self-compiled MDAD demonstrate that the proposed model exhibits excellent fatigue
detection performance, boasting high accuracy and robustness across different scenarios.
The multi-modal fusion fatigue detection method presented in this paper provides an
effective solution for achieving accurate and reliable fatigue driving detection.
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