Male Sex as a Predictor of Worse Prognosis and Clinical Evolution in Patients with Cancer and SARS-CoV-2 Infection, Independent of the rs41386349 PDCD1 Polymorphism
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Selection and Characterization
2.2. Peripheral Blood and DNA Obtaining
2.3. PDCD1 Genotyping
2.4. Statistical Analysis
3. Results
3.1. Impact of SARS-CoV-2 Infection and Presence of Neoplasms on Clinical Outcomes
3.2. PDCD1 Genetic Polymorphism and Susceptibility to SARS-CoV-2 Infection in Oncological and Non-Oncological Patients
3.3. Analysis of Association Between PDCD1 Genetic Polymorphism with COVID-19 Severity Controlled by Age, Sex, and Cancer Presence
3.4. Aggravation of SARS-CoV-2 Infection in Oncological and Non-Oncological Patients Considering Gender and Age
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
COVID-19 | Coronavirus Disease 2019 |
SARS-CoV-2 | Severe Acute Respiratory Syndrome Coronavirus 2 |
PD-1 | Programmed Cell Death Protein 1 |
PDCD1 | Programmed Cell Death 1 |
qPCR | Quantitative Polymerase Chain Reaction |
RT-PCR | Real-Time Polymerase Chain Reaction |
SNP | Single Nucleotide Polymorphism |
VOCs | Variants of Concern |
VOIs | Variants of Interest |
NCDs | Non-Communicable Diseases |
ARDS | Acute Respiratory Distress Syndrome |
OR | Odds Ratio |
CI | Confidence Interval |
n | Number of subjects |
CANCER+ | Cancer patients |
CANCER- | Non-cancer patients |
COVID+ | Positive for COVID-19 |
COVID- | Negative for COVID-19 |
CT | Cytotoxic T-cells |
TT | Homozygous for the T allele |
CC | Homozygous for the C allele |
CT | Cytotoxic T-cells |
Tau-b | Kendall’s Tau-b Correlation Coefficient |
ICU | Intensive Care Unit |
TLR7 | Toll-Like Receptor 7 |
EDTA | Ethylenediamine Tetraacetic Acid |
References
- Mistry, P.; Bermania, F.; Mellet, P.; Peta, K.; Strydom, A.; Viljoen, I.M.; James, W.; Gordon, S.; Pepper, M.S. SARS-CoV-2 Variants, Vaccines, and Host Immunity. Front. Immunol. 2022, 12, 809244. [Google Scholar] [CrossRef]
- Burki, T. Understanding variants of SARS-CoV-2. Lancet 2021, 397, 462. [Google Scholar] [CrossRef]
- Rabi, F.A.; Zoubi, M.S.A.; Kasasbeh, G.A.; Salameh, D.M.; Al-Nassee, A.D. SARS-CoV-2 and Coronavirus Disease 2019: What We Know So Far. Pathogens 2020, 9, 231. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Coronavirus Disease (COVID-19). Available online: https://www.who.int/news-room/fact-sheets/detail/coronavirus-disease-%28covid-19%29 (accessed on 25 April 2025).
- World Health Organization (WHO); The Novel Coronavirus Pneumonia Emergency Response Epidemiology Team. The Epidemiological Characteristics of an Outbreak of 2019 Novel Coronavirus Diseases (COVID-19) in China. 2020. Available online: https://pesquisa.bvsalud.org/global-literature-on-novel-coronavirus-2019-ncov/resource/en/czh-933 (accessed on 25 April 2025).
- Zhang, J.J.; Dong, X.; Cao, Y.Y.; Yuan, Y.D.; Yang, Y.B.; Yan, Y.Q.; Akdis, C.A.; Gao, Y.D. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy 2020, 75, 1730–1741. [Google Scholar] [CrossRef]
- Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef]
- Xu, Z.; Shi, L.; Wang, Y.; Zhang, J.; Huang, L.; Zhang, C.; Liu, S.; Zhao, P.; Liu, H.; Zhu, L.; et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020, 8, 420–422. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, Y.; Shao, C.; Huang, J.; Gan, J.; Huang, X.; Bucci, E.; Piacentini, M.; Ippolito, G.; Melino, G. COVID-19 infection: The perspectives on immune responses. Cell Death Differ. 2020, 27, 1451–1454. [Google Scholar] [CrossRef]
- Nishimura, H.; Nose, M.; Hiai, H.; Minato, N.; Honjo, T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 1999, 11, 141–151. [Google Scholar] [CrossRef]
- Ishida, Y.; Agata, Y.; Shibahara, K.; Honjo, T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 1992, 11, 3887–3895. [Google Scholar] [CrossRef]
- Han, Y.; Liu, D.; Li, L. PD-1/PD-L1 pathway: Current researches in cancer. Am. J. Cancer Res. 2020, 10, 727–742. [Google Scholar]
- Lee, Y.H.; Bae, S.C.; Kim, J.H.; Song, G.G. Meta-analysis of genetic polymorphisms in programmed cell death 1–Associations with rheumatoid arthritis, ankylosing spondylitis, and type 1 diabetes susceptibility. Z. Rheumatol. 2024, 74, 230–239. [Google Scholar] [CrossRef]
- Hezave, Y.A.; Sharifi, Z.; Kermani, F.R. Analysis of Programmed Cell Death-1 (PD-1) Gene Variations (re11568821 and rs41386349) in HTLV-1 Infection Using One Primer Pair and Proviral Load. J. Mol. Evol. 2023, 91, 562–566. [Google Scholar] [CrossRef]
- Syn, L.N.; Teng, M.W.L.; Mok, T.S.K.; Soo, R.A. De-novo and acquired resistance to immune checkpoint targeting. Lancet Oncol. 2017, 18, e731–e741. [Google Scholar] [CrossRef]
- Luo, J.; Lou, J.; Rizvi, H.; Egger, J.V.; Preeshagul, I.R.; Wolchok, J.D.; Hellmann, M.D. Impact of PD-1 Blockade on Severity of COVID-19 in Patients with Lung Cancers. Cancer Discov. 2020, 10, 1121–1128. [Google Scholar] [CrossRef]
- Cornam, V.M.; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer, A.; Chu, D.K.; Bleicker, T.; Brünink, S.; Schneider, J.; Schmidt, L.; et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance 2020, 25, 2000045. [Google Scholar]
- World Health Organization (WHO). Coronavirus Disease 2019 (COVID-19): Situation Report. 2020. Available online: https://iris.who.int/handle/10665/331685 (accessed on 25 April 2025).
- Williamson, E.; Walker, A.J.; Bhaskaran, K.; Bacon, S.; Bates, C.; Morton, C.E.; Curtis, H.J.; Mehrkar, A.; Evans, D.; Inglesby, P.; et al. OpenSAFELY: Factors associated with COVID-19-related hospital death in the linked electronic health records of 17 million adult NHS patients. MedRxiv 2020, 584, 430–436. [Google Scholar]
- Ruan, Q.; Yang, K.; Wang, W.; Jiang, L.; Song, J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020, 46, 846–848. [Google Scholar] [CrossRef]
- Dai, M.; Liu, D.; Liu, M.; Zhou, F.; Li, G.; Chen, Z.; Zhang, Z.; You, H.; Wu, M.; Zheng, Q.; et al. Patients with cancer appear more vulnerable to SARS-COV-2: A multi-center study during the COVID-19 outbreak. Cancer Discov. 2020, 10, 783–791. [Google Scholar] [CrossRef]
- Wang, G.; Cao, K.; Liu, K.; Xue, Y.; Roberts, A.I.; Li, F.; Han, Y.; Rabson, A.B.; Wang, Y.; Shi, Y.; et al. Kynurenic acid, an IDO metabolite, controls TSG-6-mediated immunosuppression of human mesenchymal stem cells. Cell Death Differ. 2019, 25, 1209–1223. [Google Scholar] [CrossRef]
- Yang, X.; Yu, Y.; Xu, J.; Shu, H.; Xia, J.; Liu, H.; Wu, Y.; Zhang, L.; Yu, Z.; Fang, M.; et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. Lancet Respir. Med. 2020, 8, 475–481. [Google Scholar] [CrossRef]
- Liang, W.; Guan, W.; Chen, R.; Wang, W.; Li, J.; Xu, K.; Li, C.; Ai, Q.; Lu, W.; Liang, H.; et al. Cancer patients in SARS-CoV-2 infection: A nationwide analysis in China. Lancet Oncol. 2020, 21, 335–337. [Google Scholar] [CrossRef]
- He, W.; Chen, L.; Chen, L.; Yuan, G.; Fang, Y.; Chen, W.; Wu, D.; Liang, B.; Lu, X.; Ma, Y.; et al. COVID-19 in persons with hematological cancers. Leukemia 2020, 34, 1637–1645. [Google Scholar] [CrossRef]
- Rüthrich, C.M.M.; Giessen-Jung, C.; Borgmann, S.; Classen, A.Y.; Dolff, S.; Grüner, B.; Hanses, F.; Isberner, N.; Köhler, P.; Lanznaster, J.; et al. COVID-19 in cancer patients: Clinical characteristics and outcome an analysis of the LEOSS registry. Ann. Hematol. 2021, 100, 383–393. [Google Scholar] [CrossRef]
- Grivas, P.; Khaki, A.R.; Wise-Draper, T.M.; French, B.; Hennessy, C.; Hsu, C.Y.; Shyr, Y.; Li, X.; Choueiri, T.K.; Painter, C.A.; et al. Association of clinical factors and recent anti-cancer therapy with COVID-19 severity among patients with cancer: A report from the COVID-19 and Cancer Consortium. Ann. Oncol. 2021, 32, 787–800. [Google Scholar] [CrossRef]
- Lee, L.Y.M.; Cazier, J.B.; Starkey, T.; Briggs, S.E.W.; Arnold, R.; Bisht, V.; Booth, S.; Campton, N.A.; Cheng, V.W.T.; Collins, G.; et al. COVID-19 prevalence and mortality in patients with cancer and the effect of primary tumour sub-type and patient demographics: A prospective cohort study. Lancet Oncol. 2021, 21, 1309–1316. [Google Scholar] [CrossRef]
- Sharafeldin, N.; Bates, B.; Song, Q.; Madhira, V.; Yan, Y.; Dong, S.; Lee, E.; Kuhrt, N.; Shao, Y.R.; Liu, F.; et al. Outcomes of COVID-19 in Patients with Cancer: Report from the National COVID Cohort Collaborative (N3C). J. Clin. Oncol. 2021, 39, 2232–2246. [Google Scholar] [CrossRef]
- Pestana, R.C.; Filho, D.C.; Centrone, A.F.; Waisbeck, T.M.B.; Rodrigues, H.V.; Araujo, S.E.A.; Hamerschlak, N. COVID-19 incidence and outcomes among patients with respiratory symptoms in a cancer center emergency department. Braz. J. Oncology. 2020, 16, 5. [Google Scholar]
- De Biasi, S.; Meschiari, M.; Gibellini, L.; Bellinazzi, C.; Borella, R.; Fidanza, L.; Gozzi, L.; Iannone, A.; Tartaro, D.L.; Mattioli, M.; et al. Marked T cell activation, senescence, exhaustion and skewing towards TH17 in patients with COVID-19 pneumonia. Nat. Commun. 2020, 11, 3434. [Google Scholar] [CrossRef]
- Diao, B.; Wang, C.; Tan, Y.; Chen, X.; Liu, Y.; Ning, L.; Chen, L.; Min, L.; Liu, Y.; Wang, G.; et al. Reduction and Functional Exhaustion of T Cells in Patients with Coronavirus Disease 2019 (COVID-19). Front. Immunol. 2020, 11, 827. [Google Scholar] [CrossRef]
- Song, J.W.; Zhang, C.; Fan, X.; Meng, F.P.; Xu, Z.; Xia, P.; Cao, W.J.; Yang, T.; Dai, X.P.; Wang, S.Y.; et al. Immunological and inflammatory profiles in mild and severe cases of COVID-19. Nat. Commun. 2020, 11, 3410. [Google Scholar] [CrossRef]
- Zheng, L.; Li, D.; Wang, F.; Wu, H.; Li, X.; Fu, J.; Chen, X.; Wang, L.; Liu, Y.; Wang, S. Association Between Hepatitis B Viral Burden in Chronic Infection and a Functional Single Nucleotide Polymorphism of the PDCD1 Gene. J. Clin. Immunol. 2012, 30, 855–860. [Google Scholar] [CrossRef]
- Rha, M.S.; Jeong, H.W.; Ko, J.H.; Choi, S.J.; Seo, I.H.; Lee, J.S.; Sa, M.; Kim, A.R.; Joo, E.J.; Ahn, J.Y.; et al. PD-1-Expressing SARS-CoV-2-Specific CD8+ T Cells Are Not Exhausted, but Functional in Patients with COVID-19. Immunity 2021, 54, 44–52. [Google Scholar] [CrossRef]
- Wang, S.C.; Chen, Y.J.; Ou, T.T.; Wu, C.C.; Tsai, W.C.; Liu, H.W.; Yen, J.H. Programmed Death-1 Gene Polymorphisms in Patients with Systemic Lupus Erythematosus in Taiwan. J. Clin. Immunol. 2006, 26, 506–511. [Google Scholar] [CrossRef]
- Mostowska, M.; Wugarski, H.; Chwalińska-Sadowska, H.; Jagofziński, P.P. The programmed cell death 1 gene 7209 C>T polymorphism is associated with the risk of systemic lupus erythematosus in the Polish population. Clin. Exp. Rheumatol. 2008, 26, 457–460. [Google Scholar]
- Zheng, Y.; Huang, Z.; Yin, G.; Zhang, X.; Ye, W.; Zhiliang, H.; Hu, C.; Wei, H.; Zeng, Y.; Chi, Y.; et al. Comparative s tudy of the Lymphocyte Change Between COVID-19 and Non-COVID-19 Pneumonia Cases Suggesting Other Factors Besides Uncontrolled Inflammation Contributed to Multi-Organ injury. MedRxiv 2020. [Google Scholar] [CrossRef]
- Prokunina, L.; Castillejo-López, C.; Oberg, F.; Gunnarsson, I.; Berg, L.; Magnusson, V.; Brookes, A.J.; Tentler, D.; Kristjansdóttir, H.; Gröndal, G.; et al. A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans. Nat. Genet. 2002, 32, 666–669. [Google Scholar] [CrossRef]
- Ferreiros-Vidal, I.; Gomez-Reino, J.J.; Barros, F.; Carracedo, A.; Carreira, P.; Gozalez-Escribano, F.; Liz, M.; Martins, J.; Ordi, J.; Vicario, J.L.; et al. Association of PDCD1 with susceptibility to systemic lupus erythematosus. Arthritis Rheum. 2004, 50, 2590–2597. [Google Scholar] [CrossRef]
- Salmaninejad, D.; Khoramshahi, A.; Azani, V.; Soltaninejad, E.; Aslani, S.; Zamani, M.R.; Zal, M.; Nesaei, A.; Hosseini, S.M. PD-1 and cancer: Molecular mechanisms and polymorphisms. Immunogenetics 2017, 70, 73–86. [Google Scholar] [CrossRef]
- Moore, J.B.; June, C.H. Cytokine release syndrome in severe COVID-19. Science 2020, 368, 473–474. [Google Scholar] [CrossRef]
- Koralnik, I.J. Can immune checkpoint inhibitors keep JC virus in check? N. Engl. J. Med. 2019, 380, 1667–1668. [Google Scholar] [CrossRef]
- Ghosh, S.; Klein, R.S. Sex Drives Dimorphic Immune Responses to Viral Infections. J. Immunol. 2017, 198, 1782–1790. [Google Scholar] [CrossRef]
- Klein, S.L.; Flanagan, K.L. Sex differences in immune responses. Nat. Rev. Immunol. 2016, 16, 626–638. [Google Scholar] [CrossRef]
- Bots, S.H.; Peters, S.A.; Woodward, M. Sex differences in coronary heart disease and stroke mortality: A global assessment of the effect of ageing between 1980 and 2010. BMJ Glob. Health 2017, 2, e000298. [Google Scholar] [CrossRef]
- Gebhard, C.; Regitz-Zagrosek, V.; Neuhauser, H.K.; Morgan, R.; Klein, S.L. Impact of sex and gender on COVID-19 outcomes in Europe. Biol. Sex Differ. 2020, 11, 29. [Google Scholar] [CrossRef]
- Reitsma, M.B.; Fullman, N.; Ng, M.; Salama, J.S.; Abajobir, A.; Abate, K.H.; Abbafati, C.; Abera, S.F.; Abraham, B.; Abyu, G.Y.; et al. Smoking prevalence and attributable disease burden in 195 countries and territories, 1990–2015: A systematic analysis from the Global Burden of Disease Study 2015. Lancet 2017, 389, 1885–1906. [Google Scholar] [CrossRef]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020, 181, 271–280. [Google Scholar] [CrossRef]
- Bezara, O.; Thurman, A.; Pezzulo, A.A.; Leidinger, M.R.; Klesney-Tait, J.A.; Karp, P.H.; Tan, P.; Wohlford-Lenane, C.; McCray, P., Jr.; Meyerholz, D.K. Heterogeneous expression of the SARS-Coronavirus-2 receptor ACE2 in the human respiratory tract. eBioMedicine 2020, 60, 102976. [Google Scholar]
- Chua, R.L.; Lukassen, S.; Trump, S.; Hennig, B.P.; Wnedisch, D.; Pott, F.; Debnath, O.; Thürmann, L.; Kurthm, F.; Völker, M.T.; et al. COVID-19 severity correlates with airway epithelium–immune cell interactions identified by single-cell analysis. Nat. Biotechnol. 2020, 38, 970–979. [Google Scholar] [CrossRef]
- Nie, X.; Qian, L.; Sun, R.; Huang, B.; Dong, X.; Xiao, Q.; Zhang, Q.; Lu, T.; Yue, L.; Chen, S.; et al. Multi-organ proteomic landscape of COVID-19 autopsies. Cell 2021, 184, 775–791. [Google Scholar] [CrossRef]
- Bao, W.; Zhang, X.; Jin, Y.; Hao, H.; Yang, F.; Yin, D.; Chen, X.; Xue, Y.; Han, L.; Zhang, M. Factors Associated with the Expression of ACE2 in Human Lung Tissue: Pathological Evidence from Patients with Normal FEV1 and FEV1/FVC. J. Inflamm. 2021, 14, 1677–1687. [Google Scholar] [CrossRef]
- Channappanavar, R.; Fett, C.; Mack, M.; Eyck, P.P.T.; Meyerholz, D.K.; Perlman, S. Sex-based differences in susceptibility to severe acute respiratory syndrome coronavirus infection. J. Immunol. 2017, 198, 4046–4053. [Google Scholar] [CrossRef]
- Wambier, C.G.; Goren, A.; Vaño-Galván, S.; Ramos, P.M.; Ossimetha, A.; Nau, G.; Herrera, S.; McCoy, J. Androgen sensitivity gateway to COVID-19 disease severity. Drug Dev. Res. 2020, 81, 771–776. [Google Scholar] [CrossRef]
- Mohamed, M.S.; Moulin, T.C.; Schiöth, H.B. Sex differences in COVID-19: The role of androgens in disease severity and progression. Endocrine 2021, 71, 3–8. [Google Scholar] [CrossRef]
- Bienvenu, L.A.; Noonan, J.; Wang, X.; Peter, K. Higher mortality of COVID-19 in males: Sex differences in immune response and cardiovascular comorbidities. Cardiovasc. Res. 2020, 116, 2197–2206. [Google Scholar] [CrossRef]
- Schurz, H.; Salie, M.; Tromp, G.; Hoal, E.G.; Kinner, C.J.; Möller, M. The X chromosome and sex-specific effects in infectious disease susceptibility. Hum. Genom. 2019, 13, 2. [Google Scholar] [CrossRef]
- Snell, D.M.; Turner, J.M. Sex Chromosome Effects on Male-Female Differences in Mammals. Curr. Biol. 2019, 28, R1313–R1324. [Google Scholar] [CrossRef]
- Martin, G.V.; Kanaan, S.B.; Hemon, M.F.; Azzouz, D.F.; Haddad, M.E.; Balandraud, N.; Mignon-Ravix, C.; Picard, C.; Arnoux, F.; Martin, M.; et al. Mosaicism of XX and XXY cells accounts for high copy number of Toll like Receptor 7 and 8 genes in peripheral blood of men with Rheumatoid Arthritis. Sci. Rep. 2019, 9, 12880. [Google Scholar] [CrossRef]
- Sarmiento, L.; Svensson, J.; Barvhetta, I.; Giwercman, A.; Cilio, C. Copy number of the X-linked genes TLR7 and CD40L influences innate and adaptive immune responses. Scand. J. Immunol. 2019, 90, e12776. [Google Scholar] [CrossRef]
- Webb, K.; Peckham, H.; Radziszewska, A.; Menon, M.; Oliveri, P.; Simpson, F.; Deakin, C.T.; Lee, S.; Curtin, C.; Butler, G.; et al. Sex and Pubertal Differences in the Type 1 Interferon Pathway Associate with Both X Chromosome Number and Serum Sex Hormone Concentration. Front. Immunol. 2019, 9, 3167. [Google Scholar] [CrossRef]
- Asano, T.; Boisson, B.; Onodi, F.; Matuozzo, D.; Moncada-Veles, M.; Renkilaraj, M.R.L.M.; Zhang, P.; Meertens, L.; Bolze, A.; Materna, M.; et al. X-linked recessive TLR7 deficiency in ~1% of men under 60 years old with life-threatening COVID-19. Sci. Immunol. 2021, 6, eabl4348. [Google Scholar] [CrossRef]
- Martínez-Gómez, L.E.; Herrera-López, B.; Martinez-Armenta, C.; Ortega-Peña, S.; Camacho-Rea, M.D.C.; Suarez-Ahedo, C.; Váquez-Cárdenas, P.; Vargas-Alarcón, G.; Rojas-Velasco, G.; Fragoso, J.M.; et al. ACE and ACE2 Gene Variants Are Associated with Severe Outcomes of COVID-19 in Men. Front. Immunol. 2022, 13, 812940. [Google Scholar] [CrossRef]
- Takahashi, T.; Wong, P.; Ellingson, M.K.; Lucas, C.; Klein, J.; Israelow, B.; Silva, J.; Oh, J.E.; Mao, T.; Tokuyama, M.; et al. Sex differences in immune responses to SARS-CoV-2 that underlie disease outcomes. MedRxiv 2020. [Google Scholar] [CrossRef]
- Laffont, S.; Rouquié, N.; Azar, P.; Seillet, C.; Plumas, J.; Aspord, C.; Guéry, J.C. X-Chromosome complement and estrogen receptor signaling independently contribute to the enhanced TLR7-mediated IFN-α production of plasmacytoid dendritic cells from women. J. Immunol. 2014, 193, 5444–5452. [Google Scholar] [CrossRef]
- Seillet, C.; Laffont, S.; Trémollières, F.; Rouquié, N.; Ribot, C.; Arnal, J.F.; Douin-Echinard, V.; Gourdy, P.; Guéry, J.C. The TLR-mediated response of plasmacytoid dendritic cells is positively regulated by estradiol in vivo through cell-intrinsic estrogen receptor α signaling. Blood 2012, 119, 454–464. [Google Scholar] [CrossRef]
COVID-19 POSITIVE (n = 279) | COVID-19 NEGATIVE (n = 160) | ||||
---|---|---|---|---|---|
Mild | Moderate | Severe | |||
Non-Oncological (n = 260) | 201 | 12 | 15 | 32 | |
Oncological (n = 179) | Hematological Neoplasms (n = 52) | 0 | 0 | 13 | 39 |
Non-Hematological Neoplasms (n = 127) | 0 | 3 | 35 | 89 |
Group | Female n (%) | Male n (%) | Total n | p (Sex) | Mean Age (±SD) | Discharge n (%) | Death n (%) | p (Prognosis) | |
---|---|---|---|---|---|---|---|---|---|
COVID negative | Non-oncologic | 14 (43.8) | 18 (56.2) | 32 | 0.524 | 52 ± 19 | 28 (93.3) | 2 (6.7) | 0.012 |
Oncologic | 47 (37.6) | 78 (62.4) | 125 | 56 ± 16 | 88 (71.5) | 35 (28.5) | |||
COVID positive | Non-oncologic | 111 (56.3) | 86 (43.7) | 197 | 0.151 | 46 ± 17 | 221 (97.4) | 6 (2.6) | <0.001 |
Oncologic | 23 (45.1) | 28 (54.9) | 51 | 63 ± 13 | 28 (52.8) | 25 (47.2) | |||
Total | 195 | 210 | 405 | – | – | 365 | 68 | – |
COVID-19 Severity | OR | 95% CI | p Value * |
---|---|---|---|
Moderate vs. Mild | 13.6 | 1.688–110.34 | 0.017 |
Severe vs. Mild | 218.5 | 44.479–1073.945 | <0.001 |
7209 C > T Genotype | COVID+ (n = 267) n (%) | COVID- (n = 160) n (%) | ORAdj | CIAdj 95% | pAdj Value |
---|---|---|---|---|---|
CC | 217 (81.3) | 124 (77.5) | -- | -- | -- |
CT | 46 (17.2) | 35 (21.9) | 0.819 | 0.459–1.462 | 0.500 |
TT | 4 (1.5) | 1 (0.6) | 2.322 | 0.191–28.262 | 0.509 |
CT + TT | 50 (18.7) | 36 (22.5) | 0.859 | 0.486–1.517 | 0.600 |
COVID SEVERITY | 7209 C > T Genotype | ORAdj | CIAdj 95% | pAdj Value |
---|---|---|---|---|
Moderate | CC | -- | -- | -- |
CT + TT | 1.429 | 0.365–5.592 | 0.608 | |
Severe | CC | -- | -- | -- |
CT + TT | 1.684 | 0.478–5.934 | 0.417 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, C.Y.M.; Hirata, B.K.B.; Vitiello, G.A.F.; Castilha, E.P.; de Sousa-Pereira, N.; Guembarovski, R.L.; Amarante, M.K.; Watanabe, M.A.E.; Aoki, M.N.; de Oliveira, K.B. Male Sex as a Predictor of Worse Prognosis and Clinical Evolution in Patients with Cancer and SARS-CoV-2 Infection, Independent of the rs41386349 PDCD1 Polymorphism. COVID 2025, 5, 104. https://doi.org/10.3390/covid5070104
Fernandes CYM, Hirata BKB, Vitiello GAF, Castilha EP, de Sousa-Pereira N, Guembarovski RL, Amarante MK, Watanabe MAE, Aoki MN, de Oliveira KB. Male Sex as a Predictor of Worse Prognosis and Clinical Evolution in Patients with Cancer and SARS-CoV-2 Infection, Independent of the rs41386349 PDCD1 Polymorphism. COVID. 2025; 5(7):104. https://doi.org/10.3390/covid5070104
Chicago/Turabian StyleFernandes, Caroline Yukari Motoori, Bruna Karina Banin Hirata, Glauco Akelinghton Freire Vitiello, Eliza Pizarro Castilha, Nathália de Sousa-Pereira, Roberta Losi Guembarovski, Marla Karine Amarante, Maria Angelica Ehara Watanabe, Mateus Nóbrega Aoki, and Karen Brajão de Oliveira. 2025. "Male Sex as a Predictor of Worse Prognosis and Clinical Evolution in Patients with Cancer and SARS-CoV-2 Infection, Independent of the rs41386349 PDCD1 Polymorphism" COVID 5, no. 7: 104. https://doi.org/10.3390/covid5070104
APA StyleFernandes, C. Y. M., Hirata, B. K. B., Vitiello, G. A. F., Castilha, E. P., de Sousa-Pereira, N., Guembarovski, R. L., Amarante, M. K., Watanabe, M. A. E., Aoki, M. N., & de Oliveira, K. B. (2025). Male Sex as a Predictor of Worse Prognosis and Clinical Evolution in Patients with Cancer and SARS-CoV-2 Infection, Independent of the rs41386349 PDCD1 Polymorphism. COVID, 5(7), 104. https://doi.org/10.3390/covid5070104