Antibody-Mediated Therapy in Gastric Cancer: Past, Present, and Future
Abstract
1. Introduction
2. Past and Present: Targets That Established the Standard for Gastric Cancer Antibody Therapy
2.1. HER2
2.2. VEGF
2.3. PD-1/PD-L1: The Beginning of Immune Checkpoint Inhibitors
2.4. CLDN18.2: Emergence of New Targets and Clinical Validation
3. Current Progress and Future Prospects in Antibody Therapy for Gastric Cancer
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, J.; Qin, S.; Bai, Y.; Wu, C.; Liu, T.; Xiong, J.; Zhang, X.; Wang, H.; Chen, L.; Zhao, Y.; et al. Targeted therapy and immunotherapy for gastric cancer: Rational strategies, novel advancements, challenges, and future perspectives. Cancer Commun. 2025, 44, 1075. [Google Scholar]
- Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 2014, 513, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Slamon, D.J.; Clark, G.M.; Wong, S.G.; Levin, W.J.; Ullrich, A.; McGuire, W.L. Human breast cancer: Correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987, 235, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Ross, J.S.; Fletcher, J.A.; Linette, G.P.; Stec, J.; Clark, E.; Ayers, M.; Symmans, W.F.; Pusztai, , L.; Bloom, K.J. The HER-2/neu gene and protein in breast cancer: Biomarker and target of therapy. Oncologist 2003, 8, 307–325. [Google Scholar] [CrossRef]
- Gravalos, C.; Jimeno, A. HER2 in gastric cancer: A new prognostic factor and a novel therapeutic target. Ann. Oncol. 2008, 19, 1523–1529. [Google Scholar] [CrossRef]
- Bang, Y.J.; Van Cutsem, E.; Feyereislova, A.; Chung, H.C.; Shen, L.; Sawaki, A.; Lordick, F.; Ohtsu, A.; Omuro, Y.; Satoh, , T.; et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): A phase 3, open-label, randomised controlled trial. Lancet 2010, 376, 687–697. [Google Scholar] [CrossRef]
- Yoon, H.H.; Shi, Q.; Sukov, W.R.; Wiktor, A.E.; Khan, M.; Sattler, C.A.; Grothey, A.; Wu, T.-T.; Diasio, R.B.; Jenkins, R.B.; et al. Association of HER2/ErbB2 expression and gene amplification with pathologic features and prognosis in esophageal adenocarcinomas. Mod. Pathol. 2007, 20, 129–137. [Google Scholar]
- Hecht, J.R.; Bang, Y.J.; Qin, S.K.; Chung, H.C.; Xu, J.M.; Park, J.O.; Jeziorski, K.; Shparyk, Y.; Hoff, P.M.; Sobrero, A.; et al. Lapatinib in combination with capecitabine plus oxaliplatin in human epidermal growth factor receptor 2-positive advanced or metastatic gastric, esophageal, or gastroesophageal junction cancer: TRIO-013/LOGiC—A randomized phase III trial. J. Clin. Oncol. 2016, 34, 443–451. [Google Scholar] [CrossRef]
- Satoh, T.; Xu, R.H.; Chung, H.C.; Sun, G.P.; Doi, T.; Xu, J.M.; Tsuji, A.; Omuro, Y.; Li, J.; Wang, J.W.; et al. Lapatinib plus paclitaxel versus paclitaxel alone in the second-line treatment of HER2-amplified advanced gastric cancer in Asian populations: TyTAN—A randomized, phase III study. J. Clin. Oncol. 2014, 32, 2039–2049. [Google Scholar] [CrossRef]
- Beck, A.; Goetsch, L.; Dumontet, C.; Corvaïa, N. Strategies and challenges for the next generation of antibody-drug conjugates. Nat. Rev. Drug Discov. 2017, 16, 315–337. [Google Scholar] [CrossRef]
- Diamantis, N.; Banerji, U. Antibody-drug conjugates—An emerging class of cancer treatment. Br. J. Cancer 2016, 114, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Thuss-Patience, P.C.; Shah, M.A.; Ohtsu, A.; Van Cutsem, E.; Ajani, J.A.; Castro, H.R.; Mansoor, W.; Chung, H.C.; Bodoky, G.; Shitara, K.; et al. Trastuzumab emtansine versus taxane use for previously treated HER2-positive advanced gastric cancer (GATSBY): A randomised, open-label, multicentre, phase 2/3 study. Lancet Oncol. 2017, 18, 640–653. [Google Scholar] [CrossRef] [PubMed]
- Modi, S.; Saura, C.; Yamashita, T.; Park, Y.H.; Kim, S.B.; Tamura, K.; André, F.; Iwata, H.; Ito, Y.; Tsurutani, J.; et al. Trastuzumab deruxtecan in previously treated HER2-positive breast cancer. N. Engl. J. Med. 2020, 382, 610–621. [Google Scholar] [CrossRef] [PubMed]
- Shitara, K.; Bang, Y.J.; Iwasa, S.; Sugimoto, N.; Ryu, M.H.; Sakai, D.; Okamoto, W.; Kawakami, H.; Yamaguchi, K.; Nishina, T.; et al. Trastuzumab deruxtecan in previously treated HER2-positive gastric cancer. N. Engl. J. Med. 2020, 382, 2419–2430. [Google Scholar] [CrossRef]
- Van Cutsem, E.; di Bartolomeo, M.; Smyth, E.; Chau, I.; Park, H.; Siena, S.; Lonardi, S.; Wainberg, Z.A.; Ajani, J.; Chao, J.; et al. Trastuzumab deruxtecan in patients in the USA and Europe with HER2-positive advanced gastric or gastroesophageal junction cancer with progression after a trastuzumab-containing regimen (DESTINY-Gastric02): A single-arm, phase 2 trial. Lancet Oncol. 2023, 24, 744–756. [Google Scholar] [CrossRef]
- Shitara, K.; Van Cutsem, E.; Gümüş, M.; Lonardi, S.; de la Fouchardière, C.; Coutzac, C.; Ilson, D.H.; Ryu, M.H.; Chau, I.; Smyth, E.C.; et al. Trastuzumab deruxtecan or ramucirumab plus paclitaxel in gastric cancer. N. Engl. J. Med. 2025, 393, 336–348. [Google Scholar] [CrossRef]
- Ohtsu, A.; Shah, M.A.; Van Cutsem, E.; Rha, S.Y.; Sawaki, A.; Park, S.H.; Lim, H.Y.; Kim, K.M.; Yamada, Y.; Wu, X.; et al. Bevacizumab in combination with capecitabine and cisplatin in patients with advanced gastric cancer: A randomised, double-blind, placebo-controlled phase 3 study. Lancet Oncol. 2011, 12, 1050–1058. [Google Scholar]
- Wilke, H.; Muro, K.; Van Cutsem, E.; Oh, S.C.; Bodoky, G.; Shimada, Y.; Hironaka, S.; Sugimoto, N.; Lipatov, O.; Kim, T.Y.; et al. Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): A double-blind, randomised phase 3 trial. Lancet Oncol. 2014, 15, 1224–1235. [Google Scholar] [CrossRef]
- Fuchs, C.S.; Tomasek, J.; Yong, C.J.; Dumitru, F.; Passalacqua, R.; Goswami, C.; Safran, H.; dos Santos, L.V.; Aprile, G.; Ferry, D.R.; et al. Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): An international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet 2014, 383, 31–39. [Google Scholar] [CrossRef]
- Kim, S.T.; Cristescu, R.; Bass, A.J.; Kim, K.M.; Odegaard, J.I.; Kim, S.; Liu, X.Q.; Sher, X.; Jung, H.; Lee, M.; et al. Comprehensive molecular characterization of clinical responses to PD-1 inhibition in metastatic gastric cancer. Nat. Med. 2018, 24, 1449–1458. [Google Scholar] [CrossRef]
- Smyth, E.C.; Nilsson, M.; Grabsch, H.I.; van Grieken, N.C.T.; Lordick, F. Clinical implications of genomic molecular subtypes of gastric cancer. Lancet Oncol. 2020, 21, e478. [Google Scholar]
- Robert, C.; Schachter, J.; Long, G.V.; Arance, A.; Grob, J.J.; Mortier, L.; Daud, A.; Carlino, M.S.; McNeil, C.; Lotem, M.; et al. Pembrolizumab versus ipilimumab in advanced melanoma. N. Engl. J. Med. 2015, 372, 2521–2532. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.K.; Boku, N.; Satoh, T.; Ryu, M.H.; Chao, Y.; Kato, K.; Chung, H.C.; Chen, J.S.; Muro, K.; Kang, W.K.; et al. Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017, 390, 2461–2471. [Google Scholar] [CrossRef] [PubMed]
- Shitara, K.; Ozguroglu, M.; Bang, Y.J.; Di Bartolomeo, M.; Mandala, M.; Ryu, M.H.; Muro, K.; Chung, H.C.; Park, Y.I.; Hara, H.; et al. Pembrolizumab versus paclitaxel for previously treated, advanced gastric or gastro-oesophageal junction cancer (KEYNOTE-061): A randomised, open-label, controlled, phase 3 trial. Lancet 2018, 392, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Janjigian, Y.Y.; Shitara, K.; Moehler, M.; Garrido, M.; Salman, P.; Shen, L.; Wyrwicz, L.; Yamaguchi, K.; Skoczylas, T.; Braghiroli, M.I.; et al. First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, or oesophageal adenocarcinoma (CheckMate 649): A randomised, open-label, phase 3 trial. N. Engl. J. Med. 2021, 384, 1191–1203. [Google Scholar] [CrossRef]
- Rha, S.Y.; Oh, D.Y.; Yañez, P.; Garrido, M.; Ferreira, C.C.; Wyrwicz, L.; Li, C.P.; Kim, H.S.; Wainberg, Z.A.; Kato, K.; et al. Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for HER2-negative advanced gastric cancer (KEYNOTE-859): A multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 2023, 24, 1181–1195. [Google Scholar] [CrossRef]
- Moehler, M.; Kato, K.; Arkenau, H.T.; Oh, D.Y.; Tabernero, J.; Eigendorff, E.; Geng, M.; Ryu, M.H.; Shen, L.; Xu, J.; et al. Tislelizumab plus chemotherapy versus placebo plus chemotherapy as first line treatment for advanced gastric or gastro-oesophageal junction adenocarcinoma: RATIONALE-305 randomised, double blind, phase 3 trial. BMJ 2024, 385, e078876. [Google Scholar] [CrossRef]
- Janjigian, Y.Y.; Shitara, K.; Moehler, M.; Garrido, M.; Salman, P.; Shen, L.; Yamaguchi, K.; Wyrwicz, L.; Skoczylas, T.; Braghiroli, M.I.; et al. Pembrolizumab plus trastuzumab and chemotherapy for HER2-positive advanced gastric or gastro-oesophageal junction cancer (KEYNOTE-811): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2024, 403, 2549–2561. [Google Scholar]
- Singh, A.B.; Sharma, A.; Dhawan, P. Claudin-1 and claudin-2: A versatile nexus in health and disease. Cell Adhes. Migr. 2010, 4, 248–258. [Google Scholar]
- Sahin, U.; Koslowski, M.; Dhaene, K.; Usener, D.; Brandenburg, G.; Seitz, G.; Huber, C.; Türeci, Ö.; Wadle, A.; Sampson, J.H.; et al. Claudin-18 splice variant 2 is a pan-cancer target suitable for therapeutic antibody development. Cancer Res. 2008, 68, 5748–5755. [Google Scholar] [CrossRef]
- Türeci, Ö.; Sahin, U.; Koslowski, M.; Seitz, G.; Braun, M.; Samatov, T.; Huber, C.; Wadle, A.; Zörgiebel, J.; Lordick, F.; et al. A multicentre, phase IIa study of zolbetuximab (IMAB362) in patients with metastatic gastric cancer. Ann. Oncol. 2013, 24, 564–571. [Google Scholar]
- Sahin, U.; Türeci, Ö.; Manikhas, G.; Lordick, F.; Rusakov, V.; Varenina, S.; Heinrich, B.; Melichar, B.; Doi, T.; Shen, L.; et al. FAST: A randomised phase II study of zolbetuximab (IMAB362) plus EOX versus EOX alone for first-line treatment of advanced CLDN18.2-positive gastric and gastro-oesophageal adenocarcinoma. Ann. Oncol. 2021, 32, 609–619. [Google Scholar] [CrossRef]
- Shitara, K.; Lordick, F.; Janjigian, Y.Y.; Carmona-Bayonas, A.; Tjulandin, S.; Ilson, D.H.; Ajani, J.A.; Shen, L.; Yamaguchi, K.; Ryu, M.H.; et al. Zolbetuximab plus mFOLFOX6 in patients with CLDN18.2-positive, HER2-negative, untreated, locally advanced unresectable or metastatic gastric or gastro-oesophageal junction adenocarcinoma (SPOTLIGHT): A multicentre, randomised, double-blind, phase 3 trial. Lancet 2023, 401, 1655–1668. [Google Scholar] [CrossRef]
- Janjigian, Y.Y.; Kawazoe, A.; Yanez, P.E.; Lonardi, S.; Tokunaga, M.; Satake, H.; Shitara, K.; Ilson, D.H.; Shen, L.; Ajani, J.A.; et al. Zolbetuximab plus capecitabine and oxaliplatin (CAPOX) in patients with CLDN18.2-positive, HER2-negative, untreated, locally advanced unresectable or metastatic gastric or gastro-oesophageal junction adenocarcinoma (GLOW): A multicentre, randomised, double-blind, phase 3 trial. Lancet 2023, 401, 1669–1679. [Google Scholar]
- Wainberg, Z.A.; Enzinger, P.; Kang, Y.K.; Yamaguchi, K.; Qin, S.; Uenaka, K.; Hara, H.; Kato, K.; Ajani, J.A.; Van Cutsem, E.; et al. Bemarituzumab in patients with FGFR2b-selected gastric or gastro-oesophageal junction adenocarcinoma (FIGHT): A randomised, double-blind, placebo-controlled, phase 2 study. Lancet Oncol. 2022, 23, 1430–1440. [Google Scholar] [CrossRef]
- Shen, L.; Shitara, K.; Moehler, M.H.; Gournay, M.; Sun, Y.; Xu, J.; Pan, H.; Wang, W.; Wu, L. Efficacy and safety of Osemitamab (TST001) in combination with nivolumab and CAPOX as first-line treatment for advanced gastric/gastroesophageal junction (G/GEJ) cancer. Ann. Oncol. 2023, 34, S851–S900. [Google Scholar]
- Peng, Z.; Liu, T.; Wei, J.; Wang, T.; He, Y.; Yang, J.; Zhang, X.; Li, Y.; Chen, H.; Sun, Y.; et al. Safety and efficacy of ASKB589, an anti-CLDN18.2 monoclonal antibody, in combination with CAPOX and PD-1 inhibitor as first-line treatment for locally advanced, unresectable or metastatic gastric/gastroesophageal junction (G/GEJ) adenocarcinoma. J. Clin. Oncol. 2024, 42, 4032. [Google Scholar] [CrossRef]
- Quintas-Cardama, A.; Chen, C.; Liu, Y.; Zhang, J.; Wang, Y. LM-102, a novel anti-Claudin 18.2 monoclonal antibody for the treatment of gastric cancer. Cancer Res. 2022, 82, 2568. [Google Scholar]
- Mu, S.; Zhang, X.; Li, Y.; Chen, H.; Wang, T.; Liu, Z.; Sun, Y.; Zhao, M.; Zhou, L.; Wang, J.; et al. ZL-1211, a therapeutic antibody targeting CLDN18.2 with enhanced effector functions for the treatment of gastric cancer. Cancer Res. 2021, 81, 1202. [Google Scholar]
- Xu, R.; Shitara, K.; Moehler, M.; Sun, Y.; Shen, L.; Qin, S.; Wang, J.; Li, J.; Zhang, X.; Liu, T.; et al. Safety, pharmacokinetics (PK), and efficacy of MIL93, a humanized anti-Claudin 18.2 antibody, in patients with locally advanced or metastatic solid tumors. J. Clin. Oncol. 2023, 41, e16035. [Google Scholar]
- Jiang, X.; Zhang, Y.; Liu, T.; Wang, J.; Chen, H.; Li, Y.; Sun, Y.; Zhao, M.; Zhou, L.; Wu, Q.; et al. Discovery of DR30303, a novel anti-Claudin 18.2 antibody for the treatment of gastric cancer. Cancer Res. 2023, 83, 2955. [Google Scholar]
- Peng, Z.; Liu, T.; Wei, J.; Wang, T.; He, Y.; Yang, J.; Zhang, X.; Li, Y.; Chen, H.; Sun, Y.; et al. Efficacy and safety of a novel anti-HER2 therapeutic antibody RC48 in patients with HER2-overexpressing, locally advanced or metastatic gastric or gastroesophageal junction cancer: A single-arm phase II study. Cancer Commun. 2021, 41, 1173–1182. [Google Scholar] [CrossRef]
- Xu, J.; Wei, J.; Zhang, Y.; Lin, Y.; Liu, C.; Wang, T.; Peng, Z.; He, Y.; Yang, J.; Li, Y.; et al. Disitamab vedotin, tislelizumab, and S-1 as first-line therapy for HER2-positive advanced gastric or gastroesophageal junction adenocarcinoma: A single-arm, phase II trial. J. Clin. Oncol. 2025, 43, 4030. [Google Scholar]
- Bardia, A.; Hurvitz, S.A.; Tolaney, S.M.; Loirat, D.; Punie, K.; Oliveira, M.; Brufsky, A.; Lin, Y.; Rugo, H.S.; Cortes, J.; et al. Sacituzumab govitecan in metastatic triple-negative breast cancer. N. Engl. J. Med. 2021, 384, 1529–1541. [Google Scholar] [CrossRef]
- Bardia, A.; Krop, I.E.; Meric-Bernstam, F.; Sadelain, M.; Officer, A.; Shin, M.; Hamilton, E.; Tolaney, S.M.; Modi, S.; Rugo, H.S.; et al. Datopotamab deruxtecan (Dato-DXd) in patients with advanced triple-negative breast cancer: Results from the phase 1 TROPION-PanTumor01 study. J. Clin. Oncol. 2021, 39, 3291–3301. [Google Scholar]
- Goto, Y.; Su, W.C.; Levy, B.P.; Garon, E.B.; Heist, R.S.; Spira, A.I.; Johnson, M.L.; Mok, T.S.K.; Ahn, M.J.; Park, K.; et al. Datopotamab deruxtecan (Dato-DXd) in patients with advanced non-small cell lung cancer: Results from the phase 1 TROPION-PanTumor01 study. J. Clin. Oncol. 2022, 40, 9015. [Google Scholar]
- Labrijn, A.F.; Janmaat, M.L.; Reichert, J.M.; Parren, P.W. Bispecific antibodies: A mechanistic review of the pipeline. Nat. Rev. Drug Discov. 2019, 18, 585–608. [Google Scholar] [CrossRef]
- Li, K.; He, L.; Zhang, Y.; Wu, X.; Yao, W.; He, Y.; Wang, T.; Liu, Z.; Sun, Y.; Zhao, M.; et al. CLDN18.2 and 4-1BB bispecific antibody givastomig exerts antitumor activity through CLDN18.2-expressing tumor-directed T-cell activation. J. Immunother. Cancer 2024, 12, e008129. [Google Scholar]
- Schuetz, T.J.; Kono, K.; Shitara, K. ASP2138, a CLDN18.2/CD3 bispecific antibody, in patients with gastric or gastroesophageal junction adenocarcinoma: Trial in progress. J. Clin. Oncol. 2022, 40, TPS4158. [Google Scholar]
- Lee, K.W.; Oh, D.Y.; Chung, H.C.; Peng, Z.; Han, H.; Rha, S.Y.; Bang, Y.J.; Shen, L.; Xu, J.; Kim, T.Y.; et al. Zanidatamab plus chemotherapy with or without tislelizumab as first-line treatment for advanced HER2-positive gastric/gastroesophageal junction adenocarcinoma: Survival update from a phase 1b/2 study. J. Clin. Oncol. 2023, 41, 4012. [Google Scholar]
- Ji, J.; Shen, L.; Li, Z.; Zhang, X.; Liang, H.; Li, Y.; Wang, J.; Liu, T.; Chen, H.; Sun, Y.; et al. Cadonilimab plus chemotherapy versus chemotherapy as first-line treatment for unresectable locally advanced or metastatic gastric or gastroesophageal junction (G/GEJ) adenocarcinoma (COMPASSION-15): A randomized, double-blind, phase 3 trial. Cancer Res. 2024, 84, CT006. [Google Scholar]
- Matsumura, Y. Cancer stromal targeting (CAST) therapy. Adv. Drug Deliv. Rev. 2012, 64, 710–719. [Google Scholar] [CrossRef]
- Tsao, L.C.; Ogitani, Y.; Tsurutani, J.; Yonesaka, K.; Doi, T.; Takahashi, S.; Matsubara, N.; Tamura, K.; Yamaguchi, K.; Shitara, K.; et al. Effective extracellular payload release and immunomodulatory interactions govern the therapeutic effect of trastuzumab deruxtecan (T-DXd). Nat. Commun. 2025, 16, 3167. [Google Scholar] [CrossRef]
- Hooper, A.T.; Huang, J.; Yu, J.; He, Y.; Wang, Y.; Gao, W.; Li, X.; Chen, Z.; Sun, Y.; Zhao, M.; et al. Anti-Extra Domain B Splice Variant of Fibronectin Antibody-Drug Conjugate Eliminates Tumors with Enhanced Efficacy When Combined with Checkpoint Blockade. Mol. Cancer Ther. 2022, 21, 1462–1472. [Google Scholar] [CrossRef]
- Majzner, R.G.; Rietberg, S.P.; Mackall, C.L. T-cell therapies for solid tumors. Nat. Cancer 2020, 1, 143–153. [Google Scholar]
- Qi, C.; Liu, C.; Gong, J.; Li, J.; Zhang, S.; Peng, Z.; Zhang, Y.; Wei, J.; Qiu, W.; Zhang, X.; et al. Claudin18.2-specific CAR T cells in gastrointestinal cancers: Phase 1 trial final results. Nat. Med. 2024, 30, 2224–2234. [Google Scholar] [CrossRef]
- Feng, K.; Guo, Y.; Dai, H.; Wang, Y.; He, X.; Jia, H.; Han, W. Chimeric antigen receptor-modified T cells for the immunotherapy of patients with EGFR-expressing advanced biliary tract cancers. Sci. Transl. Med. 2018, 10, eaan8723. [Google Scholar]
- Abken, H.; Zhang, Q. CAR T cells targeting EpCAM for the treatment of gastrointestinal cancers: Current status and challenges. J. Clin. Med. 2021, 10, 2387. [Google Scholar]
- Qi, X.; Zhang, X.X.; Wang, Y.; Li, J.; Chen, H.; Liu, Z.; Sun, Y.; Zhao, M.; Zhou, L.; Wang, J.; et al. MUC1-CAR-T Trial Group. Phase I study of MUC1-targeted CAR-T cells in patients with advanced refractory solid tumors. J. Immunother. Cancer 2023, 11, e006679. [Google Scholar]
- Pietrantonio, F.; Caporale, M.; Morano, F.; Scartozzi, M.; Gloghini, A.; De Vita, F.; Giommoni, E.; Fornaro, L.; Aprile, G.; Melisi, D.; et al. Loss of HER2 amplification and clonal evolution of gastric cancer treated with trastuzumab. Clin. Cancer Res. 2016, 22, 5837–5845. [Google Scholar]
- Kwon, M.; An, M.; Klempner, S.J.; Lee, H.; Kim, K.M.; Sa, J.K.; Cho, H.J.; Hong, J.Y.; Lee, T.; Min, Y.W.; et al. Determinants of response and intrinsic resistance to single-agent immunotherapy in metastatic gastric cancer. Cancer Discov. 2021, 11, 2168–2185. [Google Scholar] [CrossRef]
- Chao, J.; Fuchs, C.S.; Shitara, K.; Tabernero, J.; Muro, K.; Van Cutsem, E.; Bang, Y.J.; Deodhar, A.; Koshiji, M.; Melemed, A.S.; et al. Assessment of Pembrolizumab Therapy for the Treatment of Microsatellite Instability-High Gastric or Gastroesophageal Junction Cancer Among Patients in the KEYNOTE-059, KEYNOTE-061, and KEYNOTE-062 Clinical Trials. JAMA Oncol. 2021, 7, 895–902. [Google Scholar] [CrossRef]


| Line/Setting | Regimen | ORR (%) | mPFS (mo) | mOS (mo) | Study | |
|---|---|---|---|---|---|---|
| Trastuzumab | 1L | FP (orXP) + Cisplatin + Trastuzumab vs. FP (or XP) + Cisplatin | 47 vs. 35 | 6.7 vs. 5.5 (HR = 0.71) | 13.8 vs. 11.1 (HR = 0.74) | ToGA |
| Lapatinib | 1L | Lapatinib + CapeOx vs. Placebo + CapeOx | 53 vs. 39 | 6.0 vs. 5.4 (HR = 0.82) * | 12.2 vs. 10.5 (NS) | LOGiC (TRIO-013) |
| Lapatinib | 2L (Asian) | Lapatinib + Paclitaxel vs. Paclitaxel | 27 vs. 9 | 5.4 vs. 4.4 | 11.0 vs. 8.9 (NS) | TyTAN |
| Trastuzumab emtansine (T-DM1) | 2L | T-DM1 vs. Taxane | 20.6 vs. 19.6 | 2.7 vs. 2.9 | 7.9 vs. 8.6 (HR = 1.15) | GATSBY |
| Trastuzumab deruxtecan (T-DXd) | 3L+ (JP/KR) | Trastuzumab deruxtecan (T-DXd) vs. Chemo (physician’s choice) | 51 vs. 14 | 5.6 vs. 3.5 (HR = 0.47) | 12.5 vs. 8.4 (HR = 0.59) | DESTINY-Gastric01 |
| Trastuzumab deruxtecan (T-DXd) | 2L (Western) | T-DXd (single-arm) | 41.8 | 5.6 | 12.1 | DESTINY-Gastric02 |
| Trastuzumab deruxtecan (T-DXd) | 2L | T-DXd vs. Ramucirumab + Paclitaxel | 44.3 vs. 29.1 | 6.7 vs. 5.6 | 14.7 vs. 11.4 (HR = 0.70) | DESTINY-Gastric04 |
| Line/Setting | Regimen | ORR (%) | mPFS (mo) | mOS (mo) | Study | |
|---|---|---|---|---|---|---|
| Bevacizumab | 1L | Bevacizumab + capecitabine + cisplatin vs. Placebo + capecitabine + cisplatin | 46.0 vs. 37.4 | 6.7 vs. 5.3 (HR = 0.80, p = 0.0037) | 12.1 vs. 10.1 (HR = 0.87, p = 0.10) | AVAGAST |
| Ramucirumab | 2L | Ramucirumab vs. Placebo | 3.4 vs. 2.6 (NS) | 2.1 vs. 1.3 (HR = 0.48, p < 0.0001) | 5.2 vs. 3.8 (HR = 0.78, p = 0.047) | REGARD |
| Ramucirumab | 2L | Ramucirumab + Paclitaxel vs. Placebo + Paclitaxel | 28.0 vs. 16.0 | 4.4 vs. 2.9 (HR = 0.64, p < 0.0001) | 9.6 vs. 7.4 (HR = 0.81, p = 0.017) | RAINBOW |
| Line/Setting | Regimen | ORR (%) | mPFS (mo) | mOS (mo) | Study | |
|---|---|---|---|---|---|---|
| Nivolumab | 3L, Asia, All-comers | Nivolumab vs. Placebo (PD-L1 not required); | 11.2 vs. 0.0 | 1.61 vs. 1.45 (HR 0.60) | 5.26 vs. 4.14 (HR 0.63; p < 0.0001) | ATTRATION-2 |
| Pembrolizumab | 2L, HER2(−) G/GEJ | Pembrolizumab vs. Paclitaxel | 16.3 vs. 13.6 | 1.5 vs. 5.4 (HR 0.82) * | 9.1 vs. 8.3 (HR 0.82 p = 0.042; not significant) | KEYNOTE-061 |
| Nivolumab | 1L, HER2(−) G/GEJ/esophageal adenocarcinoma; CPS 5 | Nivolumab + Chemo (FOLFOX/XELOX) vs. Chemo | 60 vs. 45 (3-y update) | 7.7 vs. 6.0 (HR 0.68) | 14.4 vs. 11.1 (HR 0.71; p < 0.0001) | CheckMate 649 |
| Pembrolizumab | 1L, HER2(−) G/GEJ/esophageal adenocarcinoma; CPS ≥ 1 | Pembrolizumab + chemo FP (5-FU + cisplatin or CAPOX vs. chemo | 52.1 vs. 43.0 | 6.9 vs. 5.6 | 13.0 vs. 11.4 (HR 0.74) | KEYNOTE-859 |
| Pembrolizumab | 1L, HER2(+) metastatic G/GEJ; global | Pembrolizumab + Trastuzumab + Chemo vs. Placebo + Trastuzumab + Chemo | 74.6 vs. 60.1 (interim) | 10.0 vs. 8.1 (HR ~0.73) CPS ≥ 1: 10.9 (Exp) vs. 7.3 (Ctrl) (HR ≈ 0.71 | 20.0 vs. 16.8 (HR 0.80; p = 0.004); CPS ≥1: 20.1 vs. 15.7 (HR 0.79) | KEYNOTE-811 |
| Tislelizumab | 1L, PD-L1 All-comers | Tislelizumab 200 mg Q3W + investigator-chosen (oxaliplatin + capecitabine or cisplatin + 5-FU) vs. placebo + chemo | 47.3 vs. 40.5 | 6.9 vs. 6.2 HR 0.78 | 15.2 vs. 12.9 (HR 0.80; p = 0.001) | RATIONALE-305 |
| Line/Setting | Regimen | ORR (%) | mPFS (mo) | mOS (mo) | Study | |
|---|---|---|---|---|---|---|
| zolbetuximab | Phase 3/1L CLDN18.2+, HER2(−) (global) | Zolbetuximab + mFOLFOX6 vs. Placebo + mFOLFOX6 (CLDN18.2 ≥ 75%) | No meaningful difference (48% both arms) * | 10.61 vs. 8.67 (HR = 0.751; p = 0.0066) | 18.23 vs. 15.54 (HR = 0.75; p = 0.0053) | SPOTLIGHT |
| zolbetuximab | Phase 3/1L CLDN18.2+, HER2(−) (global) | Zolbetuximab + CAPOX vs. Placebo + CAPOX (CLDN18.2 ≥ 75%) | No difference (42.5% vs. 40.3) both arms) * | 8.21 vs. 6.80 (HR = 0.687; p = 0.0007) | 14.39 vs. 12.16 (HR = 0.771; p = 0.0118) | GLOW |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.-B.; Park, S.-G. Antibody-Mediated Therapy in Gastric Cancer: Past, Present, and Future. Curr. Issues Mol. Biol. 2025, 47, 1044. https://doi.org/10.3390/cimb47121044
Kim H-B, Park S-G. Antibody-Mediated Therapy in Gastric Cancer: Past, Present, and Future. Current Issues in Molecular Biology. 2025; 47(12):1044. https://doi.org/10.3390/cimb47121044
Chicago/Turabian StyleKim, Hong-Beum, and Sang-Gon Park. 2025. "Antibody-Mediated Therapy in Gastric Cancer: Past, Present, and Future" Current Issues in Molecular Biology 47, no. 12: 1044. https://doi.org/10.3390/cimb47121044
APA StyleKim, H.-B., & Park, S.-G. (2025). Antibody-Mediated Therapy in Gastric Cancer: Past, Present, and Future. Current Issues in Molecular Biology, 47(12), 1044. https://doi.org/10.3390/cimb47121044

