Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,526)

Search Parameters:
Keywords = PD-L1 inhibitors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 1916 KB  
Review
Ambivalent Copper: Mechanistically Distinct Immune Effects Driving Innovation in Cancer Nanomedicine
by Devon Heroux, Xu Xin Sun, Zeynab Nosrati and Marcel B. Bally
Pharmaceutics 2026, 18(1), 75; https://doi.org/10.3390/pharmaceutics18010075 - 7 Jan 2026
Viewed by 34
Abstract
Copper (Cu) is an essential element required by all living cells, where it supports critical enzymatic and signaling functions. In cancer, this balance is often disrupted, creating vulnerabilities that can be therapeutically exploited. Changes in Cu availability have been shown to influence key [...] Read more.
Copper (Cu) is an essential element required by all living cells, where it supports critical enzymatic and signaling functions. In cancer, this balance is often disrupted, creating vulnerabilities that can be therapeutically exploited. Changes in Cu availability have been shown to influence key immunoregulatory pathways, including those involved in inflammation, cell death, and immune evasion. Notably, Cu can drive expression of programmed death ligand 1 (PD-L1), contributing to immunosuppression, while also promoting immunogenic cell death, which stimulates adaptive immune responses. These dual effects highlight the complexity and therapeutic potential of Cu-based interventions, particularly in the context of immune modulation and toxicity. This review argues that Cu-based nanomedicines can selectively deliver high concentrations of bioactive Cu to tumor cells, inducing cell death and triggering adaptive immune responses. We summarize current knowledge on Cu’s roles in cancer and immunity, emphasizing recent insights into how these intersect through Cu-mediated modulation of anticancer immune pathways. Finally, we explore the clinical potential of Cu-based nanomedicines to convert immunologically “cold” tumors into “hot” ones, thereby improving responses to immunotherapy. Realizing this potential will depend on the thoughtful integration of Cu delivery approaches with existing immunotherapeutic strategies. Full article
Show Figures

Figure 1

17 pages, 681 KB  
Article
Inflammatory–Molecular Clusters as Predictors of Immunotherapy Response in Advanced Non-Small-Cell Lung Cancer
by Vlad Vornicu, Alina-Gabriela Negru, Razvan Constantin Vonica, Andrei Alexandru Cosma, Mihaela Maria Pasca-Fenesan and Anca Maria Cimpean
J. Clin. Med. 2026, 15(1), 349; https://doi.org/10.3390/jcm15010349 - 2 Jan 2026
Viewed by 187
Abstract
Background/Objectives: Immunotherapy has improved outcomes for selected patients with advanced non-small-cell lung cancer (NSCLC), yet the predictive value of individual biomarkers such as PD-L1 remains limited. Systemic inflammatory indices derived from routine blood tests may complement molecular and immunohistochemical features, offering a [...] Read more.
Background/Objectives: Immunotherapy has improved outcomes for selected patients with advanced non-small-cell lung cancer (NSCLC), yet the predictive value of individual biomarkers such as PD-L1 remains limited. Systemic inflammatory indices derived from routine blood tests may complement molecular and immunohistochemical features, offering a broader view of host–tumor immunobiology. Methods: We conducted a retrospective study of 298 patients with stage IIIB–IV NSCLC treated with immune checkpoint inhibitors (ICIs) at a tertiary oncology center between 2022 and 2024. Baseline neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), lymphocyte-to-monocyte ratio (LMR), and systemic immune–inflammation index (SII) were collected alongside PD-L1 expression and molecular alterations (EGFR, KRAS, ALK, TP53). Patients were stratified into inflammatory–molecular clusters integrating these parameters. Associations with objective response rate (ORR), progression-free survival (PFS), and overall survival (OS) were evaluated using Kaplan–Meier and multivariate Cox analyses. Results: Four distinct inflammatory–molecular clusters demonstrated significantly different outcomes (p < 0.001). Patients with low NLR and high PD-L1 expression (Cluster A) showed the highest ORR (41%), longest median PFS (13.0 months), and OS (22.5 months). The EGFR/ALK-driven, inflammation-dominant cluster (Cluster C) exhibited poor response (ORR 7%) and shortest survival (PFS 4.3 months). High NLR (HR 2.12), PD-L1 < 1% (HR 1.91), and EGFR mutation (HR 2.36) independently predicted shorter PFS. A combined model incorporating NLR, PD-L1, and molecular status outperformed individual biomarkers (AUC 0.82). Conclusions: Integrating systemic inflammatory indices with PD-L1 expression and molecular alterations identifies clinically meaningful NSCLC subgroups with distinct immunotherapy outcomes. This multidimensional approach improves prediction of ICI response and may enhance real-world patient stratification, particularly in settings with limited access to extended molecular profiling. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

33 pages, 1610 KB  
Review
Advancing Tuberculosis Treatment with Next-Generation Drugs and Smart Delivery Systems
by Ayman Elbehiry, Eman Marzouk and Adil Abalkhail
Pharmaceutics 2026, 18(1), 60; https://doi.org/10.3390/pharmaceutics18010060 - 1 Jan 2026
Viewed by 388
Abstract
Tuberculosis (TB) remains a leading infectious killer, increasingly complicated by multidrug-resistant (MDR) and extensively drug-resistant (XDR) disease; current regimens, although effective, are prolonged, toxic, and often fail to reach intracellular bacilli in heterogeneous lung lesions. This narrative review synthesizes how next-generation antimycobacterial strategies [...] Read more.
Tuberculosis (TB) remains a leading infectious killer, increasingly complicated by multidrug-resistant (MDR) and extensively drug-resistant (XDR) disease; current regimens, although effective, are prolonged, toxic, and often fail to reach intracellular bacilli in heterogeneous lung lesions. This narrative review synthesizes how next-generation antimycobacterial strategies can be translated “from molecule to patient” by coupling potent therapeutics with delivery platforms tailored to the lesion microenvironment. We survey emerging small-molecule classes, including decaprenylphosphoryl-β-D-ribose 2′-epimerase (DprE1) inhibitors, mycobacterial membrane protein large 3 (MmpL3) inhibitors, and respiratory chain blockers, alongside optimized uses of established agents and host-directed therapies (HDTs). These are mapped to inhalable and nanocarrier systems that improve intralesional exposure, macrophage uptake, and targeted release while reducing systemic toxicity. Particular emphasis is placed on pulmonary dry powder inhalers (DPIs) and aerosols for direct lung targeting, stimuli-responsive carriers that trigger release through pH, redox, or enzymatic cues, and long-acting depots or implants that shift daily dosing to monthly or quarterly schedules to enhance adherence, safety, and access. We also outline translational enablers, including model-informed pharmacokinetic/pharmacodynamic (PK/PD) integration, device formulation co-design, manufacturability, regulatory quality frameworks, and patient-centered implementation. Overall, aligning stronger drugs with smart delivery platforms offers a practical pathway to shorter, safer, and more easily completed TB therapy, improving both individual outcomes and public health impact. Full article
Show Figures

Figure 1

15 pages, 409 KB  
Review
Mediastinal Gray Zone Lymphomas: Diagnostic Challenges, Clinicopathologic Overlap, and Emerging Management Strategies
by Tugba Zorlu, Mert Seyhan, Nigar Abdullayeva, Turgay Ulas and Mehmet Sinan Dal
Hematol. Rep. 2026, 18(1), 5; https://doi.org/10.3390/hematolrep18010005 - 31 Dec 2025
Viewed by 123
Abstract
Background: Mediastinal gray zone lymphoma (MGZL) is a rare B-cell lymphoma characterized by overlapping clinicopathologic and molecular features of primary mediastinal B-cell lymphoma (PMBL) and classical Hodgkin lymphoma (CHL). Under current WHO-HEMA5 and International Consensus Classification (ICC) frameworks, MGZL is restricted to EBV-negative [...] Read more.
Background: Mediastinal gray zone lymphoma (MGZL) is a rare B-cell lymphoma characterized by overlapping clinicopathologic and molecular features of primary mediastinal B-cell lymphoma (PMBL) and classical Hodgkin lymphoma (CHL). Under current WHO-HEMA5 and International Consensus Classification (ICC) frameworks, MGZL is restricted to EBV-negative lymphomas arising in the mediastinum. Methods: This review summarizes current evidence on epidemiology, clinical presentation, pathology, molecular characteristics, diagnostic challenges, and therapeutic approaches to MGZL, with data derived from retrospective series, limited prospective cohorts, and recent molecular studies. Results: MGZL predominantly affects young adults and commonly presents with bulky mediastinal disease. Diagnosis is challenging due to transitional morphology, pleomorphic Reed–Sternberg-like cells, and variable expression of B-cell and activation markers. Molecular studies demonstrate shared alterations with PMBL and CHL, including 9p24.1 (JAK2/PD-L1/PD-L2) gains, while additional reported features such as HOXA5 hypomethylation and MYC copy number gains support its biological distinctiveness, although evidence remains limited. Frontline treatment commonly involves intensive chemoimmunotherapy regimens such as DA-EPOCH-R; however, outcomes remain inferior to PMBL and CHL, with 5-year overall survival rates of approximately 40–60%. Relapsed or refractory disease frequently requires salvage chemotherapy and autologous stem cell transplantation. Immune-based therapies, including brentuximab vedotin and PD-1 inhibitors, have shown promising activity, particularly in combination. Conclusions: MGZL remains a diagnostically challenging and therapeutically complex lymphoma with inferior outcomes compared with related mediastinal lymphomas. Advances in molecular profiling and immunotherapy offer promising avenues toward more personalized treatment; however, prospective clinical trials and international collaboration are urgently needed to establish evidence-based management strategies for this rare entity. Full article
Show Figures

Figure 1

8 pages, 1275 KB  
Case Report
Mixed Infectious–Immune Pneumonitis Associated with PD-L1 Blockade: A Case of Durvalumab-Induced Lung Injury Complicated by Human Metapneumovirus Infection
by Luca Pipitò, Chiara Vincenza Mazzola, Ilenia Giacchino, Riccardo De Rosa, Carola Maria Gagliardo, Alessio Giuseppe Lipari, Paola Monte, Federica Furia, Erika Mannino, Rosaria Pecoraro, Nicola Scichilone and Antonio Cascio
J. Clin. Med. 2026, 15(1), 251; https://doi.org/10.3390/jcm15010251 - 29 Dec 2025
Viewed by 226
Abstract
Background: Durvalumab, a PD-L1 inhibitor used as consolidation therapy after chemoradiation in unresectable stage III non–small cell lung cancer (NSCLC), can induce immune-related adverse events, among which immune-mediated pneumonitis represents one of the most severe. Differentiating checkpoint inhibitor pneumonitis (CIP) from infectious pneumonia [...] Read more.
Background: Durvalumab, a PD-L1 inhibitor used as consolidation therapy after chemoradiation in unresectable stage III non–small cell lung cancer (NSCLC), can induce immune-related adverse events, among which immune-mediated pneumonitis represents one of the most severe. Differentiating checkpoint inhibitor pneumonitis (CIP) from infectious pneumonia is challenging due to overlapping clinical and radiologic findings. Case presentation: We describe a 67-year-old woman with stage III lung adenocarcinoma treated with chemotherapy, radiotherapy, and durvalumab, who presented with progressive dyspnea and extensive bilateral ground-glass opacities on CT imaging. Laboratory tests revealed leukopenia and elevated inflammatory markers. Despite broad-spectrum antibiotic and antiviral therapy, her condition worsened, requiring high-flow nasal cannula oxygen therapy. Multiplex molecular testing on sputum identified human metapneumovirus (HMPV), while blood cultures and urinary antigens for Streptococcus pneumoniae and Legionella pneumophila were negative. A pulmonology consultation raised suspicion for severe durvalumab-induced pneumonitis exacerbated by viral infection. High-dose methylprednisolone (2 mg/kg/day) followed by a four-week taper led to gradual clinical and radiologic resolution. Durvalumab was permanently discontinued. Discussion: To our knowledge, this is the first reported case of HMPV-associated pneumonitis in a patient receiving durvalumab. This case highlights the potential synergistic interplay between viral infection and immune checkpoint blockade, resulting in severe lung injury. Comprehensive microbiologic evaluation, including molecular diagnostics, is essential to guide therapy and distinguish infectious from immune-mediated causes. Conclusions: Early recognition of mixed infectious and immune-mediated pneumonitis, and timely corticosteroid therapy are critical to achieving favorable outcomes and preventing irreversible pulmonary damage. Full article
(This article belongs to the Section Infectious Diseases)
Show Figures

Figure 1

31 pages, 2031 KB  
Review
Breaking Barriers: Immune Checkpoint Inhibitors in Breast Cancer
by Bartosz Dmuchowski, Witold Wit Hryniewicz, Igor Barczak, Kacper Fręśko, Zuzanna Szarzyńska, Hubert Węclewski, Jan Kazimierz Ślężak, Paula Dobosz and Hanna Gryczka
Pharmaceutics 2026, 18(1), 34; https://doi.org/10.3390/pharmaceutics18010034 - 26 Dec 2025
Viewed by 670
Abstract
Breast cancer remains the most commonly diagnosed malignancy among women worldwide and continues to pose significant therapeutic challenges, particularly in advanced and refractory disease. Although traditionally considered less immunogenic compared with other solid tumours, growing evidence demonstrates that subsets of breast cancer, particularly [...] Read more.
Breast cancer remains the most commonly diagnosed malignancy among women worldwide and continues to pose significant therapeutic challenges, particularly in advanced and refractory disease. Although traditionally considered less immunogenic compared with other solid tumours, growing evidence demonstrates that subsets of breast cancer, particularly triple-negative and HER2-positive subtypes, exhibit immune-responsive features. This recognition has spurred the development and clinical evaluation of immunotherapeutic strategies, with immune checkpoint inhibitors (ICIs) emerging as the most prominent approach. This new class of drugs targeting the programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) axis has demonstrated meaningful clinical activity in select patient populations, leading to regulatory approvals in combination with chemotherapy for advanced triple-negative breast cancer. Despite these advances, response rates remain modest, and the benefits are largely restricted to patients with PD-L1-positive tumours. Ongoing studies are evaluating predictive biomarkers, optimal treatment combinations, and mechanisms of resistance to expand the efficacy of ICIs across broader breast cancer subtypes. Furthermore, novel checkpoint targets such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), lymphocyte-activation gene 3 (LAG-3), and T cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domains (TIGIT) are under investigation, with the potential to enhance or complement PD-1/PD-L1 blockade. This review summarises the current state of knowledge on breast cancer immunotherapy with an emphasis on ICIs, highlighting key clinical trial findings, as well as emerging biomarkers of response, and strategies to overcome therapeutic resistance, if cancer cells eventually develop resistance. By integrating preclinical insights with clinical progress, we aim to provide a comprehensive overview of the evolving role of checkpoint blockade in breast cancer and outline future directions to optimise patient outcomes. Full article
(This article belongs to the Special Issue Personalized Medicine in Clinical Pharmaceutics)
Show Figures

Figure 1

13 pages, 560 KB  
Review
Dopamine and the Gut Microbiota: Interactions Within the Microbiota–Gut–Brain Axis and Therapeutic Perspectives
by Aurelia Cristiana Barbu, Smaranda Stoleru, Aurelian Zugravu, Elena Poenaru, Adrian Dragomir, Mihnea Costescu, Sorina Maria Aurelian, Yara Shhab, Clara Maria Stoleru, Oana Andreia Coman and Ion Fulga
Int. J. Mol. Sci. 2026, 27(1), 271; https://doi.org/10.3390/ijms27010271 - 26 Dec 2025
Viewed by 467
Abstract
The microbiota–gut–brain axis (MGBA) comprises a complex bidirectional communication network integrating neural, immune, metabolic, and endocrine pathways. Dopamine, traditionally viewed as a central neurotransmitter, also plays essential roles in the gastrointestinal (GI) tract, where it regulates motility, secretion, barrier homeostasis, and mucosal immunity. [...] Read more.
The microbiota–gut–brain axis (MGBA) comprises a complex bidirectional communication network integrating neural, immune, metabolic, and endocrine pathways. Dopamine, traditionally viewed as a central neurotransmitter, also plays essential roles in the gastrointestinal (GI) tract, where it regulates motility, secretion, barrier homeostasis, and mucosal immunity. Growing evidence indicates that the gut microbiota significantly contributes to intestinal dopamine metabolism through specialized enzymatic pathways, particularly tyrosine decarboxylase in Enterococcus species and catechol dehydroxylase in Eggerthella species. These microbial reactions compete with host processes, alter dopaminergic tone, and degrade orally administered levodopa (L-DOPA), providing a mechanistic explanation for the variability in treatment response in Parkinson’s disease (PD). Beyond PD, microbially mediated alterations in dopaminergic signaling have been implicated in mood disorders, neurodevelopmental conditions, metabolic dysfunction, and immune-mediated diseases. This review synthesizes current mechanistic and translational evidence on the dopamine–microbiota interface, outlines microbial pathways shaping dopaminergic activity, and highlights therapeutic opportunities including microbiota modulation, dietary strategies, fecal microbiota transplantation, and targeted inhibitors of microbial dopamine metabolism. Understanding this interface offers a foundation for developing personalized approaches in neurogastroenterology and neuromodulatory therapies. Full article
(This article belongs to the Special Issue Microbiomes in Human Health and Disease)
Show Figures

Figure 1

13 pages, 342 KB  
Review
A Review of the Latest Evidence on Prognostic Factors in Locally Advanced and Metastatic Urothelial Carcinoma Treated with Immune Checkpoint Inhibitors
by Ion Cojocaru, Mădălin Guliciuc, Elena Cojocaru, Cristina Serban, Grigore Pascaru, Mihnea Bogdan Borz, Vlad Horia Schitcu, Andrei-Ionut Tise, Iulian Osoianu and Laura-Florentina Rebegea
Medicina 2026, 62(1), 46; https://doi.org/10.3390/medicina62010046 - 26 Dec 2025
Viewed by 193
Abstract
Background and Objectives: Urothelial carcinoma (UC) is one of the most prevalent and lethal cancers worldwide. Identifying and understanding the factors that influence treatment outcome is essential for improving therapeutic effectiveness and predicting patient response. The objective of this review is to [...] Read more.
Background and Objectives: Urothelial carcinoma (UC) is one of the most prevalent and lethal cancers worldwide. Identifying and understanding the factors that influence treatment outcome is essential for improving therapeutic effectiveness and predicting patient response. The objective of this review is to estimate how clinical, biochemical, molecular and therapeutic factors impact the prognosis of patients with advanced urothelial carcinoma (aUC) and metastatic urothelial carcinoma (mUC) treated with immune checkpoint inhibitors (ICIs). Methods: A review was performed using PubMed, Scopus and Web of Science databases. All articles were published from 2013 to 2025 focusing on prognostic factors in locally advanced and metastatic urothelial carcinoma treated with ICIs. Results: Clinical prognostic factors for patients treated with ICIs include poor Eastern Cooperative Oncology Group (ECOG) performance status and the presence of liver or bone metastases, both associated with poor outcomes. Low hemoglobin levels and several biochemical markers, such as high neutrophil-to-lymphocyte ratio (NLR), elevated systemic immune-inflammation index (SII) and low serum sodium are also associated with reduced survival. Programmed cell death-ligand 1 (PD-L1) expression shows predictive relevance for ICI response. Concomitant use of antibiotics or proton pump inhibitors (PPIs) may diminish immunotherapy effectiveness. Additionally, sarcopenia and high lactate dehydrogenase (LDH) levels correlate with poorer clinical outcomes. Conclusions: Prognostic outcomes in aUC and mUC are influenced by a complex interaction of clinical, biochemical and molecular factors. Integrative prognostic models are essential to the guidance of personalized immunotherapeutic strategies and the improvement of patient outcomes in aUC and mUC. Full article
21 pages, 2736 KB  
Article
Finding the True Responders: Stratifying dMMR/MSI-H Tumors for ICI Response
by Nari Kim, Seongwon Na, Jisung Jang, Mihyun Kim, Jun Hee Pyo and Kyung Won Kim
Cancers 2026, 18(1), 18; https://doi.org/10.3390/cancers18010018 - 19 Dec 2025
Viewed by 303
Abstract
Background/Objectives: Immune checkpoint inhibitors (ICIs) show durable efficacy in tumors with deficient mismatch repair (dMMR) or high microsatellite instability (MSI-H), yet clinical responses remain heterogeneous. This study aimed to define immune subgroups within dMMR/MSI-H tumors and develop a reproducible transcriptomic signature predictive [...] Read more.
Background/Objectives: Immune checkpoint inhibitors (ICIs) show durable efficacy in tumors with deficient mismatch repair (dMMR) or high microsatellite instability (MSI-H), yet clinical responses remain heterogeneous. This study aimed to define immune subgroups within dMMR/MSI-H tumors and develop a reproducible transcriptomic signature predictive of ICI response. Methods: Four MSI-H-enriched cancer types (UCEC, COAD, READ, STAD) from The Cancer Genome Atlas were analyzed. Tumors were stratified by immune cell infiltration (MCP-counter immune composite score) and T-cell-inflamed gene expression profiles (GEP score). Integrating these two axes defined four immune subgroups. Differential expression, random forest feature selection, and pathway enrichment were performed to identify immune programs. A 20-gene immune signature representing the most immune-active subgroup was developed and validated across TCGA, GEO (GSE39582), and IMvigor210 cohorts. Results: Among the four subgroups, the most immune-active group showed strong activation of interferon signaling, antigen presentation, and T-cell-mediated pathways. The 20-gene signature—including CD74, STAT1, TAP1, and HLA-class genes—achieved high reproducibility (mean AUC = 0.95 ± 0.02; accuracy ≈ 89%). In the IMvigor210 cohort, this signature identified tumors with higher PD-L1 blockade response (55.6% vs. 32.8%, p = 0.034) and improved survival trends in the TMB-high subset. Conclusions: The proposed 20-gene signature quantitatively captures immune heterogeneity in dMMR/MSI-H tumors and serves as a practical, interpretable biomarker to identify true ICI responders and guide precision immunotherapy. Full article
(This article belongs to the Section Cancer Immunology and Immunotherapy)
Show Figures

Figure 1

38 pages, 1669 KB  
Review
Determinants of Response to Immune Checkpoint Blockade in Pleural Mesothelioma: Molecular, Immunological, and Clinical Perspectives
by Martina Delsignore, Gaia Cassinari, Simona Revello, Luigi Cerbone, Federica Grosso, Marcello Arsura and Chiara Porta
Cancers 2025, 17(24), 4020; https://doi.org/10.3390/cancers17244020 - 17 Dec 2025
Viewed by 529
Abstract
Diffuse pleural mesothelioma (PM) is a rare thoracic malignancy with historically limited treatment options and poor outcomes. Despite the recent breakthrough of dual immune checkpoint blockade (ICB)—notably the combination of anti-PD-1 and anti-CTLA-4 therapies—clinical responses remain variable and overall survival gains modest. Consequently, [...] Read more.
Diffuse pleural mesothelioma (PM) is a rare thoracic malignancy with historically limited treatment options and poor outcomes. Despite the recent breakthrough of dual immune checkpoint blockade (ICB)—notably the combination of anti-PD-1 and anti-CTLA-4 therapies—clinical responses remain variable and overall survival gains modest. Consequently, there is an urgent need for multidimensional biomarkers and adaptive trial designs to unravel the complexity of PM immune biology. This review provides a comprehensive overview of current evidence on how histological subtypes (epithelioid vs. non-epithelioid) influence ICB efficacy, highlighting distinct genetic landscapes (e.g., BAP1, CDKN2A, NF2 mutations) and tumor microenvironment (TME) features, including immune infiltration patterns and PD-L1 or VISTA expression, that underlie differential responses. We further examine intrinsic tumor factors—such as mutational burden and checkpoint ligand expression—and extrinsic determinants, including immune cell composition, stromal architecture, patient immune status, and microbiota, as modulators of immunotherapy outcomes. We also discuss the rationale behind emerging strategies designed to enhance ICB efficacy, currently under clinical evaluation. These include combination regimens with chemotherapy, radiotherapy, surgery, epigenetic modulators, anti-angiogenic agents, and novel immunotherapies such as next-generation checkpoint inhibitors (LAG-3, VISTA), immune-suppressive cell–targeting agents, vaccines, cell-based therapies, and oncolytic viruses. Collectively, these advancements underscore the importance of integrating histological classification with molecular and microenvironmental profiling to refine patient selection and guide the development of combination strategies aimed at transforming “cold” mesotheliomas into “hot,” immune-responsive tumors, thereby enhancing the efficacy of ICB. Full article
(This article belongs to the Special Issue Biomarkers and Targeted Therapy in Malignant Pleural Mesothelioma)
Show Figures

Figure 1

22 pages, 711 KB  
Review
Effects of the Pharmacological Modulation of NRF2 in Cancer Progression
by Santiago Gelerstein-Claro, Gabriel Méndez-Valdés and Ramón Rodrigo
Medicina 2025, 61(12), 2224; https://doi.org/10.3390/medicina61122224 - 16 Dec 2025
Viewed by 376
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2) orchestrates redox balance, metabolism, and cellular stress responses, acting as both a tumor suppressor and promoter depending on the disease stage. In advanced cancers, persistent NRF2 activation—through KEAP1/NFE2L2 mutations or oxidative adaptation—drives epithelial-to-mesenchymal transition, metabolic reprogramming, [...] Read more.
Nuclear factor erythroid 2-related factor 2 (NRF2) orchestrates redox balance, metabolism, and cellular stress responses, acting as both a tumor suppressor and promoter depending on the disease stage. In advanced cancers, persistent NRF2 activation—through KEAP1/NFE2L2 mutations or oxidative adaptation—drives epithelial-to-mesenchymal transition, metabolic reprogramming, and immune evasion, promoting tumor invasion (T) and metastasis (M). Recent pharmacologic efforts seek to exploit this duality. NRF2 inhibitors such as brusatol, halofuginone, and ML385 suppress NRF2 transcriptional activity or disrupt DNA binding, reducing motility, invasion, and metastatic dissemination in preclinical models. In contrast, NRF2 activators, such as bardoxolone methyl (CDDO-Me), sulforaphane, and dimethyl fumarate, exhibit chemopreventive effects by enhancing detoxification and mitigating oxidative DNA damage during early tumorigenesis. Furthermore, metabolic interventions, such as glutaminase or G6PD inhibitors, target NRF2-driven anabolic and antioxidant pathways essential for metastatic fitness. Therefore, understanding the temporal and contextual effects of NRF2 signaling is crucial for therapeutic design. The aim of this review is to examine how pharmacological modulation of NRF2 influences the invasive and metastatic dimensions of tumor progression, in addition to discussing its potential integration into TNM-based prognostic and treatment frameworks. Full article
(This article belongs to the Special Issue Pharmacological Modulation of NRF2)
Show Figures

Figure 1

15 pages, 2489 KB  
Article
Synthesis and Anti-Tumor Evaluation of Carboranyl BMS-202 Analogues—A Case of Carborane Not as Phenyl Ring Mimetic
by Changxian Yuan, Chaofan Li, Chenyang Ma, Yuzhe Lin, Linyuan Wang, Guanxiang Hao, Yirong Zhang, Hongjing Li, Yuan Li, Yu Zhao, Nan Sun, Tiezheng Chen, Zhiguang Zhang, Dengfeng Cheng and Sinan Wang
Molecules 2025, 30(24), 4789; https://doi.org/10.3390/molecules30244789 - 16 Dec 2025
Viewed by 413
Abstract
Carborane is considered a three-dimensional mimetic of phenyl rings in medicinal chemistry. BMS-202 is a potent PD-L1 inhibitor that can block the PD-L1/PD-1 interaction and restore the immune response to cancer cells. Herein, we replaced the terminal phenyl group of BMS-202 with carborane [...] Read more.
Carborane is considered a three-dimensional mimetic of phenyl rings in medicinal chemistry. BMS-202 is a potent PD-L1 inhibitor that can block the PD-L1/PD-1 interaction and restore the immune response to cancer cells. Herein, we replaced the terminal phenyl group of BMS-202 with carborane and prepared its carboranyl BMS-202 analogues. The results showed a loss of PD-L1 binding affinity due to the bulky size of carborane, suggesting that carborane cannot serve as a phenyl ring mimetic in certain cases. Docking study demonstrated that the narrow binding pocket of PD-L1 could not hold the bulky carborane, resulting in loss of its activity. Compounds 1a and 1b exhibited anti-proliferative activities on a broad scope of cancer cell lines. Further studies indicate that compound 1a can induce cell apoptosis and lead to G1 cell cycle phase arrest. The boron biodistribution study of compound 1a revealed that the brain/blood uptake ratio was 0.60 ± 0.08, exhibiting a good blood-brain penetration capability. Full article
(This article belongs to the Special Issue An Insight into Medicinal Chemistry of Anticancer Drugs)
Show Figures

Graphical abstract

18 pages, 817 KB  
Review
Antibody-Mediated Therapy in Gastric Cancer: Past, Present, and Future
by Hong-Beum Kim and Sang-Gon Park
Curr. Issues Mol. Biol. 2025, 47(12), 1044; https://doi.org/10.3390/cimb47121044 - 15 Dec 2025
Viewed by 417
Abstract
The limited efficacy of cytotoxic chemotherapy in the context of gastric cancer treatment is largely driven by profound molecular and biological heterogeneity. In contrast, the development of antibody-mediated therapies has ushered in a new era of precision oncology by enabling selective molecular targeting [...] Read more.
The limited efficacy of cytotoxic chemotherapy in the context of gastric cancer treatment is largely driven by profound molecular and biological heterogeneity. In contrast, the development of antibody-mediated therapies has ushered in a new era of precision oncology by enabling selective molecular targeting and immune modulation. This review includes a comprehensive overview of the evolution of antibody-based therapeutics in gastric cancer, highlighting early breakthroughs, subsequent setbacks, and recent advances that have reshaped the treatment landscape. We summarize the current standard regimens targeting HER2, VEGFR2, PD-1/PD-L1, and CLDN18.2 and examine pivotal clinical trials evaluating monoclonal antibodies directed against these pathways. We also discuss emerging therapeutic modalities, including next-generation antibody–drug conjugates (ADCs), bispecific antibodies, and chimeric antigen receptor (CAR) T-cell therapies. Trastuzumab first established HER2-targeted therapy in gastric cancer, but the failure of trastuzumab emtansine (T-DM1) led to a decade-long stagnation until the advent of trastuzumab deruxtecan (T-DXd), which demonstrated robust clinical activity and defined a new standard of care. While bevacizumab failed to improve survival, the anti-VEGFR2 antibody ramucirumab emerged as an effective second-line therapy. Immune checkpoint inhibitors, including nivolumab and pembrolizumab, have been incorporated into first-line treatment for PD-L1-positive disease based on landmark trials such as CheckMate 649 and KEYNOTE-811. More recently, the CLDN18.2-targeted antibody zolbetuximab has expanded therapeutic options for biomarker-selected patients. Concurrently, a diverse pipeline of immune-based strategies—such as TROP2-directed ADCs, bispecific antibodies, and CAR-T cell therapies—is undergoing active clinical development. Together, advances in biomarker-driven antibody therapeutics are accelerating personalized cancer care and improving clinical outcomes in patients with gastric cancer. Full article
(This article belongs to the Special Issue Gastrointestinal Cancers: From Pathogenesis to Treatment)
Show Figures

Figure 1

14 pages, 975 KB  
Article
A Real-World Experience on the Efficacy of First-Line Treatment with Immune-Checkpoint Inhibitors in Non-Small-Cell Lung Cancer Patients with PD-L1 Expression ≥50%: The Role of KRAS Mutations
by Lucia Motta, Samantha Epistolio, Jana Pankovics, Francesca Molinari, Benjamin Pedrazzini, Alexandra Valera, Luca Giudici, Stefania Freguia, Miriam Patella, Martina Imbimbo, Giovanna Schiavone, Milo Frattini and Patrizia Froesch
Cancers 2025, 17(24), 3980; https://doi.org/10.3390/cancers17243980 - 13 Dec 2025
Viewed by 285
Abstract
Background/Objectives: Several genetic alterations have been identified as drivers of uncontrolled cell growth in lung cancer, with KRAS mutations representing the most prevalent driver oncogene. Despite advances in targeted treatment, the 5-year survival rate of patients with advanced/metastatic NSCLC is still less than [...] Read more.
Background/Objectives: Several genetic alterations have been identified as drivers of uncontrolled cell growth in lung cancer, with KRAS mutations representing the most prevalent driver oncogene. Despite advances in targeted treatment, the 5-year survival rate of patients with advanced/metastatic NSCLC is still less than 20%. This study aims to assess the clinical relevance of KRAS mutations in the context of PD-L1 expression, focusing on patients with PD-L1 Tumor Proportion Score (TPS) ≥ 50% and treated with first-line immune checkpoint inhibitors (ICIs). Methods: We conducted a retrospective analysis of a real-world cohort comprising all staged NSCLC patients diagnosed and treated between 2018 and 2022 at our Institution with the available Next Generation Sequencing and PD-L1 immunohistochemistry results. Statistical analyses were made using the log-rank test, the two-tailed Fisher’s exact test, and Kaplan–Meier survival curves. Results: Among 520 NSCLC patients, 288 were adenocarcinoma (AC). Of these, 110/288 (38.2%) were KRAS mutants, and 83/278 (29.8%) presented a PD-L1 TPS ≥ 50%. In this subgroup, KRAS mutants demonstrated longer median overall survival (mOS) and progression-free survival (PFS) compared to the KRAS wild-type (28.7 vs. 10.7 months, p = 0.010; 6.4 vs. 3.5 months, p = 0.005, respectively). While OS did not differ among KRAS mutation subtypes, PFS was significantly shorter in patients with p.G12D (3.5 months, p = 0.03). Conclusion: This study is the first to investigate the interplay between KRAS mutations and PD-L1 expression in a real-world stage IV lung AC cohort treated with ICIs. Our findings indicate that the p.G12D mutation is associated with an extremely severe disease upon ICI monotherapy. These preliminary results need further validation in larger, prospective cohorts. Full article
Show Figures

Figure 1

18 pages, 751 KB  
Review
Cancer-Associated Fibroblasts-Derived Exosomes as Mediators of Immunotherapy Resistance in Head and Neck Squamous Cell Carcinoma
by Julia Federspiel, Jozsef Dudas, Benedikt Gabriel Hofauer, Barbara Wollenberg and Teresa Bernadette Steinbichler
Cells 2025, 14(24), 1978; https://doi.org/10.3390/cells14241978 - 12 Dec 2025
Viewed by 460
Abstract
The tumor microenvironment (TME) orchestrates tumor growth, immune evasion, and therapeutic response in head and neck squamous cell carcinoma (HNSCC). Current immune checkpoint inhibitors (ICIs) target the programmed death receptor-1/programmed death-ligand 1 (PD-1/PD-L1) axis and improve survival in recurrent, metastatic, and locally advanced [...] Read more.
The tumor microenvironment (TME) orchestrates tumor growth, immune evasion, and therapeutic response in head and neck squamous cell carcinoma (HNSCC). Current immune checkpoint inhibitors (ICIs) target the programmed death receptor-1/programmed death-ligand 1 (PD-1/PD-L1) axis and improve survival in recurrent, metastatic, and locally advanced HNSCC. Tumor cells produced exosomes directly suppress cytotoxic T-lymphocytes activity by modulating immune checkpoint pathways and disrupting T-cell receptor signaling. Cancer-associated fibroblast-derived exosomes (CAF-Exos) function indirectly by conditioning immune escape and tumor growth. Together, these exosomal populations cooperate to create an immunosuppressive niche that hinders the efficacy of immunotherapies. CAF-Exos induce TME changes that exclude CD8+ T-cells, promote regulatory T-cells (Tregs), and upregulate PD-L1 expression in tumor cells. The bidirectional transfer of microRNAs (miRNAs) between tumor cells and CAFs enhances epithelial–mesenchymal transition (EMT), suppresses cytotoxic lymphocytes, and undermines ICI efficacy. This review article summarizes recent publications about plasma-derived exosomes from HNSCC patients. These exosomes carry tumor and immune checkpoint markers, reflect tumor burden and treatment response, and strongly modulate immune cells by suppressing T- and B-cell activity and promoting immunosuppressive macrophages. We encourage functional and biomechanistic future studies in the field of HNSCC that examine how CAF subtypes exosomes achieve an immunoresistant TME. Full article
Show Figures

Figure 1

Back to TopTop