Next Article in Journal
Coexistence of Alport Syndrome and Fabry Disease in a Female with R112H Variant: Early Progression of Fabry
Previous Article in Journal
Insights into the Complex Biological Network Underlying Myalgic Encephalomyelitis/Chronic Fatigue Syndrome
Previous Article in Special Issue
Akkermansia muciniphila in Metabolic Disease: Far from Perfect
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Dopamine and the Gut Microbiota: Interactions Within the Microbiota–Gut–Brain Axis and Therapeutic Perspectives

1
Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
2
Faculty of Medical Engineering, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania
*
Authors to whom correspondence should be addressed.
These authors contributed equally to this work.
Int. J. Mol. Sci. 2026, 27(1), 271; https://doi.org/10.3390/ijms27010271 (registering DOI)
Submission received: 20 November 2025 / Revised: 16 December 2025 / Accepted: 18 December 2025 / Published: 26 December 2025
(This article belongs to the Special Issue Microbiomes in Human Health and Disease)

Abstract

The microbiota–gut–brain axis (MGBA) comprises a complex bidirectional communication network integrating neural, immune, metabolic, and endocrine pathways. Dopamine, traditionally viewed as a central neurotransmitter, also plays essential roles in the gastrointestinal (GI) tract, where it regulates motility, secretion, barrier homeostasis, and mucosal immunity. Growing evidence indicates that the gut microbiota significantly contributes to intestinal dopamine metabolism through specialized enzymatic pathways, particularly tyrosine decarboxylase in Enterococcus species and catechol dehydroxylase in Eggerthella species. These microbial reactions compete with host processes, alter dopaminergic tone, and degrade orally administered levodopa (L-DOPA), providing a mechanistic explanation for the variability in treatment response in Parkinson’s disease (PD). Beyond PD, microbially mediated alterations in dopaminergic signaling have been implicated in mood disorders, neurodevelopmental conditions, metabolic dysfunction, and immune-mediated diseases. This review synthesizes current mechanistic and translational evidence on the dopamine–microbiota interface, outlines microbial pathways shaping dopaminergic activity, and highlights therapeutic opportunities including microbiota modulation, dietary strategies, fecal microbiota transplantation, and targeted inhibitors of microbial dopamine metabolism. Understanding this interface offers a foundation for developing personalized approaches in neurogastroenterology and neuromodulatory therapies.

1. Introduction

The microbiota–gut–brain axis (MGBA) is a key framework for understanding how intestinal microbes influence neural, immune, and metabolic pathways that shape brain function. Among its molecular mediators, neurotransmitters have a central role. While serotonin and GABA have been extensively studied, dopamine remains comparatively underexplored despite its relevance to reward, motivation, and motor control [1,2,3].
A substantial fraction of peripheral dopamine is generated in the gastrointestinal tract. Enterochromaffin cells and enteric neurons synthesize dopamine locally, regulating motility, epithelial barrier function, secretion, and immune responses. Although peripheral dopamine does not cross the blood–brain barrier, it can influence central activity indirectly through vagal, immune, endocrine, and metabolic routes, positioning the gut as an important dopaminergic hub [4,5].
A major conceptual advance is the recognition that gut microbes harbor enzymatic pathways that metabolize dopamine and its precursor L-DOPA [6,7]. In particular, bacterial tyrosine decarboxylase (TyrDC) in Enterococcus and catechol dehydroxylase (Dadh) in Eggerthella can convert L-DOPA to dopamine and subsequently to m-tyramine. These pathways are not inhibited by carbidopa and can alter L-DOPA pharmacokinetics [8,9,10].
Parkinson’s disease (PD) provides the clearest clinical context. PD-associated dysbiosis, including enrichment of Enterococcus and Eggerthella, correlates with gastrointestinal dysfunction and variable L-DOPA response [11,12,13]. However, microbial dopamine metabolism may also be relevant to psychiatric, neurodevelopmental, metabolic, and immune-mediated disorders [14,15,16].
This review integrates mechanistic, preclinical, and clinical evidence on dopamine–microbiota interactions, outlines MGBA communication routes, and summarizes emerging microbiome-informed therapeutic strategies.

2. Methods

A narrative literature review was conducted using PubMed, Scopus, and Web of Science with the following terms: “dopamine”, “gut microbiota”, “L-DOPA”, “Parkinson’s disease”, “tyrosine decarboxylase”, and “microbiota–gut–brain axis”. Articles published between 1995 and 2025 were considered. The search yielded 420 records; after deduplication and screening, 100 full-text articles were assessed.
Original research articles, clinical studies, systematic reviews, and major narrative reviews were included. Non-English articles, conference abstracts without primary data, and case reports without mechanistic relevance were excluded. Approximately 20 core mechanistic studies were prioritized based on mechanistic validity, clarity, and translational relevance. Two authors independently screened references. No quantitative meta-analysis was performed due to heterogeneity in experimental models and endpoints.

3. Dopamine in the Gastrointestinal Tract

Dopamine is a key peripheral signaling molecule in the gastrointestinal tract, modulating motility, secretion, epithelial barrier integrity, and mucosal immune responses. Endogenous intestinal dopamine is primarily produced by enterochromaffin cells and enteric neurons (Table 1). Acting through D1-like and D2-like receptors expressed on smooth muscle, epithelial, enteric neuronal, and immune cells, dopamine regulates peristalsis, fluid–electrolyte transport, and barrier homeostasis within the MGBA context [7,14].
The intestinal catecholamine environment is also shaped by the gut microbiota. Several taxa metabolize L-DOPA and dopamine, thereby competing with host pathways [9]. A well-defined interspecies route involves Enterococcus faecalis converting L-DOPA to dopamine via a pyridoxal-5′-phosphate–dependent TyrDC, followed by Eggerthella lenta converting dopamine to m-tyramine via a molybdenum-dependent Dadh (Figure 1). Because carbidopa does not inhibit bacterial TyrDC, microbial metabolism may contribute to variability in L-DOPA bioavailability and supports the rationale for microbial enzyme–specific inhibitors [20].
Functionally, intestinal dopamine exerts context-dependent effects on motility and secretion and contributes to barrier integrity and immune tone. Receptor subtype distribution (D1–D5) across enteric neurons, smooth muscle, epithelia, and immune cells likely explains divergent findings across experimental systems [6,21,22,23,24]. Clinically, altered enteric dopamine signaling is associated with dysmotility (notably constipation) and may interact with microbiota-driven presystemic L-DOPA metabolism to influence treatment variability in PD [25,26,27].
A key distinction is that host dopamine production is tightly regulated, whereas microbial decarboxylation of luminal L-DOPA can increase local dopamine exposure and alter dopaminergic pharmacokinetics [28,29,30]. HPLC-based studies and germ-free or antibiotic-treated models demonstrate microbiota-dependent shifts in intestinal dopamine levels, although the quantitative contribution of microbial versus host sources in humans remains incompletely defined [31,32,33]. Beyond motility and secretion, dopaminergic signaling modulates mucosal immunity via dopamine receptors on T cells and antigen-presenting cells, linking microbiota-driven dopaminergic changes to intestinal and systemic immune phenotypes [18,34,35,36].
Taken together, intestinal dopamine emerges as a central integrative signal within the MGBA. Delineating endogenous sources, microbial metabolism, receptor-specific mechanisms, and clinical implications provides a mechanistic framework for subsequent discussion of microbial dopamine metabolism and its relevance to Parkinson’s disease and therapeutic strategies [17,19,37,38,39].

4. Microbial Production and Metabolism of Dopamine

The gut microbiota contributes to neurotransmitter biotransformation, with dopamine representing a key example of host–microbe metabolic crosstalk. Although the physiological relevance of microbial dopamine production in vivo remains debated, multiple studies have established bacterial enzymatic pathways involved in catecholamine metabolism (Table 2) [6,39,40].
The best-characterized pathway is the interspecies conversion of L-DOPA. Enterococcus faecalis expresses a pyridoxal-5′-phosphate–dependent TyrDC that converts L-DOPA to dopamine and is resistant to carbidopa inhibition [8,42]. Eggerthella lenta subsequently converts dopamine to m-tyramine via Dadh (Figure 1). This sequential metabolism reduces L-DOPA bioavailability and provides a mechanistic basis for between-patient heterogeneity in therapeutic response [11,43].
Additional taxa (e.g., Lactobacillus, Bacillus, Clostridium) have been implicated in catecholamine synthesis or modification, but their quantitative contribution in the human gut remains uncertain due to variability in composition and activity [41]. In vitro cultures can generate dopamine from L-DOPA at millimolar concentrations, and germ-free/antibiotic-treated models show altered intestinal and central dopamine levels relative to colonized controls. HPLC with electrochemical detection remains a reference method, although protocol standardization is limited [44,45,46].
Clinically, enrichment of Enterococcus and Eggerthella correlates with reduced L-DOPA bioavailability, and Helicobacter pylori infection can further impair absorption [47,48,49,50]. Microbiota-targeted strategies under investigation include antibiotics, probiotics, fecal microbiota transplantation, and selective inhibition of bacterial TyrDC/Dadh to complement carbidopa [51,52,53,54]. Collectively, these findings support the gut microbiota as a determinant of dopaminergic homeostasis and dopaminergic pharmacotherapy [55,56,57,58,59]. Importantly, the quantitative contribution of microbial dopamine production to systemic dopaminergic signaling in humans remains incompletely defined.
Microbial dopamine metabolism represents a tangible modifier of host neurochemistry, underscoring the need for integrative approaches combining advanced multi-omics technologies and targeted interventions to enable precision microbiome-based modulation of dopaminergic therapies [60,61,62,63,64,65].

5. Microbiota and Levodopa Therapy in Parkinson’s Disease

The efficacy of L-DOPA in PD is shaped by gut microbial metabolism that reduces presystemic availability and contributes to variability in exposure and clinical response (Table 3) [35,66,67]. As detailed in Section 4, the TyrDC–Dadh pathway can divert orally administered L-DOPA into dopamine and m-tyramine in a carbidopa-insensitive manner, creating a microbial “metabolic sink” [42,68,69,70].
Clinical observations support these mechanisms. H. pylori infection is associated with impaired L-DOPA absorption and motor fluctuations, and eradication can improve motor outcomes. PD-related dysbiosis often features enrichment of Enterococcus and Eggerthella, correlating with variable motor responses. Cohort data suggest microbiota composition can partially predict differences in L-DOPA effectiveness [71,72].
Interventions aimed at microbial modulation include antibiotics (limited by non-specific effects), probiotics (consistent benefits for constipation and quality of life, mixed motor outcomes), and FMT (pilot safety and preliminary efficacy). Selective inhibitors of bacterial TyrDC and Dadh represent a promising precision strategy by targeting microbial enzymes that escape conventional inhibition [51,73,74].
Translationally, microbial biomarkers (e.g., TyrDC/Dadh gene abundance and catecholamine-derived metabolite profiles) may enable patient stratification and individualized adjunct strategies. Larger multicenter trials integrating microbiome profiling with pharmacokinetics and clinical phenotyping are needed to define efficacy, durability, and safety across populations [75,76,77,78,79].

6. Pathways of Communication: From Gut Dopamine to Brain

Gut-derived dopamine can influence systemic and CNS function via four MGBA routes: neural, immune, metabolic/endocrine, and barrier-related mechanisms [80]. Neural signaling is the most direct route; dopamine modulates ENS activity and vagal afferents, and vagotomy abolishes microbiota-driven effects on central dopaminergic circuits in animal models [81,82,83]. Immune signaling provides a second link, as dopamine receptors on immune cells regulate cytokine production (e.g., IL-6, TNF-α, IFN-γ), connecting intestinal dopaminergic changes to peripheral inflammation relevant to PD, MS, and IBD [84,85]. Metabolic and endocrine interactions further integrate dopamine with SCFAs, tryptophan metabolites, and gut hormones (e.g., GLP-1, ghrelin), influencing appetite and reward-related behaviors [86,87]. Finally, dopamine affects epithelial tight junctions, and experimental models associate dopaminergic alterations with changes in intestinal and blood–brain barrier integrity, potentially facilitating neuroinflammatory signaling [88] (Table 4).
These routes are interdependent, supporting an integrated MGBA model in which dopamine coordinates neural, immune, metabolic, and barrier functions (Figure 2). Clarifying the relative contribution of each pathway may inform targeted interventions, including neuromodulation, dietary strategies, and microbiota-directed approaches to restore barrier and immune homeostasis [89,90].

7. Beyond Parkinson’s Disease: Emerging Links

Beyond PD, gut-derived and microbiota-modulated dopamine signaling has been linked to psychiatric, neurodevelopmental, metabolic, and immune-mediated conditions, supporting microbial catecholamine metabolism as a broader host–microbiota interface [91] (Table 5). In depression and anxiety, dysbiosis is associated with altered dopaminergic signaling; germ-free and microbiota-manipulated models show changes in striatal dopamine turnover and behavior, with partial rescue following microbiota transfer. Human studies also report altered microbial composition and catecholamine-related metabolism in major depressive disorder [92,93]. In ASD and ADHD, experimental evidence suggests microbiota modulation can alter dopaminergic metabolism and related social/cognitive behaviors, consistent with a role in neurodevelopmental dopaminergic circuitry [94]. Metabolically, dopamine interacts with SCFAs and appetite-related hormones (e.g., ghrelin, leptin), linking microbial shifts to reward-based feeding, obesity, and hyperphagia in animal models [95]. In IBD, disrupted mucosal dopaminergic signaling may exacerbate inflammation and barrier dysfunction, suggesting microbiota-directed strategies could complement anti-inflammatory approaches [96]. Overall, these associations warrant cross-disciplinary studies and biomarker-driven clinical designs [6,97].

8. Therapeutic Perspectives

Therapeutic strategies targeting microbial dopamine metabolism combine microbiota modulation, dietary approaches, selective enzyme inhibition, and precision frameworks, moving toward mechanism-based, microbiome-informed care (Table 6) [98]. Probiotics and prebiotics are the most accessible options; Lactobacillus/Bifidobacterium formulations improve gastrointestinal symptoms and quality of life in PD, with inconsistent motor effects. Prebiotics and synbiotics may further support beneficial taxa and metabolic outputs relevant to dopaminergic balance [63,99].
Dietary modulation provides a complementary, non-invasive approach. High-fiber diets increase SCFA production, which can influence dopaminergic signaling, while polyphenol-rich diets may inhibit microbial decarboxylase activity involved in L-DOPA degradation [100,101]. FMT can more directly restructure microbial communities; pilot PD studies suggest safety and preliminary efficacy but require standardized, adequately powered trials before routine implementation [64,76].
Pharmacological advances are particularly promising. Carbidopa inhibits host AADC but does not block microbial TyrDC; selective inhibitors targeting bacterial TyrDC and Dadh enhance L-DOPA bioavailability in preclinical models and support dual-inhibition strategies [54,102]. Precision approaches integrating microbiome sequencing, metabolomics, and pharmacokinetics may enable stratified adjuncts (diet/probiotics/enzyme inhibition) aligned with individual microbial and metabolic profiles [103,104]. Future paradigms will likely be combinatorial, with long-term safety evaluation—especially for FMT and novel inhibitors—remaining essential [105].

9. Conclusions and Future Directions

Dopamine–microbiota interactions represent a rapidly evolving interface spanning neurogastroenterology, microbiology, metabolism, and clinical neuroscience. Host- and microbiota-derived dopamine shape gastrointestinal motility, secretion, immune regulation, and barrier integrity, while MGBA signaling routes link intestinal dopaminergic changes to brain-relevant physiology. Mechanistic characterization of microbial TyrDC and Dadh has refined the understanding of L-DOPA pharmacokinetics and provides a plausible basis for heterogeneity in therapeutic response in PD. Beyond PD, emerging evidence implicates dopamine–microbiota crosstalk in mood disorders, neurodevelopmental conditions, metabolic dysfunction, and immune-mediated disease.
Key gaps include defining the quantitative contribution of microbial dopamine metabolism in humans, improving assay standardization for dopamine-related metabolites, and establishing long-term safety and efficacy for microbiota-targeted interventions (including FMT and microbial enzyme inhibitors). Inter-individual variability driven by diet, medications, genetics, and geography further complicates translation across cohorts.
Future research priorities include (i) biomarker development (microbial enzyme abundance and metabolomic signatures); (ii) integrated multi-omics to connect genes, transcripts, and metabolites to phenotypes; (iii) multicenter clinical trials combining microbiome profiling with pharmacokinetics and clinical endpoints; and (iv) precision strategies aligning dopaminergic therapy with individual microbial and metabolic profiles. Together, these efforts may optimize dopaminergic therapies and expand microbiome-informed interventions across neurological, metabolic, and immune-related disorders.

Author Contributions

Conceptualization, A.C.B. and S.S.; methodology, A.C.B., S.S. and A.Z.; software, E.P. and C.M.S.; validation, A.Z. and O.A.C.; formal analysis, E.P. and Y.S.; investigation, A.C.B., A.D. and Y.S.; writing—original draft preparation, A.C.B., A.D. and C.M.S.; writing—review and editing, A.C.B., S.S., E.P. and S.M.A.; visualization, M.C.; supervision, A.Z., O.A.C. and I.F. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

No new data were created or analyzed in this study. Data sharing is not applicable to this article.

Acknowledgments

Publication of this paper was supported by the University of Medicine and Pharmacy Carol Davila, through the institutional program Publish not Perish.

Conflicts of Interest

The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:
MGBAmicrobiota–gut–brain axis
TyrDCtyrosine decarboxylase
PDParkinson’s disease
GABAgamma-aminobutyric acid
CNScentral nervous system
GIgastrointestinal
ASDautism spectrum disorder
ADHDattention-deficit/hyperactivity disorder
ENSenteric nervous system
ECenterochromaffin cells
FMTfecal microbiota transplantation

References

  1. Xu, J.; Lu, Y. The microbiota-gut-brain axis and central nervous system diseases: From mechanisms of pathogenesis to therapeutic strategies. Front. Microbiol. 2025, 16, 1583562. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  2. Margolis, K.G.; Cryan, J.F.; Mayer, E.A. The Microbiota-Gut-Brain Axis: From Motility to Mood. Gastroenterology 2021, 160, 1486–1501. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  3. Costescu, M.; Paunescu, H.; Coman, O.A.; Coman, L.; Fulga, I. Antidepressant effect of the interaction of fluoxetine with granisetron. Exp. Ther. Med. 2019, 18, 5108–5111. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  4. Strandwitz, P. Neurotransmitter modulation by the gut microbiota. Brain Res. 2018, 1693, 128–133. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  5. Sittipo, P.; Choi, J.; Lee, S.; Lee, Y.K. The function of gut microbiota in immune-related neurological disorders: A review. J. Neuroinflammation 2022, 19, 154. [Google Scholar] [CrossRef]
  6. Hamamah, S.; Aghazarian, A.; Nazaryan, A.; Hajnal, A.; Covasa, M. Role of Microbiota-Gut-Brain Axis in Regulating Dopaminergic Signaling. Biomedicines 2022, 10, 436. [Google Scholar] [CrossRef]
  7. Klein, M.O.; Battagello, D.S.; Cardoso, A.R.; Hauser, D.N.; Bittencourt, J.C.; Correa, R.G. Dopamine: Functions, Signaling, and Association with Neurological Diseases. Cell. Mol. Neurobiol. 2019, 39, 31–59. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  8. Rekdal, V.M.; Bess, E.N.; Bisanz, J.E.; Turnbaugh, P.J.; Balskus, E.P. Discovery and inhibition of an interspecies gut bacterial pathway for Levodopa metabolism. Science 2019, 364, eaau6323. [Google Scholar] [CrossRef]
  9. Maini Rekdal, V.; Nol Bernadino, P.; Luescher, M.U.; Kiamehr, S.; Le, C.; Bisanz, J.E.; Turnbaugh, P.J.; Bess, E.N.; Balskus, E.P. A widely distributed metalloenzyme class enables gut microbial metabolism of host- and diet-derived catechols. eLife 2020, 9, e50845. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  10. van Kessel, S.P.; Frye, A.K.; El-Gendy, A.O.; Castejon, M.; Keshavarzian, A.; van Dijk, G.; El Aidy, S. Gut bacterial tyrosine decarboxylases restrict levels of levodopa in the treatment of Parkinson’s disease. Nat. Commun. 2019, 10, 310. [Google Scholar] [CrossRef] [PubMed]
  11. Wang, Q.; Luo, Y.; Chaudhuri, K.R.; Reynolds, R.; Tan, E.-K.; Pettersson, S. The role of gut dysbiosis in Parkinson’s disease: Mechanistic insights and therapeutic options. Brain 2021, 144, 2571–2593. [Google Scholar] [CrossRef]
  12. Reunanen, S.; Ghemtio, L.; Patel, J.Z.; Patel, D.R.; Airavaara, K.; Yli-Kauhaluoma, J.; Jeltsch, M.; Xhaard, H.; Piepponen, P.T.; Tammela, P. Targeting bacterial and human levodopa decarboxylases for improved drug treatment of Parkinson’s disease: Discovery and characterization of new inhibitors. Eur. J. Pharm. Sci. 2025, 211, 107133. [Google Scholar] [CrossRef]
  13. Scheperjans, F.; Aho, V.; Pereira, P.A.; Koskinen, K.; Paulin, L.; Pekkonen, E.; Haapaniemi, E.; Kaakkola, S.; Eerola-Rautio, J.; Pohja, M.; et al. Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov. Disord. 2015, 30, 350–358. [Google Scholar] [CrossRef]
  14. Huang, F.; Wu, X. Brain Neurotransmitter Modulation by Gut Microbiota in Anxiety and Depression. Front. Cell Dev. Biol. 2021, 9, 649103. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  15. Lyte, M. Microbial endocrinology in health and disease. BioEssays 2011, 33, 574–582. [Google Scholar] [CrossRef] [PubMed]
  16. Cryan, J.F.; Dinan, T.G. Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 2012, 13, 701–712. [Google Scholar] [CrossRef]
  17. Merino Del Portillo, M.; Clemente-Suárez, V.J.; Ruisoto, P.; Jimenez, M.; Ramos-Campo, D.J.; Beltran-Velasco, A.I.; Martínez-Guardado, I.; Rubio-Zarapuz, A.; Navarro-Jiménez, E.; Tornero-Aguilera, J.F. Nutritional Modulation of the Gut-Brain Axis: A Comprehensive Review of Dietary Interventions in Depression and Anxiety Management. Metabolites 2024, 14, 549. [Google Scholar] [CrossRef]
  18. Mittal, R.; Debs, L.H.; Patel, A.P.; Nguyen, D.; Patel, K.; O’Connor, G.; Grati, M.; Mittal, J.; Yan, D.; Eshraghi, A.A.; et al. Neurotransmitters: The critical modulators regulating gut–brain axis. J. Cell. Physiol. 2017, 232, 2359–2372. [Google Scholar] [CrossRef]
  19. Sampson, T.R.; Debelius, J.W.; Thron, T.; Janssen, S.; Shastri, G.G.; Ilhan, Z.E.; Challis, C.; Schretter, C.E.; Rocha, S.; Gradinaru, V.; et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 2016, 167, 1469–1480.e12. [Google Scholar] [CrossRef]
  20. Xu, K.; Sheng, S.; Zhang, F. Relationship Between Gut Bacteria and Levodopa Metabolism. Curr. Neuropharmacol. 2023, 21, 1536–1547. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  21. Yang, X.; Lou, J.; Shan, W.; Ding, J.; Jin, Z.; Hu, Y.; Du, Q.; Liao, Q.; Xie, R.; Xu, J. Pathophysiologic Role of Neurotransmitters in Digestive Diseases. Front. Physiol. 2021, 12, 567650. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  22. Chen, C.; Wang, G.Q.; Li, D.D.; Zhang, F. Microbiota-gut-brain axis in neurodegenerative diseases: Molecular mechanisms and therapeutic targets. Mol. Biomed. 2025, 6, 64. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  23. Mayer, E.A.; Tillisch, K.; Gupta, A. Gut/brain axis and the microbiota. J. Clin. Investig. 2015, 125, 926–938. [Google Scholar] [CrossRef]
  24. Wang, F.; Bergson, C.; Howard, R.L.; Lidow, M.S. Differential expression of D1 and D5 dopamine receptors in the fetal primate cerebral wall. Cereb. Cortex 1997, 7, 711–721. [Google Scholar] [CrossRef] [PubMed]
  25. Yang, R.; Gao, G.; Yang, H. The Pathological Mechanism Between the Intestine and Brain in the Early Stage of Parkinson’s Disease. Front. Aging Neurosci. 2022, 14, 861035. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  26. Bedarf, J.R.; Hildebrand, F.; Coelho, L.P.; Sunagawa, S.; Bahram, M.; Goeser, F.; Bork, P.; Wüllner, U. Functional implications of microbial and viral gut metagenome changes in early stage L-DOPA-naïve Parkinson’s disease patients. Genome Med. 2017, 9, 39. [Google Scholar] [CrossRef] [PubMed]
  27. Wang, Y.; Tong, Q.; Ma, S.R.; Zhao, Z.X.; Pan, L.B.; Cong, L.; Han, P.; Peng, R.; Yu, H.; Lin, Y.; et al. Oral berberine improves brain dopa/dopamine levels to ameliorate Parkinson’s disease by regulating gut microbiota. Signal Transduct. Target. Ther. 2021, 6, 77. [Google Scholar] [CrossRef] [PubMed]
  28. Savulescu-Fiedler, I.; Benea, S.-N.; Căruntu, C.; Nancoff, A.-S.; Homentcovschi, C.; Bucurica, S. Rewiring the Brain Through the Gut: Insights into Microbiota–Nervous System Interactions. Curr. Issues Mol. Biol. 2025, 47, 489. [Google Scholar] [CrossRef] [PubMed]
  29. Caruntu, C.; Boda, D.; Musat, S.; Caruntu, A.; Poenaru, E.; Calenic, B.; Savulescu-Fiedler, I.; Draghia, A.; Rotaru, M.; Badarau, A. Stress effects on cutaneous nociceptive nerve fibers and their neurons of origin in rats. Rom. Biotechnol. Lett. J. 2014, 19, 9517–9530. [Google Scholar]
  30. Poluektova, E.U.; Stavrovskaya, A.; Pavlova, A.; Yunes, R.; Marsova, M.; Koshenko, T.; Illarioshkin, S.; Danilenko, V. Gut Microbiome as a Source of Probiotic Drugs for Parkinson’s Disease. Int. J. Mol. Sci. 2025, 26, 9290. [Google Scholar] [CrossRef]
  31. Guiard, B.P.; Gotti, G. The High-Precision Liquid Chromatography with Electrochemical Detection (HPLC-ECD) for Monoamines Neurotransmitters and Their Metabolites: A Review. Molecules 2024, 29, 496. [Google Scholar] [CrossRef]
  32. Kennedy, E.A.; King, K.Y.; Baldridge, M.T. Mouse Microbiota Models: Comparing Germ-Free Mice and Antibiotics Treatment as Tools for Modifying Gut Bacteria. Front. Physiol. 2018, 9, 1534. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  33. Sandru, F.; Poenaru, E.; Stoleru, S.; Radu, A.M.; Roman, A.M.; Ionescu, C.; Zugravu, A.; Nader, J.M.; Baicoianu-Nitescu, L.C. Microbial Colonization and Antibiotic Resistance Profiles in Chronic Wounds: A Comparative Study of Hidradenitis Suppurativa and Venous Ulcers. Antibiotics 2025, 14, 53. [Google Scholar] [CrossRef]
  34. Diaz Heijtz, R.; Wang, S.; Anuar, F.; Qian, Y.; Björkholm, B.; Samuelsson, A.; Hibberd, M.L.; Forssberg, H.; Pettersson, S. Normal gut microbiota modulates brain development and behavior. Proc. Natl. Acad. Sci. USA 2011, 108, 3047–3052. [Google Scholar] [CrossRef] [PubMed]
  35. Socała, K.; Doboszewska, U.; Szopa, A.; Serefko, A.; Włodarczyk, M.; Zielińska, A.; Poleszak, E.; Fichna, J.; Wlaź, P. The role of microbiota-gut-brain axis in neuropsychiatric and neurological disorders. Pharmacol Res. 2021, 172, 105840. [Google Scholar] [CrossRef] [PubMed]
  36. Menozzi, E.; Schapira, A.H.V. The Gut Microbiota in Parkinson Disease: Interactions with Drugs and Potential for Therapeutic Applications. CNS Drugs 2024, 38, 315–331. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  37. Perez-Pardo, P.; Dodiya, H.B.; Engen, P.A.; Forsyth, C.B.; Huschens, A.M.; Shaikh, M.; Voigt, R.M.; Naqib, A.; Green, S.J.; Kordower, J.H.; et al. Role of TLR4 in the gut-brain axis in Parkinson’s disease: A translational study from men to mice. Gut 2019, 68, 829–843. [Google Scholar] [CrossRef]
  38. Bisanz, J.E.; Spanogiannopoulos, P.; Pieper, L.M.; Bustion, A.E.; Turnbaugh, P.J. How to Determine the Role of the Microbiome in Drug Disposition. Drug Metab. Dispos. 2018, 46, 1588–1595. [Google Scholar] [CrossRef] [PubMed]
  39. Loh, J.S.; Mak, W.Q.; Tan, L.K.S.; Ng, C.X.; Chan, H.H.; Yeow, S.H.; Foo, J.B.; Ong, Y.S.; How, C.W.; Khaw, K.Y. Microbiota-gut-brain axis and its therapeutic applications in neurodegenerative diseases. Signal Transduct. Target. Ther. 2024, 9, 37. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  40. Sarkar, A.; Harty, S.; Lehto, S.M.; Moeller, A.H.; Dinan, T.G.; Dunbar, R.I.; Cryan, J.F.; Burnet, P.W. The microbiome in psychology and cognitive neuroscience. Trends Cogn. Sci. 2018, 22, 611–636. [Google Scholar] [CrossRef]
  41. Zhong, Z.; Ye, M.; Yan, F. A review of studies on gut microbiota and levodopa metabolism. Front. Neurol. 2023, 14, 1046910. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  42. Mayer, E.A.; Knight, R.; Mazmanian, S.K.; Cryan, J.F.; Tillisch, K. Gut microbes and the brain: Paradigm shift in neuroscience. J. Neurosci. 2014, 34, 15490–15496. [Google Scholar] [CrossRef] [PubMed]
  43. Miyaue, N.; Yamamoto, H.; Liu, S.; Ito, Y.; Yamanishi, Y.; Ando, R.; Suzuki, Y.; Mogi, M.; Nagai, M. Association of Enterococcus faecalis and tyrosine decarboxylase gene levels with levodopa pharmacokinetics in Parkinson’s disease. NPJ Park. Dis. 2025, 11, 49. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  44. Hill-Burns, E.M.; Debelius, J.W.; Morton, J.T.; Wissemann, W.T.; Lewis, M.R.; Wallen, Z.D.; Peddada, S.D.; Factor, S.A.; Molho, E.; Zabetian, C.P.; et al. Parkinson’s disease and Parkinson’s disease medications have distinct signatures of the gut microbiome. Mov. Disord. 2017, 32, 739–749. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  45. Carabotti, M.; Scirocco, A.; Maselli, M.A.; Severi, C. The gut–brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol. 2015, 28, 203–209. [Google Scholar]
  46. Tan, A.H.; Lim, S.Y.; Chong, K.K.; AManap, M.A.A.; Hor, J.W.; Lim, J.L.; Low, S.C.; Chong, C.W.; Mahadeva, S.; Lang, A.E. Probiotics for Constipation in Parkinson Disease: A Randomized Placebo-Controlled Study. Neurology 2021, 96, e772–e782. [Google Scholar] [CrossRef] [PubMed]
  47. El-Shehawy, R.; Luecke-Johansson, S.; Ribbenstedt, A.; Gorokhova, E. Microbiota-Dependent and -Independent Production of l-Dopa in the Gut of Daphnia magna. mSystems 2021, 6, e0089221. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  48. DuPont, H.L.; Suescun, J.; Jiang, Z.D.; Brown, E.L.; Essigmann, H.T.; Alexander, A.S.; DuPont, A.W.; Iqbal, T.; Utay, N.S.; Newmark, M.; et al. Fecal microbiota transplantation in Parkinson’s disease-A randomized repeat-dose, placebo-controlled clinical pilot study. Front. Neurol. 2023, 14, 1104759. [Google Scholar] [CrossRef]
  49. Qian, Y.; Yang, X.; Xu, S.; Wu, C.; Song, Y.; Qin, N.; Chen, S.-D.; Xiao, Q. Alteration of the fecal microbiota in Chinese patients with Parkinson’s disease. Brain Behav. Immun. 2018, 70, 194–202. [Google Scholar] [CrossRef]
  50. Nyholm, D.; Hellström, P.M. Effects of Helicobacter pylori on Levodopa Pharmacokinetics. J. Park. Dis. 2021, 11, 61–69. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  51. Diotaiuti, P.; Misiti, F.; Marotta, G.; Falese, L.; Calabrò, G.E.; Mancone, S. The Gut Microbiome and Its Impact on Mood and Decision-Making: A Mechanistic and Therapeutic Review. Nutrients 2025, 17, 3350. [Google Scholar] [CrossRef]
  52. Foster, J.A.; McVey Neufeld, K.-A. Gut–brain axis: How the microbiome influences anxiety and depression. Trends Neurosci. 2013, 36, 305–312. [Google Scholar] [CrossRef]
  53. Lyte, M. Microbial endocrinology in the microbiome-gut-brain axis: How bacterial production and utilization of neurochemicals influence behavior. PLoS Pathog. 2013, 9, e1003726. [Google Scholar] [CrossRef]
  54. Cheng, G.; Hardy, M.; Hillard, C.J.; Feix, J.B.; Kalyanaraman, B. Mitigating gut microbial degradation of levodopa and enhancing brain dopamine: Implications in Parkinson’s disease. Commun. Biol. 2024, 7, 668. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  55. Varesi, A.; Campagnoli, L.I.M.; Fahmideh, F.; Pierella, E.; Romeo, M.; Ricevuti, G.; Nicoletta, M.; Chirumbolo, S.; Pascale, A. The Interplay between Gut Microbiota and Parkinson’s Disease: Implications on Diagnosis and Treatment. Int. J. Mol. Sci. 2022, 23, 12289. [Google Scholar] [CrossRef]
  56. Anh, N.K.; Thu, N.Q.; Tien, N.T.N.; Long, N.P.; Nguyen, H.T. Advancements in Mass Spectrometry-Based Targeted Metabolomics and Lipidomics: Implications for Clinical Research. Molecules 2024, 29, 5934. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  57. Sanches, P.H.G.; de Melo, N.C.; Porcari, A.M.; de Carvalho, L.M. Integrating Molecular Perspectives: Strategies for Comprehensive Multi-Omics Integrative Data Analysis and Machine Learning Applications in Transcriptomics, Proteomics, and Metabolomics. Biology 2024, 13, 848. [Google Scholar] [CrossRef] [PubMed]
  58. Tan, A.H.; Chong, C.W.; Lim, S.Y.; Yap, I.K.S.; Teh, C.S.J.; Loke, M.F.; Song, S.L.; Tan, J.Y.; Ang, B.H.; Tan, Y.Q.; et al. Gut Microbial Ecosystem in Parkinson Disease: New Clinicobiological Insights from Multi-Omics. Ann. Neurol. 2021, 89, 546–559. [Google Scholar] [CrossRef] [PubMed]
  59. Wallen, Z.D.; Demirkan, A.; Twa, G.; Cohen, G.; Dean, M.N.; Standaert, D.G.; Sampson, T.R.; Payami, H. Metagenomics of Parkinson’s disease implicates the gut microbiome in multiple disease mechanisms. Nat. Commun. 2022, 13, 6958. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  60. Ghalandari, N.; Assarzadegan, F.; Habibi, S.A.H.; Esmaily, H.; Malekpour, H. Efficacy of Probiotics in Improving Motor Function and Alleviating Constipation in Parkinson’s Disease: A Randomized Controlled Trial. Iran. J. Pharm. Res. 2023, 22, e137840. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  61. Weis, S.; Schwiertz, A.; Unger, M.M.; Becker, A.; Faßbender, K.; Ratering, S.; Kohl, M.; Schnell, S.; Schäfer, K.H.; Egert, M. Effect of Parkinson’s disease and related medications on the composition of the fecal bacterial microbiota. npj Park. Dis. 2019, 5, 28. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  62. Nuzum, N.D.; Deady, C.; Kittel-Schneider, S.; Cryan, J.F.; O’Mahony, S.M.; Clarke, G. More than just a number: The gut microbiota and brain function across the extremes of life. Gut Microbes 2024, 16, 2418988. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  63. Magistrelli, L.; Contaldi, E.; Visciglia, A.; Deusebio, G.; Pane, M.; Amoruso, A. The Impact of Probiotics on Clinical Symptoms and Peripheral Cytokines Levels in Parkinson’s Disease: Preliminary In Vivo Data. Brain Sci. 2024, 14, 1147. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  64. Waseem, M.H.; Abideen, Z.U.; Shoaib, A.; Rehman, N.; Osama, M.; Sajid, B.; Ahmad, R.; Fahim, Z.; Ansari, M.W.; Aimen, S.; et al. Fecal Microbiota Transplantation for Treatment of Parkinson’s Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Cent. Nerv. Syst. Dis. 2025, 17, 11795735251388781. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  65. Alam, M.; Abbas, K.; Mustafa, M.; Usmani, N.; Habib, S. Microbiome-based therapies for Parkinson’s disease. Front. Nutr. 2024, 11, 1496616. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  66. Hsiao, E.Y.; McBride, S.W.; Hsien, S.; Sharon, G.; Hyde, E.R.; McCue, T.; Codelli, J.A.; Chow, J.; Reisman, S.E.; Petrosino, J.F.; et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 2013, 155, 1451–1463. [Google Scholar] [CrossRef]
  67. Malkki, H. Parkinson disease: Could gut microbiota influence severity of Parkinson disease? Nat. Rev. Neurol. 2017, 13, 66–67. [Google Scholar] [CrossRef] [PubMed]
  68. Felger, J.C.; Treadway, M.T. Inflammation effects on motivation and motor activity: Role of dopamine. Neuropsychopharmacology 2017, 42, 216–241. [Google Scholar] [CrossRef]
  69. Palacios, N.; Hannoun, A.; Flahive, J.; Ward, D.; Goostrey, K.; Deb, A.; Smith, K.M. Effect of Levodopa Initiation on the Gut Microbiota in Parkinson’s Disease. Front. Neurol. 2021, 12, 574529. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  70. Ai, P.; Xu, S.; Yuan, Y.; Xu, Z.; He, X.; Mo, C.; Zhang, Y.; Yang, X.; Xiao, Q. Targeted Gut Microbiota Modulation Enhances Levodopa Bioavailability and Motor Recovery in MPTP Parkinson’s Disease Models. Int. J. Mol. Sci. 2025, 26, 5282. [Google Scholar] [CrossRef]
  71. Cirstea, M.S.; Creus-Cuadros, A.; Lo, C.; Yu, A.C.; Serapio-Palacios, A.; Neilson, S.; Appel-Cresswell, S.; Finlay, B.B. A novel pathway of levodopa metabolism by commensal Bifidobacteria. Sci. Rep. 2023, 13, 19155. [Google Scholar] [CrossRef]
  72. Rajkovaca Latic, I.; Popovic, Z.; Mijatovic, K.; Sahinovic, I.; Pekic, V.; Vucic, D.; Cosic, V.; Miskic, B.; Tomic, S. Association of intestinal inflammation and permeability markers with clinical manifestations of Parkinson’s disease. Parkinsonism Relat. Disord. 2024, 123, 106948. [Google Scholar] [CrossRef] [PubMed]
  73. Braniste, V.; Al-Asmakh, M.; Kowal, C.; Anuar, F.; Abbaspour, A.; Tóth, M.; Korecka, A.; Bakocevic, N.; Ng, L.G.; Kundu, P.; et al. The gut microbiota influences blood–brain barrier permeability in mice. Sci. Transl. Med. 2014, 6, 263ra158. [Google Scholar] [CrossRef]
  74. Pierantozzi, M.; Pietroiusti, A.; Brusa, L.; Galati, S.; Stefani, A.; Lunardi, G.; Fedele, E.; Sancesario, G.; Bernardi, G.; Bergamaschi, A.; et al. Helicobacter pylori eradication and L-dopa absorption in patients with PD and motor fluctuations. Neurology 2006, 66, 1824–1829. [Google Scholar] [CrossRef]
  75. Fiddian-Green, R.G. Helicobacter pylori eradication and L-dopa absorption in patients with PD and motor fluctuations. Neurology 2007, 68, 1085. [Google Scholar] [CrossRef] [PubMed]
  76. De Sciscio, M.; Bryant, R.V.; Haylock-Jacobs, S.; Day, A.S.; Pitchers, W.; Iansek, R.; Costello, S.P.; Kimber, T.E. Faecal microbiota transplant in Parkinson’s disease: Pilot study to establish safety & tolerability. NPJ Parkinson’s Dis. 2025, 11, 203. [Google Scholar] [CrossRef]
  77. Nabil, Y.; Helal, M.M.; Qutob, I.A.; Dawoud, A.I.A.; Allam, S.; Haddad, R.; Manasrah, G.M.; AlEdani, E.M.; Sleibi, W.; Faris, A.; et al. Efficacy and safety of fecal microbiota transplantation in the management of Parkinson’s disease: A systematic review. BMC Neurol. 2025, 25, 291. [Google Scholar] [CrossRef] [PubMed]
  78. Zhang, Y.; He, X.; Mo, C.; Liu, X.; Li, J.; Yan, Z.; Qian, Y.; Lai, Y.; Xu, S.; Yang, X.; et al. Association Between Microbial Tyrosine Decarboxylase Gene and Levodopa Responsiveness in Patients with Parkinson Disease. Neurology 2022, 99, e2443–e2453. [Google Scholar] [CrossRef] [PubMed]
  79. Aurelian, J.; Zamfirescu, A.; Nedelescu, M.; Stoleru, S.; Gidei, S.M.; Gita, C.D.; Prada, A.; Oancea, C.; Vladulescu-trandafir, A.I.; Aurelian, S.M. Vitamin D Impact on Stress and Cognitive Decline in Older Romanian Adults. FARMACIA 2024, 72, 1290–1298. [Google Scholar] [CrossRef]
  80. Sharon, G.; Sampson, T.R.; Geschwind, D.H.; Mazmanian, S.K. The Central Nervous System and the Gut Microbiome. Cell 2016, 167, 915–932. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  81. Lynch, L.E.; Lahowetz, R.; Maresso, C.; Terwilliger, A.; Pizzini, J.; Melendez Hebib, V.; Britton, R.A.; Maresso, A.W.; Preidis, G.A. Present and future of microbiome-targeting therapeutics. J. Clin. Investig. 2025, 135, e184323. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  82. Yang, Y.-C.; Chang, S.-C.; Hung, C.-S.; Shen, M.-H.; Lai, C.-L.; Huang, C.-J. Gut-Microbiota-Derived Metabolites and Probiotic Strategies in Colorectal Cancer: Implications for Disease Modulation and Precision Therapy. Nutrients 2025, 17, 2501. [Google Scholar] [CrossRef]
  83. Chen, S.G.; Stribinskis, V.; Rane, M.J.; Demuth, D.R.; Gozal, E.; Roberts, A.M.; Jagadapillai, R.; Liu, R.; Choe, K.; Shivakumar, B.; et al. Exposure to bacterial amyloids enhances α-synuclein aggregation. Sci. Rep. 2016, 6, 34477. [Google Scholar] [CrossRef] [PubMed]
  84. Hasan, A.; Scuderi, S.A.; Capra, A.P.; Giosa, D.; Bonomo, A.; Ardizzone, A.; Esposito, E. An Updated and Comprehensive Review Exploring the Gut–Brain Axis in Neurodegenerative Disorders and Neurotraumas: Implications for Therapeutic Strategies. Brain Sci. 2025, 15, 654. [Google Scholar] [CrossRef]
  85. Levite, M. Dopamine and T cells: Dopamine receptors and potent effects on T cells, dopamine production in T cells, and abnormalities in the dopaminergic system in T cells in autoimmune, neurological and psychiatric diseases. Acta Physiol. 2016, 216, 42–89. [Google Scholar] [CrossRef]
  86. Iannotti, F.A.; Di Marzo, V. The gut microbiome, endocannabinoids and metabolic disorders. J. Endocrinol. 2021, 248, R83–R97. [Google Scholar] [CrossRef]
  87. Dalile, B.; Van Oudenhove, L.; Vervliet, B.; Verbeke, K. The role of short-chain fatty acids in microbiota-gut-brain communication. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 461–478. [Google Scholar] [CrossRef]
  88. Cryan, J.F.; O’Riordan, K.J.; Cowan, C.S.M.; Sandhu, K.V.; Bastiaanssen, T.F.S.; Boehme, M.; Codagnone, M.G.; Cussotto, S.; Fulling, C.; Golubeva, A.V.; et al. The microbiota–gut–brain axis. Physiol. Rev. 2019, 99, 1877–2013. [Google Scholar] [CrossRef]
  89. Petrov, V.A.; Saltykova, I.V.; Zhukova, I.A.; Alifirova, V.M.; Zhukova, N.G.; Dorofeeva, Y.B.; Tyakht, A.V.; Kovarsky, B.A.; Alekseev, D.G.; Kostryukova, E.S.; et al. Analysis of gut microbiota in patients with Parkinson’s disease. Bull. Exp. Biol. Med. 2017, 162, 734–737. [Google Scholar] [CrossRef]
  90. Keshavarzian, A.; Green, S.J.; Engen, P.A.; Voigt, R.M.; Naqib, A.; Forsyth, C.B.; Mutlu, E.; Shannon, K.M. Colonic bacterial composition in Parkinson’s disease. Mov. Disord. 2015, 30, 1351–1360. [Google Scholar] [CrossRef]
  91. Forero-Rodríguez, J.; Zimmermann, J.; Taubenheim, J.; Arias-Rodríguez, N.; Caicedo-Narvaez, J.D.; Best, L.; Mendieta, C.V.; López-Castiblanco, J.; Gómez-Muñoz, L.A.; Gonzalez-Santos, J.; et al. Changes in Bacterial Gut Composition in Parkinson’s Disease and Their Metabolic Contribution to Disease Development: A Gut Community Reconstruction Approach. Microorganisms 2024, 12, 325. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  92. Clapp, M.; Aurora, N.; Herrera, L.; Bhatia, M.; Wilen, E.; Wakefield, S. Gut microbiota’s effect on mental health: The gut-brain axis. Clin. Pract. 2017, 7, 987. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  93. González-Arancibia, C.; Urrutia-Piñones, J.; Illanes-González, J.; Martinez-Pinto, J.; Sotomayor-Zárate, R.; Julio-Pieper, M.; Bravo, J.A. Do your gut microbes affect your brain dopamine? Psychopharmacology 2019, 236, 1611–1622. [Google Scholar] [CrossRef]
  94. DiCarlo, G.E.; Wallace, M.T. Modeling dopamine dysfunction in autism spectrum disorder: From invertebrates to vertebrates. Neurosci. Biobehav. Rev. 2021, 133, 104494. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  95. Yu, M.; Yu, B.; Chen, D. The effects of gut microbiota on appetite regulation and the underlying mechanisms. Gut Microbes 2024, 16, 2414796. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  96. Kurnik-Łucka, M.; Pasieka, P.; Łączak, P.; Wojnarski, M.; Jurczyk, M.; Gil, K. Gastrointestinal Dopamine in Inflammatory Bowel Diseases: A Systematic Review. Int. J. Mol. Sci. 2021, 22, 12932. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  97. Ullah, H.; Arbab, S.; Tian, Y.; Liu, C.Q.; Chen, Y.; Qijie, L.; Khan, M.I.U.; Hassan, I.U.; Li, K. The gut microbiota-brain axis in neurological disorder. Front. Neurosci. 2023, 17, 1225875. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  98. Tan, A.H.; Hor, J.W.; Chong, C.W.; Lim, S.Y. Probiotics for Parkinson’s disease: Current evidence and future directions. JGH Open 2020, 5, 414–419. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  99. Meiners, F.; Ortega-Matienzo, A.; Fuellen, G.; Barrantes, I. Gut microbiome-mediated health effects of fiber and polyphenol-rich dietary interventions. Front. Nutr. 2025, 12, 1647740. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  100. Randeni, N.; Xu, B. Critical Review of the Cross-Links Between Dietary Components, the Gut Microbiome, and Depression. Int. J. Mol. Sci. 2025, 26, 614. [Google Scholar] [CrossRef]
  101. Lee, H.; Elkamhawy, A.; Rakhalskaya, P.; Lu, Q.; Nada, H.; Quan, G.; Lee, K. Small Molecules in Parkinson’s Disease Therapy: From Dopamine Pathways to New Emerging Targets. Pharmaceuticals 2024, 17, 1688. [Google Scholar] [CrossRef]
  102. Marques, L.; Costa, B.; Pereira, M.; Silva, A.; Santos, J.; Saldanha, L.; Silva, I.; Magalhães, P.; Schmidt, S.; Vale, N. Advancing Precision Medicine: A Review of Innovative In Silico Approaches for Drug Development, Clinical Pharmacology and Personalized Healthcare. Pharmaceutics 2024, 16, 332. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  103. van Kessel, S.P.; Auvinen, P.; Scheperjans, F.; El Aidy, S. Gut bacterial tyrosine decarboxylase associates with clinical variables in a longitudinal cohort study of Parkinsons disease. npj Park. Dis. 2021, 7, 115. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  104. Abouelela, M.E.; Helmy, Y.A. Next-Generation Probiotics as Novel Therapeutics for Improving Human Health: Current Trends and Future Perspectives. Microorganisms 2024, 12, 430. [Google Scholar] [CrossRef]
  105. Ugwu, O.P.-C.; Ben Okon, M.; Alum, E.U.; Ugwu, C.N.M.; Anyanwu, E.G.; Mariam, B.; Ogenyi, F.C.B.; Eze, V.H.U.; Anyanwu, C.N.; Ezeonwumelu, J.O.C.; et al. Unveiling the therapeutic potential of the gut microbiota–brain axis: Novel insights and clinical applications in neurological disorders. Medicine 2025, 104, e43542. [Google Scholar] [CrossRef]
Figure 1. Microbial metabolism of orally administered L-DOPA in the intestinal lumen. Although carbidopa inhibits human aromatic L-amino acid decarboxylase (AADC), it does not inhibit bacterial tyrosine decarboxylase (TyrDC). Consequently, gut bacteria such as Enterococcus faecalis convert L-DOPA to dopamine, which can be further metabolized by Eggerthella lenta via dopamine dehydroxylase (Dadh) to m-tyramine.
Figure 1. Microbial metabolism of orally administered L-DOPA in the intestinal lumen. Although carbidopa inhibits human aromatic L-amino acid decarboxylase (AADC), it does not inhibit bacterial tyrosine decarboxylase (TyrDC). Consequently, gut bacteria such as Enterococcus faecalis convert L-DOPA to dopamine, which can be further metabolized by Eggerthella lenta via dopamine dehydroxylase (Dadh) to m-tyramine.
Ijms 27 00271 g001
Figure 2. Dopamine-mediated gut–brain axis illustrating neural, metabolic/endocrine, immune, and barrier-related communication pathways influencing brain dopaminergic circuits.
Figure 2. Dopamine-mediated gut–brain axis illustrating neural, metabolic/endocrine, immune, and barrier-related communication pathways influencing brain dopaminergic circuits.
Ijms 27 00271 g002
Table 1. Sources, mechanisms, and local functions of intestinal dopamine.
Table 1. Sources, mechanisms, and local functions of intestinal dopamine.
Source of Intestinal
Dopamine
MechanismPrincipal Local FunctionsEvidence (Representative
References)
Enterochromaffin (EC) cellsTyrosine → L-DOPA → dopamine via aromatic L-amino acid decarboxylase (AADC); paracrine release to ENSModulation of motility, secretion, epithelial barrier toneMGBA overviews; Front. Microbiol. 2025 [1]; Metabolites 2024 [17]
Enteric nervous system (ENS) and sympathetic fibersNeuronal synthesis and synaptic release onto smooth muscle and secretory epitheliumFine-tuning of peristalsis (D1/D2-family effects), fluid and electrolyte transportReviews on gut dopaminergic signaling; J. Cell. Physiol. 2017 [18]
Microbiota-derived pathways(i) Enterococcus faecalis TyrDC: L-DOPA → dopamine; (ii) Eggerthella lenta Dadh: dopamine → m-tyraminePotential alteration of luminal catecholamine exposure; reduces L-DOPA availabilityScience 2019 [8]; eLife 2020 [9]; Nat. Commun. 2019 [10]
Additional microbial taxaReported dopamine synthesis by Lactobacillus, Bacillus, Clostridium spp.Potential neuromodulation; hypothesized barrier and immune effectsBiomedicines 2022 [6]
Immune compartment cross-talkDopamine receptors on T cells and macrophages; cytokine modulationRegulation of mucosal immunity and inflammationBrain 2021 [11]; Cell 2016 [19]
Table 2. Key microbial enzymes involved in dopamine metabolism.
Table 2. Key microbial enzymes involved in dopamine metabolism.
Microbial SpeciesEnzymeSubstrate → ProductKey References
Enterococcus faecalisTyrosine decarboxylase (TyrDC), PLP-dependentL-DOPA → dopamineRekdal et al., Science 2019 [8]
Eggerthella lentaCatechol dehydroxylase (Dadh), molybdenum-dependentDopamine → m-tyramineBisanz et al., Drug Metab. Dispos. 2018 [38]
Clostridium spp.Multiple decarboxylases and reductasesTyrosine/catecholamines → various metabolitesStrandwitz, Brain Res. 2018 [4]
Lactobacillus spp., Bacillus spp.Putative tyrosine decarboxylasesTyrosine → dopamineLyte, BioEssays 2011 [15]
Helicobacter pyloriIndirect effects on absorption and metabolismReduced bioavailability of therapeutic L-DOPAFront. Neurol. 2023 [41]
Table 3. Key clinical evidence linking microbiota to L-DOPA therapy in Parkinson’s disease.
Table 3. Key clinical evidence linking microbiota to L-DOPA therapy in Parkinson’s disease.
Study/PeriodIntervention/PopulationMain FindingsReference
2010s, observational cohortsH. pylori eradication in PD patientsImproved L-DOPA absorption and motor symptomsBrain 2021 [11]
Rekdal et al. 2019; Bisanz et al. 2018Mechanistic characterization of TyrDC (E. faecalis) and Dadh (E. lenta)Defined two-step microbial L-DOPA degradation pathwayScience 2019 [8]; Drug Metab. Dispos. 2018 [38]
2022–2024 pilot studiesFecal microbiota transplantation (FMT) in PDSafe; preliminary benefit for motor and non-motor symptomsFront. Neurol. 2023; ClinicalTrials.gov [48]
2024–2025 experimental therapiesSelective bacterial TyrDC/Dadh inhibitors + carbidopaEnhanced systemic and central L-DOPA availability (preclinical/early translational)Eur. J. Pharm. Sci. 2025 [12]
Table 4. Major microbiota–gut–brain axis communication pathways involving dopamine.
Table 4. Major microbiota–gut–brain axis communication pathways involving dopamine.
PathwayMechanismRepresentative EvidenceImplications
Neural (ENS and vagus nerve)Dopamine modulates enteric neurons and vagal afferents; vagotomy abolishes microbial effectsGerm-free and vagotomy animal modelsLinks gut dopamine to central motor and reward circuits
ImmuneDopamine receptors on T cells and macrophages regulate IL-6, TNF-α, IFN-γPD and IBD modelsPeripheral immune modulation influences neuroinflammation
Metabolic/EndocrineInteraction with SCFAs, tryptophan metabolites, GLP-1, and ghrelinMetabolomics and multi-omics MGBA studiesRegulation of appetite, energy balance, reward
Barrier function (gut and BBB)Dopamine modulates tight junction proteins and permeabilityExperimental modelsFacilitates cytokine/metabolite entry into CNS
Table 5. Conditions associated with altered microbial dopamine signaling.
Table 5. Conditions associated with altered microbial dopamine signaling.
ConditionProposed MechanismKey EvidenceTherapeutic Implications
Depression and anxietyMicrobial modulation of dopaminergic mood and reward circuitsGerm-free models; human dysbiosis studiesPotential adjunctive probiotic or FMT strategies
Neurodevelopmental disorders (ASD, ADHD)Microbiota-driven alterations in striatal dopamine signalingAnimal modelsMicrobiome-targeted adjunct therapies
Metabolic disorders and feeding behaviorInteraction with SCFAs, ghrelin, leptin affecting reward-based eatingAnimal studiesTargeting dopaminergic pathways for weight management
Gastrointestinal and immune disorders (IBD)Dopamine-dependent regulation of mucosal immunity and barrier integrityHuman mucosal studiesProbiotic/prebiotic strategies to reduce inflammation
Table 6. Therapeutic strategies targeting microbial dopamine metabolism.
Table 6. Therapeutic strategies targeting microbial dopamine metabolism.
StrategyMechanismStage of EvidenceRepresentative References
Probiotics/PrebioticsModulate microbial composition; enhance beneficial taxa (Lactobacillus, Bifidobacterium)Pilot RCTs; animal modelsBrain 2021 [11]; Neurology 2021 [46]
Dietary interventionsHigh-fiber diet → SCFA production; polyphenols inhibit microbial decarboxylasesObservational and experimental studiesMetabolites 2024 [17]
Fecal microbiota transplantation (FMT)Restores microbial balance; indirectly normalizes dopamine metabolismPilot clinical trials in PDFront. Neurol. 2023 [48]
Pharmacological inhibitionSmall-molecule inhibitors of bacterial TyrDC and DadhPreclinical and translational studiesScience 2019 [8]; eLife 2020 [9]
Precision medicine approachesBiomarker-guided stratification (TyrDC/Dadh genes, m-tyramine, metabolomics)
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Barbu, A.C.; Stoleru, S.; Zugravu, A.; Poenaru, E.; Dragomir, A.; Costescu, M.; Aurelian, S.M.; Shhab, Y.; Stoleru, C.M.; Coman, O.A.; et al. Dopamine and the Gut Microbiota: Interactions Within the Microbiota–Gut–Brain Axis and Therapeutic Perspectives. Int. J. Mol. Sci. 2026, 27, 271. https://doi.org/10.3390/ijms27010271

AMA Style

Barbu AC, Stoleru S, Zugravu A, Poenaru E, Dragomir A, Costescu M, Aurelian SM, Shhab Y, Stoleru CM, Coman OA, et al. Dopamine and the Gut Microbiota: Interactions Within the Microbiota–Gut–Brain Axis and Therapeutic Perspectives. International Journal of Molecular Sciences. 2026; 27(1):271. https://doi.org/10.3390/ijms27010271

Chicago/Turabian Style

Barbu, Aurelia Cristiana, Smaranda Stoleru, Aurelian Zugravu, Elena Poenaru, Adrian Dragomir, Mihnea Costescu, Sorina Maria Aurelian, Yara Shhab, Clara Maria Stoleru, Oana Andreia Coman, and et al. 2026. "Dopamine and the Gut Microbiota: Interactions Within the Microbiota–Gut–Brain Axis and Therapeutic Perspectives" International Journal of Molecular Sciences 27, no. 1: 271. https://doi.org/10.3390/ijms27010271

APA Style

Barbu, A. C., Stoleru, S., Zugravu, A., Poenaru, E., Dragomir, A., Costescu, M., Aurelian, S. M., Shhab, Y., Stoleru, C. M., Coman, O. A., & Fulga, I. (2026). Dopamine and the Gut Microbiota: Interactions Within the Microbiota–Gut–Brain Axis and Therapeutic Perspectives. International Journal of Molecular Sciences, 27(1), 271. https://doi.org/10.3390/ijms27010271

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Article metric data becomes available approximately 24 hours after publication online.
Back to TopTop