Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (46)

Search Parameters:
Keywords = PD-1 (PDCD1)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 697 KiB  
Article
Association Study of PDCD1 Gene Variants and Its Gene Expression with Cutaneous Melanoma in a Mexican Population
by Fernando Valdez-Salazar, Luis A. Jiménez-Del Rio, Elizabeth Guevara-Gutiérrez, Andrea Melissa Mendoza-Ochoa, María José Zorrilla-Marina, Diana Karla García-Nuño, Jorge R. Padilla-Gutiérrez, José F. Muñoz-Valle and Emmanuel Valdés-Alvarado
Genes 2025, 16(8), 866; https://doi.org/10.3390/genes16080866 - 24 Jul 2025
Viewed by 249
Abstract
Background/Objectives: Melanoma is an aggressive skin cancer influenced by genetic and immunological factors. The PDCD1 gene encodes PD-1, a receptor involved in immune evasion and therapeutic response. This study aimed to evaluate the association of PDCD1 variants (rs2227982, rs36084323, rs7421861) and its [...] Read more.
Background/Objectives: Melanoma is an aggressive skin cancer influenced by genetic and immunological factors. The PDCD1 gene encodes PD-1, a receptor involved in immune evasion and therapeutic response. This study aimed to evaluate the association of PDCD1 variants (rs2227982, rs36084323, rs7421861) and its relative gene expression with melanoma in a Mexican population. Methods: An analytical cross-sectional study was conducted with 262 samples: 131 from melanoma patients (newly diagnosed and treatment-naïve) and 131 from cancer-free controls. Genotyping was performed using real-time PCR. PDCD1 expression was assessed by qPCR, normalized with GAPDH, using the 2−ΔΔCt method and the Pfaffl model. Statistical comparisons included allele/genotype frequencies, expression levels, and clinicopathological associations. Results: No significant association was found between the studied PDCD1 variants and melanoma susceptibility. However, PDCD1 was significantly overexpressed in melanoma samples (2.42-fold increase; p < 0.01), consistent across both quantification methods. Significant associations were also observed between histopathological subtype and Breslow thickness, and between subtype and anatomical site (p < 0.01). Conclusions: Although PDCD1 variants showed no association with melanoma risk, the gene’s overexpression highlights its potential relevance in melanoma immunobiology. These findings contribute to the molecular characterization of melanoma in the Mexican population and support future research on PDCD1 as an immunological biomarker. Full article
(This article belongs to the Section Population and Evolutionary Genetics and Genomics)
Show Figures

Figure 1

15 pages, 2414 KiB  
Article
Male Date Palm Chlorotype Selection Based on Fertility, Metaxenia, and Transcription Aspects
by Hammadi Hamza, Mohamed Ali Benabderrahim, Achwak Boualleg, Federico Sebastiani, Faouzi Haouala and Mokhtar Rejili
Horticulturae 2025, 11(7), 865; https://doi.org/10.3390/horticulturae11070865 - 21 Jul 2025
Viewed by 357
Abstract
This study evaluated the influence of different male date palm cultivars, distinguished by their chloroplast haplotypes, on pollen quality, pollination efficiency, metaxenia effects, and gene expression during fruit development. Chloroplast DNA analysis of 37 male trees revealed multiple haplotypes, from which cultivars B25, [...] Read more.
This study evaluated the influence of different male date palm cultivars, distinguished by their chloroplast haplotypes, on pollen quality, pollination efficiency, metaxenia effects, and gene expression during fruit development. Chloroplast DNA analysis of 37 male trees revealed multiple haplotypes, from which cultivars B25, P8, C22, and B46 were selected for further investigation. Pollen viability varied significantly among cultivars, with P8 and B25 exhibiting the highest germination rates and pollen tube elongation, while C22 showed the lowest. These differences correlated with pollination success: P8 and B25 achieved fertilization rates near 99%, whereas C22 remained below 43%. Pollination outcomes also varied in fruit traits. Despite its low pollen performance, C22 induced the production of larger fruits at the Bleh (Kimri) stage, potentially due to compensatory physiological mechanisms. Phytochemical profiling revealed significant cultivar effects: fruits from B25-pollinated trees had with lower moisture and polyphenol content but the higher sugar levels and soluble solids, suggesting accelerated maturation. Ripening patterns confirmed this finding, with B25 promoting the earliest ripening and B46 causing the most delayed. Gene expression analysis supported these phenotypic differences. Fruits pollinated by P8, B25, and B46 exhibited elevated levels of cell-division-related transcripts, particularly the PdCD_1 gene (PDK_XM_008786146.4, a gene encoding a cell division control protein), which was most abundant in P8. In contrast, fruits from C22-pollinated trees had the lowest expression of growth-related genes, suggesting a shift toward cell expansion rather than division. Overall, the results show the critical role of male genotype in influencing fertilization outcomes and fruit development, offering valuable insights for targeted breeding strategies at enhancing date palm productivity and fruit quality. Full article
(This article belongs to the Section Genetics, Genomics, Breeding, and Biotechnology (G2B2))
Show Figures

Graphical abstract

14 pages, 284 KiB  
Article
Male Sex as a Predictor of Worse Prognosis and Clinical Evolution in Patients with Cancer and SARS-CoV-2 Infection, Independent of the rs41386349 PDCD1 Polymorphism
by Caroline Yukari Motoori Fernandes, Bruna Karina Banin Hirata, Glauco Akelinghton Freire Vitiello, Eliza Pizarro Castilha, Nathália de Sousa-Pereira, Roberta Losi Guembarovski, Marla Karine Amarante, Maria Angelica Ehara Watanabe, Mateus Nóbrega Aoki and Karen Brajão de Oliveira
COVID 2025, 5(7), 104; https://doi.org/10.3390/covid5070104 - 4 Jul 2025
Viewed by 339
Abstract
COVID-19 continues to spread six years after its discovery. Cancer patients are at an increased risk of severe outcomes, likely due to immunosuppression and tumor-related dysregulation. Programmed cell death protein 1 (PD-1), encoded by the PDCD1 gene, is a critical immune checkpoint involved [...] Read more.
COVID-19 continues to spread six years after its discovery. Cancer patients are at an increased risk of severe outcomes, likely due to immunosuppression and tumor-related dysregulation. Programmed cell death protein 1 (PD-1), encoded by the PDCD1 gene, is a critical immune checkpoint involved in T-cell regulation. Since genetic polymorphisms can influence immune responses and individual susceptibility to SARS-CoV-2 infection, this case–control study aimed to investigate the association between the PDCD1 rs41386349 polymorphism and COVID-19 severity in individuals with and without cancer. This study included 279 COVID-19-positive and 160 negative individuals, genotyped by qPCR. COVID-19- positive cancer patients were significantly more likely to develop moderate (OR = 13.6) and severe (OR > 200) disease compared to cancer-negative individuals. No association was observed between the PDCD1 polymorphism and SARS-CoV-2 infection or disease severity, even after adjusting for cancer status, age and sex. However, age and sex were independently associated with severe outcomes: each additional year of age increased the odds of severe disease by 5.3%, and male patients had a three times higher risk of severe COVID-19. These findings confirm that cancer, male sex and older age are major predictors of worse prognosis in COVID-19, while the rs41386349 polymorphism alone does not appear to influence susceptibility or disease progression. Full article
(This article belongs to the Section COVID Clinical Manifestations and Management)
21 pages, 2347 KiB  
Article
Comparison of the L3-23K and L5-Fiber Regions for Arming the Oncolytic Adenovirus Ad5-Delta-24-RGD with Reporter and Therapeutic Transgenes
by Aleksei A. Stepanenko, Anastasiia O. Sosnovtseva, Marat P. Valikhov, Anastasiia A. Vasiukova, Olga V. Abramova, Anastasiia V. Lipatova, Gaukhar M. Yusubalieva and Vladimir P. Chekhonin
Int. J. Mol. Sci. 2025, 26(8), 3700; https://doi.org/10.3390/ijms26083700 - 14 Apr 2025
Viewed by 690
Abstract
The insertion of a transgene downstream of the L3-23K or L5-Fiber region was reported as a vital strategy for arming E3 non-deleted oncolytic adenoviruses. However, depending on the percentage of codons with G/C at the third base position (GC3%) and the type of [...] Read more.
The insertion of a transgene downstream of the L3-23K or L5-Fiber region was reported as a vital strategy for arming E3 non-deleted oncolytic adenoviruses. However, depending on the percentage of codons with G/C at the third base position (GC3%) and the type of splicing acceptor, an insert downstream of the L5-Fiber region may substantially affect virus fitness. Since the insertion of transgenes downstream of the L3-23K and L5-Fiber regions has never been compared in terms of their expression levels and impact on virus fitness, we assessed the total virus yield, cytolytic efficacy, and plaque size of Ad5-delta-24-RGD (Ad5Δ24RGD) armed with EGFP, FLuc, the suppressor of RNA silencing p19, soluble wild-type human/mouse and high-affinity human programmed cell death receptor-1 (PD-1/PDCD1) ectodomains, and soluble human hyaluronidase PH20/SPAM1. The insertion of transgenes downstream of the L3-23K region ensures their production at considerably higher levels. However, the insertion of transgenes downstream of either region differentially and unpredictably affects the oncolytic potency of Ad5Δ24RGD, which cannot be explained by GC3% or expression level alone. Surprisingly, the expression of the human and mouse PD-1 ectodomains with 83.1% and 70.1% GC3%, respectively, does not affect cytolytic efficacy but increases the plaque size in a cell line-dependent manner. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

18 pages, 3222 KiB  
Article
Regulatory T Cell Mimicry by a Subset of Mesenchymal GBM Stem Cells Suppresses CD4 and CD8 Cells
by Amanda L. Johnson, Harmon S. Khela, Jack Korleski, Sophie Sall, Yunqing Li, Weiqiang Zhou, Karen Smith-Connor, John Laterra and Hernando Lopez-Bertoni
Cells 2025, 14(8), 592; https://doi.org/10.3390/cells14080592 - 14 Apr 2025
Cited by 1 | Viewed by 889
Abstract
Attempts to activate an anti-tumor immune response in glioblastoma (GBM) have been met with many challenges due to its inherently immunosuppressive tumor microenvironment. The degree and mechanisms by which molecularly and phenotypically diverse tumor-propagating glioma stem cells (GSCs) contribute to this state are [...] Read more.
Attempts to activate an anti-tumor immune response in glioblastoma (GBM) have been met with many challenges due to its inherently immunosuppressive tumor microenvironment. The degree and mechanisms by which molecularly and phenotypically diverse tumor-propagating glioma stem cells (GSCs) contribute to this state are poorly defined. In this study, our multifaceted approach combining bioinformatics analyses of clinical and experimental datasets, single-cell sequencing, and the molecular and pharmacologic manipulation of patient-derived cells identified GSCs expressing immunosuppressive effectors mimicking regulatory T cells (Tregs). We showed that this immunosuppressive Treg-like (ITL) GSC state is specific to the mesenchymal GSC subset and is associated with and driven specifically by TGFβ type II receptor (TGFBR2) in contrast to TGFBR1. Transgenic TGFBR2 expression in patient-derived GBM neurospheres promoted a mesenchymal transition and induced a six-gene ITL signature consisting of CD274 (PD-L1), NT5E (CD73), ENTPD1 (CD39), LGALS1 (galectin-1), PDCD1LG2 (PD-L2), and TGFB1. This TGFBR2-driven ITL signature was identified in clinical GBM specimens, patient-derived GSCs, and systemic mesenchymal malignancies. TGFBR2high GSCs inhibited CD4+ and CD8+ T cell viability and their capacity to kill GBM cells, effects reversed by pharmacologic and shRNA-based TGFBR2 inhibition. Collectively, our data identify an immunosuppressive GSC state that is TGFBR2-dependent and susceptible to TGFBR2-targeted therapeutics. Full article
(This article belongs to the Special Issue The Pivotal Role of Tumor Stem Cells in Glioblastoma)
Show Figures

Figure 1

18 pages, 3388 KiB  
Article
Gene Dysregulation and Islet Changes in PDAC-Associated Type 3c Diabetes
by Jessica L. E. Hill, Eliot Leonard, Dominique Parslow and David J. Hill
Int. J. Mol. Sci. 2025, 26(7), 3191; https://doi.org/10.3390/ijms26073191 - 29 Mar 2025
Viewed by 797
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy, often associated with new-onset diabetes. The relationship between PDAC and diabetes, particularly type 3c diabetes, remains poorly understood. This study investigates whether PDAC-associated diabetes represents a distinct subtype by integrating transcriptomic and histological analyses. [...] Read more.
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy, often associated with new-onset diabetes. The relationship between PDAC and diabetes, particularly type 3c diabetes, remains poorly understood. This study investigates whether PDAC-associated diabetes represents a distinct subtype by integrating transcriptomic and histological analyses. Whole-tumour RNA sequencing data from The Cancer Genome Atlas (TCGA) were analysed to compare gene expression profiles between PDAC patients with and without diabetes. Cell-type Identification By Estimating Relative Subsets Of RNA Transcripts (CIBERSORT) deconvolution was employed to assess immune cell populations. Histopathological evaluations of pancreatic tissues were conducted to assess fibrosis and islet morphology. Histological analysis revealed perivascular fibrosis and islet basement membrane thickening in both PDAC cohorts. Transcriptomic data indicated significant downregulation of islet hormone genes insulin (INS) and glucagon (GCG) but not somatostatin (SST) in PDAC-associated diabetes, consistent with a type 3c diabetes phenotype. Contrary to previous reports, no distinct immunogenic signature was identified in PDAC with diabetes, as key immune checkpoint genes (Programmed Cell Death Protein 1 (PDCD1), Cytotoxic T-Lymphocyte Associated Protein 4 (CTLA4), Programmed Death-Ligand 1(PD-L1)) were not differentially expressed. The findings suggest that PDAC-associated diabetes arises through neoplastic alterations in islet physiology rather than immune-mediated mechanisms. The observed reductions in endocrine markers reinforce the concept of PDAC-driven β-cell dysfunction as a potential early indicator of malignancy. Given the poor response of PDAC to PD-L1 checkpoint inhibitors, further research is needed to elucidate alternative therapeutic strategies targeting tumour–islet interactions. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Cell Biology of Pancreatic Diseases)
Show Figures

Figure 1

32 pages, 4595 KiB  
Article
Integrative In Silico Analysis to Identify Functional and Structural Impacts of nsSNPs on Programmed Cell Death Protein 1 (PD-1) Protein and UTRs: Potential Biomarkers for Cancer Susceptibility
by Hakeemah Al-Nakhle, Retaj Al-Shahrani, Jawanah Al-Ahmadi, Wesal Al-Madani and Rufayda Al-Juhani
Genes 2025, 16(3), 307; https://doi.org/10.3390/genes16030307 - 4 Mar 2025
Viewed by 1642
Abstract
Background: Programmed cell death protein 1 (PD-1), encoded by the PDCD1 gene, is critical in immune checkpoint regulation and cancer immune evasion. Variants in PDCD1 may alter its function, impacting cancer susceptibility and disease progression. Objectives: This study evaluates the structural, functional, and [...] Read more.
Background: Programmed cell death protein 1 (PD-1), encoded by the PDCD1 gene, is critical in immune checkpoint regulation and cancer immune evasion. Variants in PDCD1 may alter its function, impacting cancer susceptibility and disease progression. Objectives: This study evaluates the structural, functional, and regulatory impacts of non-synonymous single-nucleotide polymorphisms (nsSNPs) in the PDCD1 gene, focusing on their pathogenic and oncogenic roles. Methods: Computational tools, including PredictSNP1.0, I-Mutant2.0, MUpro, HOPE, MutPred2, Cscape, Cscape-Somatic, GEPIA2, cBioPortal, and STRING, were used to analyze 695 nsSNPs in the PD1 protein. The analysis covered structural impacts, stability changes, regulatory effects, and oncogenic potential, focusing on conserved domains and protein–ligand interactions. Results: The analysis identified 84 deleterious variants, with 45 mapped to conserved regions like the Ig V-set domain essential for ligand-binding interactions. Stability analyses identified 78 destabilizing variants with significant protein instability (ΔΔG values). Ten nsSNPs were identified as potential cancer drivers. Expression profiling showed differential PDCD1 expression in tumor versus normal tissues, correlating with improved survival in skin melanoma but limited value in ovarian cancer. Regulatory SNPs disrupted miRNA-binding sites and transcriptional regulation, affecting PDCD1 expression. STRING analysis revealed key PD-1 protein partners within immune pathways, including PD-L1 and PD-L2. Conclusions: This study highlights the significance of PDCD1 nsSNPs as potential biomarkers for cancer susceptibility, advancing the understanding of PD-1 regulation. Experimental validation and multi-omics integration are crucial to refine these findings and enhance theraputic strategies. Full article
(This article belongs to the Special Issue Molecular Diagnostic and Prognostic Markers of Human Cancers)
Show Figures

Figure 1

12 pages, 1507 KiB  
Article
Transcriptomic Profiling and Tumor Microenvironment Classification Reveal Unique and Dynamic Immune Biology in HIV-Associated Kaposi Sarcoma
by Jihua Yang, Ayse Ece Cali Daylan, Aleksei Shevkoplias, Ekaterina Postovalova, Meng Wang, Andrey Tyshevich, Matthew Lee, Hiba Narvel, Ksenia Zornikova, Nara Shin, Nikita Kotlov, Luca Paoluzzi, Changcheng Zhu, Balazs Halmos, Xingxing Zang and Haiying Cheng
Cells 2025, 14(2), 134; https://doi.org/10.3390/cells14020134 - 17 Jan 2025
Viewed by 1687
Abstract
Kaposi Sarcoma (KS) is a vascular tumor originating from endothelial cells and is associated with human herpesvirus 8 (KSHV) infection. It disproportionately affects populations facing health disparities. Although antiretroviral therapy (ART) has improved KS control in people with HIV (PWH), treatment options for [...] Read more.
Kaposi Sarcoma (KS) is a vascular tumor originating from endothelial cells and is associated with human herpesvirus 8 (KSHV) infection. It disproportionately affects populations facing health disparities. Although antiretroviral therapy (ART) has improved KS control in people with HIV (PWH), treatment options for advanced KS remain limited. This study investigates the tumor microenvironment (TME) of KS through whole-transcriptomic profiling, analyzing changes over time and differences based on HIV status. The TME was categorized into four subtypes: immune-enriched (IE), non-fibrotic, immune-enriched/fibrotic (IE/F), fibrotic (F) and immune-depleted (D). Nine KS patients (four HIV-negative and five HIV-positive) were enrolled in the study. Longitudinally collected KS samples from three patients (one HIV-negative and two HIV-positive) allowed for the investigation of dynamic TME changes within individual patients. The immune cellular composition was determined using deconvolution and compared to a cohort of non-KS patients. Our findings revealed that all KS samples, regardless of HIV status, were enriched in endothelial cells. Compared to non-KS tissues, the KS samples contained a higher percentage of NK and CD8+ T cells. HIV-negative KS samples displayed the IE and IE/F TME subtypes, while HIV-positive samples exhibited IE, IE/F, and F subtypes. Over the course of the disease, a decrease in angiogenic signatures was observed in two HIV-positive KS patients. Notably, HIV-negative KS samples showed alterations in NK cell-mediated immunity and cytotoxic response pathways, whereas HIV-positive samples exhibited changes in growth regulation and protein kinase activity pathways at the time of initial diagnosis. The gene expression of immune checkpoints, including CD274 (PD-L1) and PDCD1LC2 (PD-L2), was comparable between HIV-positive and HIV-negative KS samples at diagnosis. Furthermore, sequencing identified a shared TCRβ chain in all patients analyzed, indicating a T-cell immune response to a common antigen. This study demonstrates unique transcriptomic features and TME subtypes in KS that differ based on HIV status. Additionally, it illustrates longitudinal dynamic changes in the gene signatures and TME subtypes in individual patients. The identification of a shared TCRβ chain suggests that immune T cells in KS patients may target a common antigen. Future studies should further explore the immune microenvironment and unique T cell clonotypes, which could pave the way for the development of novel therapeutic strategies for KS patients. Full article
(This article belongs to the Section Cell Methods)
Show Figures

Figure 1

10 pages, 2493 KiB  
Case Report
A Rare Case of a Malignant Proliferating Trichilemmal Tumor: A Molecular Study Harboring Potential Therapeutic Significance and a Review of Literature
by Mokhtar H. Abdelhammed, Hanna Siatecka, A. Hafeez Diwan, Christie J. Finch, Angela D. Haskins, David J. Hernandez and Ya Xu
Dermatopathology 2024, 11(4), 354-363; https://doi.org/10.3390/dermatopathology11040038 - 10 Dec 2024
Cited by 1 | Viewed by 1930
Abstract
Malignant proliferating trichilemmal tumors (MPTTs), arising from the external root sheath of hair follicles, are exceptionally rare, with limited documentation of their genetic alterations. We present a case of a 64-year-old African American woman who initially presented with a gradually enlarging nodule on [...] Read more.
Malignant proliferating trichilemmal tumors (MPTTs), arising from the external root sheath of hair follicles, are exceptionally rare, with limited documentation of their genetic alterations. We present a case of a 64-year-old African American woman who initially presented with a gradually enlarging nodule on her posterior scalp. An initial biopsy at an outside hospital suggested metastatic adenocarcinoma or squamous cell carcinoma (SCC) of an uncertain origin. A subsequent wide local excision revealed a 2.0 cm tumor demonstrating characteristic trichilemmal keratinization, characterized by an abrupt transition from the nucleated epithelium to a laminated keratinized layer, confirming MPTT. Immunohistochemistry demonstrated diffuse p53 expression, patchy CD 34 expression, focal HER2 membranous expression, and patchy p16 staining (negative HPV ISH). A molecular analysis identified TP53 mutation and amplifications in the ERBB2 (HER2), BRD4, and TYMS. Additional gene mutations of uncertain significance included HSPH1, ATM, PDCD1 (PD-1), BARD1, MSH3, LRP1B, KMT2C (MLL3), GNA11, and RUNX1. Assessments for the homologous recombination deficiency, PD-L1 expression, gene rearrangement, altered splicing, and DNA mismatch repair gene expression were negative. The confirmation of ERBB2 (HER2) amplification in the MPTT through a molecular analysis suggests potential therapeutic avenues involving anti-HER2 monoclonal antibodies. The presence of the TP53 mutation, without the concurrent gene mutations typically observed in SCC, significantly aided in this differential diagnosis. Full article
Show Figures

Figure 1

12 pages, 1174 KiB  
Article
α-Synuclein Oligomers in Skin Biopsies Predict the Worsening of Cognitive Functions in Parkinson’s Disease: A Single-Center Longitudinal Cohort Study
by Elena Contaldi, Milo Jarno Basellini, Samanta Mazzetti, Alessandra Maria Calogero, Aurora Colombo, Viviana Cereda, Gionata Innocenti, Valentina Ferri, Daniela Calandrella, Ioannis U. Isaias, Gianni Pezzoli and Graziella Cappelletti
Int. J. Mol. Sci. 2024, 25(22), 12176; https://doi.org/10.3390/ijms252212176 - 13 Nov 2024
Viewed by 1147
Abstract
α-synuclein oligomers within synaptic terminals of autonomic fibers of the skin reliably discriminate Parkinson’s disease (PD) patients from healthy controls. Nonetheless, the prognostic role of oligomers for disease progression is unknown. We explored whether α-synuclein oligomers evaluated as proximity ligation assay (PLA) score [...] Read more.
α-synuclein oligomers within synaptic terminals of autonomic fibers of the skin reliably discriminate Parkinson’s disease (PD) patients from healthy controls. Nonetheless, the prognostic role of oligomers for disease progression is unknown. We explored whether α-synuclein oligomers evaluated as proximity ligation assay (PLA) score may predict the worsening of cognitive functions in patients with Parkinson’s disease. Thirty-four patients with PD and thirty-four healthy controls (HC), matched 1:1 for age and sex, were enrolled. Patients with PD underwent baseline skin biopsy and an assessment of cognitive domains including Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), Clock Drawing Test, and Frontal Assessment Battery. At the last follow-up visit available, patients were either cognitively stable (PD-CS) or cognitively deteriorated (PD-CD). α-synuclein oligomers were quantified as PLA scores. Differences between groups were assessed, controlling for potential confounders. The relationship between skin biopsy measures and cognitive changes was explored using correlation and multivariable regression analyses. The discrimination power of the PLA score was assessed via ROC curve. To elucidate the relationship between skin biopsy and longitudinal cognitive measures, we conducted multivariable regression analyses using delta scores of cognitive tests (Δ) as dependent variables. We found that PD-CD had higher baseline PLA scores than PD-CS (p = 0.0003), and they were correctly identified in the ROC curve analysis (AUC = 0.872, p = 0.0003). Furthermore, ANCOVA analysis with Bonferroni correction, considering all groups (PD-CS, PD-CD, and HC), showed significant differences between PD-CS and PD-CD (p = 0.003), PD-CS and HC (p = 0.002), and PD-CD and HC (p < 0.001). In the regression model using ΔMMSE as the dependent variable, the PLA score was found to be a significant predictor (β = −0.441, p = 0.016). Similar results were observed when evaluating the model with ΔMoCA (β = −0.378, p = 0.042). In conclusion, patients with Parkinson’s disease with higher α-synuclein burden in the peripheral nervous system may be more susceptible to cognitive decline. Full article
(This article belongs to the Special Issue Challenges and Innovation in Neurodegenerative Diseases, 2nd Edition)
Show Figures

Figure 1

13 pages, 902 KiB  
Article
Oral Spore-Based Probiotic Supplementation Alters Post-Prandial Expression of mRNA Associated with Gastrointestinal Health
by Brian K. McFarlin, Sarah E. Deemer and Elizabeth A. Bridgeman
Biomedicines 2024, 12(10), 2386; https://doi.org/10.3390/biomedicines12102386 - 18 Oct 2024
Cited by 1 | Viewed by 1479
Abstract
Background/Objectives: Unregulated post-prandial dietary endotoxemia may accumulate over time and underlie the development of chronic disease (e.g., leaky gut, inflammatory bowel disease, etc.), for which oral probiotic supplementation may be a prophylactic. The purpose of this study was to determine if 45 [...] Read more.
Background/Objectives: Unregulated post-prandial dietary endotoxemia may accumulate over time and underlie the development of chronic disease (e.g., leaky gut, inflammatory bowel disease, etc.), for which oral probiotic supplementation may be a prophylactic. The purpose of this study was to determine if 45 d of oral spore-based probiotic supplementation altered gastrointestinal-associated mRNA expression following a high-fat meal. Methods: A subset of apparently healthy individuals from a larger study who had dietary endotoxemia at baseline completed 45 d of supplementation with either a placebo (rice flour; n = 10) or spore-based probiotic (Megasporebiotic™; Novonesis, Kongens Lyngby, Denmark; Bacillus indicus (HU36™), Bacillus subtilis (HU58™), Bacillus coagulans (SC208™), and Bacillus licheniformis (SL-307), and Bacillus clausii (SC109™); n = 10). Venous blood was collected in Paxgene RNA tubes prior to (PRE), 3 h, and 5 h after consumption of a high-fat meal (85% of the daily fat RDA and 65% of the daily calorie needs). Total RNA was analyzed for 579 mRNAs of interest (Nanostring nCounter Sprint; Seattle, WA, USA). After normalization to housekeeping controls and calculation of differential expression relative to PRE and controlled for FDR, 15 mRNAs were determined to be significantly changed at either 3 h and/or 5 h post-prandial in the probiotic group but not in the placebo group. Results: Significant mRNA expressions were associated with gastrointestinal tract barrier function (four mRNAs: BATF3, CCR6, CXCR6, and PDCD2), gastrointestinal immunity (four mRNAs: CLEC5A, IL7, CARD9, and FCER1G), or future IBD risk (seven mRNAs: PD-L1, CSF1R, FAS, BID, FADD, GATA3, and KIR3DL). Conclusions: Collectively, the present findings may support the notion that post-prandial immune response to eating is enhanced following 45 d of probiotic supplementation. Full article
(This article belongs to the Special Issue Epigenetic Regulation and Its Impact for Medicine)
Show Figures

Figure 1

18 pages, 4068 KiB  
Article
Type I Interferon Activates PD-1 Expression through Activation of the STAT1-IRF2 Pathway in Myeloid Cells
by Liyan Liang, Yingcui Yang, Kaidi Deng, Yanmin Wu, Yan Li, Liya Bai, Yinsong Wang and Chunwan Lu
Cells 2024, 13(13), 1163; https://doi.org/10.3390/cells13131163 - 8 Jul 2024
Cited by 2 | Viewed by 2278
Abstract
PD-1 (Programmed cell death protein 1) regulates the metabolic reprogramming of myeloid-derived suppressor cells and myeloid cell differentiation, as well as the type I interferon (IFN-I) signaling pathway in myeloid cells in the tumor microenvironment. PD-1, therefore, is a key inhibitory receptor in [...] Read more.
PD-1 (Programmed cell death protein 1) regulates the metabolic reprogramming of myeloid-derived suppressor cells and myeloid cell differentiation, as well as the type I interferon (IFN-I) signaling pathway in myeloid cells in the tumor microenvironment. PD-1, therefore, is a key inhibitory receptor in myeloid cells. However, the regulation of PD-1 expression in myeloid cells is unknown. We report that the expression level of PDCD1, the gene that encodes the PD-1 protein, is positively correlated with the levels of IFNB1 and IFNAR1 in myeloid cells in human colorectal cancer. Treatment of mouse myeloid cell lines with recombinant IFNβ protein elevated PD-1 expression in myeloid cells in vitro. Knocking out IFNAR1, the gene that encodes the IFN-I-specific receptor, diminished the inductive effect of IFNβ on PD-1 expression in myeloid cells in vitro. Treatment of tumor-bearing mice with a lipid nanoparticle-encapsulated IFNβ-encoding plasmid (IFNBCOL01) increased IFNβ expression, resulting in elevated PD-1 expression in tumor-infiltrating myeloid cells. At the molecular level, we determined that IFNβ activates STAT1 (signal transducer and activator of transcription 1) and IRFs (interferon regulatory factors) in myeloid cells. Analysis of the cd279 promoter identified IRF2-binding consensus sequence elements. ChIP (chromatin immunoprecipitation) analysis determined that the pSTAT1 directly binds to the irf2 promoter and that IRF2 directly binds to the cd279 promoter in myeloid cells in vitro and in vivo. In colon cancer patients, the expression levels of STAT1, IRF2 and PDCD1 are positively correlated in tumor-infiltrating myeloid cells. Our findings determine that IFNβ activates PD-1 expression at least in part by an autocrine mechanism via the stimulation of the pSTAT1-IRF2 axis in myeloid cells. Full article
Show Figures

Figure 1

12 pages, 2778 KiB  
Article
Association of Polymorphisms in PD-1 and LAG-3 Genes with Acute Myeloid Leukemia
by Lamjed Mansour, Mashael Alqahtani, Ali Aljuaimlani, Jameel Al-Tamimi, Nouf Al-Harbi and Suliman Alomar
Medicina 2024, 60(5), 721; https://doi.org/10.3390/medicina60050721 - 26 Apr 2024
Viewed by 2544
Abstract
Background and objectives: Acute myeloid leukemia (AML) is a hematological malignancy characterized by uncontrolled proliferation of immature myeloid cells. Immune checkpoint molecules such as programmed cell death protein 1 (PD-1) and lymphocyte activation gene-3 (LAG-3) are essential for controlling anti-tumor immune responses. This [...] Read more.
Background and objectives: Acute myeloid leukemia (AML) is a hematological malignancy characterized by uncontrolled proliferation of immature myeloid cells. Immune checkpoint molecules such as programmed cell death protein 1 (PD-1) and lymphocyte activation gene-3 (LAG-3) are essential for controlling anti-tumor immune responses. This study aims to explore the correlation between specific genetic variations (SNPs) in the PDCD1 (rs2227981) and LAG3 (rs12313899) genes and the likelihood of developing AML in the Saudi population. Material and methods: total of 98 Saudi AML patients and 131 healthy controls were genotyped for the PDCD1 rs2227981 and LAG3 rs12313899 polymorphisms using TaqMan genotyping assays. A logistic regression analysis was conducted to evaluate the relationship between the SNPs and AML risk using several genetic models. Results: The results revealed a significant association between the PDCD1 rs2227981 polymorphism and increased AML risk. In AML patients, the frequency of the G allele was considerably greater than in healthy controls (OR = 1.93, 95% CI: 1.31–2.81, p = 0.00080). The GG and AG genotypes were associated with a very high risk of developing AML (p < 0.0001). In contrast, no significant association was observed between the LAG3 rs12313899 polymorphism and AML risk in the studied population. In silico analysis of gene expression profiles from public databases suggested the potential impact of PDCD1 expression levels on the overall survival of AML patients. Conclusions: This study provides evidence for the association of the PDCD1 rs2227981 polymorphism with an increased risk for AML in the Saudi population. Full article
(This article belongs to the Section Genetics and Molecular Medicine)
Show Figures

Figure 1

22 pages, 4566 KiB  
Article
Ferroptosis Inducers Upregulate PD-L1 in Recurrent Triple-Negative Breast Cancer
by Christophe Desterke, Yao Xiang, Rima Elhage, Clémence Duruel, Yunhua Chang and Ahmed Hamaï
Cancers 2024, 16(1), 155; https://doi.org/10.3390/cancers16010155 - 28 Dec 2023
Cited by 11 | Viewed by 3688
Abstract
(1) Background: Triple-negative breast cancer (TNBC) is a distinct subgroup of breast cancer presenting a high level of recurrence, and neo-adjuvant chemotherapy is beneficial in its therapy management. Anti-PD-L1 immunotherapy improves the effect of neo-adjuvant therapy in TNBC. (2) Methods: Immune-modulation and ferroptosis-related [...] Read more.
(1) Background: Triple-negative breast cancer (TNBC) is a distinct subgroup of breast cancer presenting a high level of recurrence, and neo-adjuvant chemotherapy is beneficial in its therapy management. Anti-PD-L1 immunotherapy improves the effect of neo-adjuvant therapy in TNBC. (2) Methods: Immune-modulation and ferroptosis-related R-packages were developed for integrative omics analyses under ferroptosis-inducer treatments: TNBC cells stimulated with ferroptosis inducers (GSE173905, GSE154425), single cell data (GSE191246) and mass spectrometry on breast cancer stem cells. Clinical association analyses were carried out with breast tumors (TCGA and METABRIC cohorts). Protein-level validation was investigated through protein atlas proteome experiments. (3) Results: Erastin/RSL3 ferroptosis inducers upregulate CD274 in TNBC cells (MDA-MB-231 and HCC38). In breast cancer, CD274 expression is associated with overall survival. Breast tumors presenting high expression of CD274 upregulated some ferroptosis drivers associated with prognosis: IDO1, IFNG and TNFAIP3. At the protein level, the induction of Cd274 and Tnfaip3 was confirmed in breast cancer stem cells under salinomycin treatment. In a 4T1 tumor treated with cyclophosphamide, the single cell expression of Cd274 was found to increase both in myeloid- and lymphoid-infiltrated cells, independently of its receptor Pdcd1. The CD274 ferroptosis-driver score computed on a breast tumor transcriptome stratified patients on their prognosis: low score was observed in the basal subgroup, with a higher level of recurrent risk scores (oncotypeDx, ggi and gene70 scores). In the METABRIC cohort, CD274, IDO1, IFNG and TNFAIP3 were found to be overexpressed in the TNBC subgroup. The CD274 ferroptosis-driver score was found to be associated with overall survival, independently of TNM classification and age diagnosis. The tumor expression of CD274, TNFAIP3, IFNG and IDO1, in a biopsy of breast ductal carcinoma, was confirmed at the protein level (4) Conclusions: Ferroptosis inducers upregulate PD-L1 in TNBC cells, known to be an effective target of immunotherapy in high-risk early TNBC patients who received neo-adjuvant therapy. Basal and TNBC tumors highly expressed CD274 and ferroptosis drivers: IFNG, TNFAIP3 and IDO1. The CD274 ferroptosis-driver score is associated with prognosis and to the risk of recurrence in breast cancer. A potential synergy of ferroptosis inducers with anti-PD-L1 immunotherapy is suggested for recurrent TNBC. Full article
Show Figures

Figure 1

23 pages, 25064 KiB  
Article
Intercellular Molecular Crosstalk Networks within Invasive and Immunosuppressive Tumor Microenvironment Subtypes Associated with Clinical Outcomes in Four Cancer Types
by Jinfen Wei, Wenqi Yu, Lei Wu, Zixi Chen, Guanda Huang, Meiling Hu and Hongli Du
Biomedicines 2023, 11(11), 3057; https://doi.org/10.3390/biomedicines11113057 - 14 Nov 2023
Cited by 4 | Viewed by 3109
Abstract
Heterogeneity is a critical basis for understanding how the tumor microenvironment (TME) contributes to tumor progression. However, an understanding of the specific characteristics and functions of TME subtypes (subTMEs) in the progression of cancer is required for further investigations into single-cell resolutions. Here, [...] Read more.
Heterogeneity is a critical basis for understanding how the tumor microenvironment (TME) contributes to tumor progression. However, an understanding of the specific characteristics and functions of TME subtypes (subTMEs) in the progression of cancer is required for further investigations into single-cell resolutions. Here, we analyzed single-cell RNA sequencing data of 250 clinical samples with more than 200,000 cells analyzed in each cancer datum. Based on the construction of an intercellular infiltration model and unsupervised clustering analysis, four, three, three, and four subTMEs were revealed in breast, colorectal, esophageal, and pancreatic cancer, respectively. Among the subTMEs, the immune-suppressive subTME (subTME-IS) and matrix remodeling with malignant cells subTME (subTME-MRM) were highly enriched in tumors, whereas the immune cell infiltration subTME (subTME-ICI) and precancerous state of epithelial cells subTME (subTME-PSE) were less in tumors, compared with paracancerous tissues. We detected and compared genes encoding cytokines, chemokines, cytotoxic mediators, PD1, and PD-L1. The results showed that these genes were specifically overexpressed in different cell types, and, compared with normal tissues, they were upregulated in tumor-derived cells. In addition, compared with other subTMEs, the expression levels of PDCD1 and TGFB1 were higher in subTME-IS. The Cox proportional risk regression model was further constructed to identify possible prognostic markers in each subTME across four cancer types. Cell-cell interaction analysis revealed the distinguishing features in molecular pairs among different subTMEs. Notably, ligand–receptor gene pairs, including COL1A1-SDC1, COL6A2-SDC1, COL6A3-SDC1, and COL4A1-ITGA2 between stromal and tumor cells, associated with tumor invasion phenotypes, poor patient prognoses, and tumor advanced progression, were revealed in subTME-MRM. C5AR1-RPS19, LGALS9-HAVCR2, and SPP1-PTGER4 between macrophages and CD8+ T cells, associated with CD8+ T-cell dysfunction, immunosuppressive status, and tumor advanced progression, were revealed in subTME-IS. The spatial co-location information of cellular and molecular interactions was further verified by spatial transcriptome data from colorectal cancer clinical samples. Overall, our study revealed the heterogeneity within the TME, highlighting the potential pro-invasion and pro-immunosuppressive functions and cellular infiltration characteristics of specific subTMEs, and also identified the key cellular and molecular interactions that might be associated with the survival, invasion, immune escape, and classification of cancer patients across four cancer types. Full article
Show Figures

Figure 1

Back to TopTop