Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (48)

Search Parameters:
Keywords = PAHs migration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4893 KB  
Article
Mobilization of PAHs by Wave-Induced Resuspension and Liquefaction in Silty Sediment
by Fang Lu, Qian Song and Wenquan Liu
J. Mar. Sci. Eng. 2025, 13(9), 1661; https://doi.org/10.3390/jmse13091661 - 29 Aug 2025
Viewed by 564
Abstract
Silty seabed sediments in the subaqueous delta of the Yellow River are heavily contaminated with petroleum-derived polycyclic aromatic hydrocarbons (PAHs). Storm-induced sediment resuspension and liquefaction are key mechanisms responsible for the remobilization of PAHs into the overlying water column. In this study, laboratory-scale [...] Read more.
Silty seabed sediments in the subaqueous delta of the Yellow River are heavily contaminated with petroleum-derived polycyclic aromatic hydrocarbons (PAHs). Storm-induced sediment resuspension and liquefaction are key mechanisms responsible for the remobilization of PAHs into the overlying water column. In this study, laboratory-scale wave flume experiments were conducted to simulate PAH release under three hydrodynamic scenarios: (i) static diffusion (Stage I), (ii) low-intensity wave action (5 cm wave height, Stage II), and (iii) high-intensity wave action (12 cm wave height, Stage III). Results revealed a strong positive correlation between suspended particulate matter (SPM) and PAH concentrations in the aqueous phase during sediment disturbance. In particular, sediment liquefaction significantly enhanced PAH release, with concentrations up to five times higher than those under static conditions. Furthermore, liquefaction facilitated vertical migration of PAHs within sediments, resulting in reductions in PAH levels below the original background concentrations. The release dynamics varied notably among PAH species: low-molecular-weight (2–3 ring) PAHs, with lower hydrophobicity, were primarily detected in the aqueous phase, while medium- and high-molecular-weight PAHs remained predominantly associated with sediment particles. These findings underscore the critical role of hydrodynamic disturbances—especially sediment liquefaction—in influencing PAH mobility and offer important implications for pollution risk assessment and coastal management in storm-impacted deltaic environments. Full article
Show Figures

Figure 1

14 pages, 728 KB  
Article
Groundwater Quality Analysis: Assessing the Impact of a Closed Landfill—A Case Study on Physico-Chemical and Microplastic Contaminants
by Grzegorz Przydatek, Józef Ciuła, Narcis Barsan, Diana Mirila and Emilian Mosnegutu
Appl. Sci. 2025, 15(15), 8223; https://doi.org/10.3390/app15158223 - 24 Jul 2025
Viewed by 838
Abstract
In the context of increasing concern over long-term environmental impacts of closed landfill sites, this study investigates the composition of groundwater and leachate at a municipal waste landfill in southwestern Poland, two decades after its closure. The research, conducted in 2023, aimed to [...] Read more.
In the context of increasing concern over long-term environmental impacts of closed landfill sites, this study investigates the composition of groundwater and leachate at a municipal waste landfill in southwestern Poland, two decades after its closure. The research, conducted in 2023, aimed to assess groundwater quality using 11 physico-chemical and 13 microplastic indicators. Groundwater and leachate samples were collected seasonally to assess of groundwater quality around landfill, including presence of heavy metals (Cd, Cr6+, Cu, Pb), PAHs and TOC, and microplastics. The results revealed persistent environmental degradation, with elevated concentrations of total organic carbon (24.8 mg/L) and cadmium (0.0211 mg/L), particularly in the second half of the year. Additionally, PET microplastics were detected in correlation with increased precipitation and leachate generation. These findings indicate that pollutants continue to migrate from the waste deposit into the surrounding groundwater, with seasonal patterns amplifying their presence. The study confirms that even decades after closure, municipal landfills can remain significant sources of both chemical and microplastic contamination, underlining the need for long-term monitoring and remediation strategies to protect groundwater resources. Full article
Show Figures

Figure 1

15 pages, 1333 KB  
Article
Chemical Migration of Polycyclic Aromatic Hydrocarbons and Other Compounds from Plastic Food Packaging: Assessment of Food Safety Risks and Health Impacts
by Heba M. Adly, Abdullah A. Saati, Majed S. Obaid and Saleh A. K. Saleh
Foods 2025, 14(6), 1013; https://doi.org/10.3390/foods14061013 - 17 Mar 2025
Cited by 3 | Viewed by 2018
Abstract
The potential migration of chemical compounds from plastic food packaging poses significant health risks, necessitating continuous monitoring and enhanced safety protocols. This study aimed to investigate the migration of nine chemical groups, including alanine, acetic acid, cyano derivatives, urea, amines, amides, benzene derivatives, [...] Read more.
The potential migration of chemical compounds from plastic food packaging poses significant health risks, necessitating continuous monitoring and enhanced safety protocols. This study aimed to investigate the migration of nine chemical groups, including alanine, acetic acid, cyano derivatives, urea, amines, amides, benzene derivatives, nitrites, and non-specified compounds, across different food categories. A total of 195 packaged food samples from eleven food categories were analyzed using Headspace Gas Chromatography-Mass Spectrometry (GC-MS) to identify and quantify chemical migrants. Statistical analysis revealed significant differences in migration levels among food categories (p < 0.05). Cheese, candies, and chips exhibited the highest concentrations of alanine (65.95 ± 0.6384 mg/kg), acetic acid (57.80 ± 0.6383 mg/kg), and benzene derivatives (59.96 ± 1.844 mg/kg), respectively, while frozen raw meat and seafood showed the lowest levels for most compounds. High benzene and nitrite concentrations in certain samples raised particular concern due to their carcinogenic and toxicological effects. Regression analysis confirmed that food matrix type is a strong predictor of migration levels for several compounds. The findings emphasize the urgent need for stricter regulation, improved analytical techniques, and the development of safer packaging materials to reduce chemical migration risks and protect public health. Full article
(This article belongs to the Section Food Toxicology)
Show Figures

Figure 1

17 pages, 2618 KB  
Article
Performance Evaluation of Modified Biochar as a Polycyclic Aromatic Hydrocarbon Adsorbent and Microbial-Immobilized Carrier
by Shuying Geng, Shushuai Mao, Guangming Xu, Aizhong Ding, Feiyong Chen, Junfeng Dou and Fuqiang Fan
Processes 2024, 12(12), 2939; https://doi.org/10.3390/pr12122939 - 23 Dec 2024
Cited by 4 | Viewed by 1941
Abstract
Herein, biochars derived from corn stalks, rice husks, and bamboo powder were modified by nitric acid oxidation and sodium hydroxide alkali activation to identify efficient and cost-effective polycyclic aromatic hydrocarbon-adsorbent and microbial-immobilized carriers. The surface characterization and adsorption investigation results suggested that acid/alkali [...] Read more.
Herein, biochars derived from corn stalks, rice husks, and bamboo powder were modified by nitric acid oxidation and sodium hydroxide alkali activation to identify efficient and cost-effective polycyclic aromatic hydrocarbon-adsorbent and microbial-immobilized carriers. The surface characterization and adsorption investigation results suggested that acid/alkali modification promoted the phenanthrene removal ability in an aqueous solution of biochars via facilitating π–π/n–π electron donor–acceptor interactions, electrostatic interactions, hydrogen bonds, and hydrophobic interactions. Subsequently, the degrading bacteria Rhodococcus sp. DG1 was successfully immobilized on the rice husk-derived biochar with nitric acid oxidation (RBO), which exhibited the maximum phenanthrene adsorption efficiency (3818.99 µg·g−1), abundant surface functional groups, and a larger specific surface area (182.6 m2·g−1) and pore volume (0.141 m3·g−1). Degradation studies revealed that the microorganisms immobilized on RBO by the adsorption method yielded a significant phenanthrene removal rate of 80.15% after 30 days, which was 38.78% higher than that of the control. Conversely, the polymer gel network-based microenvironment in the microorganism-immobilized RBO by the combined adsorption–embedding method restricted the migration and diffusion of nutrients and pollutants in the reaction system. This study thus introduces an innovative modified biochar-based microbial immobilization technology characterized by a simple design, convenient operation, and high adsorption efficiency, offering valuable insights into material selection for PAH contamination bioremediation. Full article
(This article belongs to the Special Issue State-of-the-Art Wastewater Treatment Techniques)
Show Figures

Figure 1

33 pages, 2624 KB  
Review
Searching for Old and New Small-Molecule Protein Kinase Inhibitors as Effective Treatments in Pulmonary Hypertension—A Systematic Review
by Magdalena Jasińska-Stroschein and Paulina Glajzner
Int. J. Mol. Sci. 2024, 25(23), 12858; https://doi.org/10.3390/ijms252312858 - 29 Nov 2024
Cited by 2 | Viewed by 2387
Abstract
Treatment options for pulmonary arterial hypertension (PAH) have improved substantially in the last 30 years, but there is still a need for novel molecules that can regulate the excessive accumulation of pulmonary artery smooth muscle cells (PASMCs) and consequent vascular remodeling. One set [...] Read more.
Treatment options for pulmonary arterial hypertension (PAH) have improved substantially in the last 30 years, but there is still a need for novel molecules that can regulate the excessive accumulation of pulmonary artery smooth muscle cells (PASMCs) and consequent vascular remodeling. One set of possible candidates are protein kinases. The study provides an overview of existing preclinical and clinical data regarding small-molecule protein kinase inhibitors in PAH. Online databases were searched from 2001 to 2023 according to PRISMA. The corpus included preclinical studies demonstrating alterations in at least one PH-related parameter following chronic exposure to an individual protein kinase inhibitor, as well as prospective clinical reports including healthy adults or those with PAH, with primary outcomes defined as safety or efficacy of an individual small-molecule protein kinase inhibitor. Several models in preclinical protocols (93 papers) have been proposed for studying small-molecule protein kinase inhibitors in PAH. In total, 51 kinase inhibitors were tested. Meta-analysis of preclinical results demonstrated seralutinib, sorafenib, fasudil hydrochloride, and imatinib had the most comprehensive effects on PH with anti-inflammatory, anti-oxidant, and anti-proliferative potential. Fasudil demonstrated more than 70% animal survival with the longest experimental period, while dasatinib, nintedanib, and (R)-crizotinib could deteriorate PAH. The substances targeting the same kinases often varied considerably in their activity, and such heterogeneity may be due to the variety of causes. Recent studies have addressed the molecules that affect multiple networks such as PDG-FRα/β/CSF1R/c-KIT/BMPR2 or FKBP12/mTOR. They also focus on achieving a satisfactory safety profile using innovative inhalation formulations Many small-molecule protein kinase inhibitors are able to control migration, proliferation and survival in PASMCs in preclinical observations. Standardized animal models can successfully reduce inter-study heterogeneity and thereby facilitate successful identification of candidate drugs for further evaluations. Full article
Show Figures

Figure 1

16 pages, 4942 KB  
Article
Differential Cytotoxicity, Inflammatory Responses, and Aging Effects of Human Skin Cells in Response to Fine Dust Exposure
by Tae Eun Kim, Jun Woo Lim, Jae Hyun Jeong and Hee Wook Ryu
Environments 2024, 11(11), 259; https://doi.org/10.3390/environments11110259 - 19 Nov 2024
Cited by 2 | Viewed by 1760
Abstract
Airborne fine dust pollution poses a significant threat to both respiratory and skin health, yet the skin’s physiological response to such exposure has been underexplored. This study investigates the impact of fine dust on skin cells, focusing on their metabolic activity, inflammatory responses, [...] Read more.
Airborne fine dust pollution poses a significant threat to both respiratory and skin health, yet the skin’s physiological response to such exposure has been underexplored. This study investigates the impact of fine dust on skin cells, focusing on their metabolic activity, inflammatory responses, and aging-related changes. We found that exposure to fine dust model compounds led to dose-dependent cytotoxicity, with PM2.5-Ions exhibiting higher toxicity compared to PM10-PAHs. Human epithelial keratinocytes (HEKn) showed heightened sensitivity to fine dust, marked by increased inflammation, particularly with elevated IL-8 expression in response to PM2.5-Ions. Additionally, fine dust exposure resulted in reduced cell density, slower proliferation, and decreased migration, notably at higher concentrations of PM2.5-Ions. These changes are indicative of accelerated aging processes, including compromised cell function and structural integrity. Live cell imaging and correlation analyses highlighted significant links between metabolic activity, cell morphology, and IL-8 secretion. These findings provide critical insights into the differential impacts of fine dust components on skin cells, emphasizing the potential acceleration of aging processes and underscoring the need for further research on cellular responses to environmental stress and the development of protective measures against urban fine dust exposure. Overall, this study, which contributes to addressing the skin health risks posed by air pollutants, could be actively used in environmental science, dermatology, and public health. Full article
(This article belongs to the Special Issue Air Quality, Health and Climate)
Show Figures

Figure 1

20 pages, 5205 KB  
Article
Unraveling the Impact of miR-146a in Pulmonary Arterial Hypertension Pathophysiology and Right Ventricular Function
by Joana Santos-Gomes, Pedro Mendes-Ferreira, Rui Adão, Carolina Maia-Rocha, Beatriz Rego, Manu Poels, Anaïs Saint-Martin Willer, Bastien Masson, Steeve Provencher, Sébastien Bonnet, David Montani, Frédéric Perros, Fabrice Antigny, Adelino F. Leite-Moreira and Carmen Brás-Silva
Int. J. Mol. Sci. 2024, 25(15), 8054; https://doi.org/10.3390/ijms25158054 - 24 Jul 2024
Cited by 4 | Viewed by 2533
Abstract
Pulmonary arterial hypertension (PAH) is a chronic disorder characterized by excessive pulmonary vascular remodeling, leading to elevated pulmonary vascular resistance and right ventricle (RV) overload and failure. MicroRNA-146a (miR-146a) promotes vascular smooth muscle cell proliferation and vascular neointimal hyperplasia, both hallmarks of PAH. [...] Read more.
Pulmonary arterial hypertension (PAH) is a chronic disorder characterized by excessive pulmonary vascular remodeling, leading to elevated pulmonary vascular resistance and right ventricle (RV) overload and failure. MicroRNA-146a (miR-146a) promotes vascular smooth muscle cell proliferation and vascular neointimal hyperplasia, both hallmarks of PAH. This study aimed to investigate the effects of miR-146a through pharmacological or genetic inhibition on experimental PAH and RV pressure overload animal models. Additionally, we examined the overexpression of miR-146a on human pulmonary artery smooth muscle cells (hPASMCs). Here, we showed that miR-146a genic expression was increased in the lungs of patients with PAH and the plasma of monocrotaline (MCT) rats. Interestingly, genetic ablation of miR-146a improved RV hypertrophy and systolic pressures in Sugen 5415/hypoxia (SuHx) and pulmonary arterial banding (PAB) mice. Pharmacological inhibition of miR-146a improved RV remodeling in PAB-wild type mice and MCT rats, and enhanced exercise capacity in MCT rats. However, overexpression of miR-146a did not affect proliferation, migration, and apoptosis in control-hPASMCs. Our findings show that miR-146a may play a significant role in RV function and remodeling, representing a promising therapeutic target for RV hypertrophy and, consequently, PAH. Full article
(This article belongs to the Special Issue Molecular Research Landscape of Pulmonary Arterial Hypertension)
Show Figures

Figure 1

15 pages, 1150 KB  
Article
Transformation and Degradation of PAH Mixture in Contaminated Sites: Clarifying Their Interactions with Native Soil Organisms
by Xiaoyu Li, Shengnan Zhang, Ruixue Guo, Xuejing Xiao, Boying Liu, Rehab Khaled Mahmoud, Mostafa R. Abukhadra, Ruijuan Qu and Zunyao Wang
Toxics 2024, 12(5), 361; https://doi.org/10.3390/toxics12050361 - 13 May 2024
Cited by 3 | Viewed by 2623
Abstract
Soil contamination of polycyclic aromatic hydrocarbons (PAHs), especially caused by the mixture of two or more PAHs, raised great environmental concerns. However, research on the migration and transformation processes of PAHs in soils and their interactions with native communities is limited. In this [...] Read more.
Soil contamination of polycyclic aromatic hydrocarbons (PAHs), especially caused by the mixture of two or more PAHs, raised great environmental concerns. However, research on the migration and transformation processes of PAHs in soils and their interactions with native communities is limited. In this work, soil samples from uncontaminated sites around the industrial parks in Handan, Hengshui, and Shanghai were artificially supplemented with three concentrations of anthracene (Ant), 9-chloroanthracene (9-ClAnt), benzopyrene (BaP), and chrysene (Chr). Ryegrass was planted to investigate the degradation of PAHs and its interaction with native soil organisms in the constructed ryegrass–microbe–soil microcosmic system. The bacterial and fungal communities in soil were affected by PAHs; their species diversity and relative abundance changed after exposure to different concentrations of PAHs, among which Lysobacter, Bacillus, Pseudomonas, and Massilia bacteria were correlated to the degradation of PAHs. On the 56th day, the contents of BaP, Chr, and Ant decreased with the degradation process, while the degradation of 9-ClAnt was limited. Nineteen intermediates, including hydroxylation and carboxylated compounds, were identified. The present research would help clarify the potential interactions between PAHs and native organisms in contaminated sites, providing fundamental information for evaluating the transformation risks of PAHs in the natural environment. Full article
Show Figures

Figure 1

11 pages, 1023 KB  
Article
Effect of Composting Ashes from Biomass Combustion on Polycyclic Aromatic Hydrocarbon Content
by Paweł Cwalina, Małgorzata Krasowska, Marzena Ewa Smolewska and Kinga Koziak
Energies 2024, 17(4), 840; https://doi.org/10.3390/en17040840 - 9 Feb 2024
Cited by 6 | Viewed by 1439
Abstract
The safe management of waste from biomass combustion is a global problem, as the use of biomass for energy purposes is increasing around the world. Many rapidly developing countries in Asia, Africa, and South America have weak legal regulations regarding the composition of [...] Read more.
The safe management of waste from biomass combustion is a global problem, as the use of biomass for energy purposes is increasing around the world. Many rapidly developing countries in Asia, Africa, and South America have weak legal regulations regarding the composition of biomass combustion waste, such as ashes. As a result of the improper management of ashes, some of the pollutants may enter agricultural soils and pose a long-term risk to human health through the accumulation of harmful compounds in food. For this reason, research was carried out on the possibility of reducing harmful contaminants contained in ash in the composting process. The work presents the results of the content of 16 polycyclic aromatic hydrocarbons (PAHs) in the created composts, followed by an analysis of the toxicity, mutagenicity, and carcinogenicity of the created fertilisers. Based on the results obtained, a positive impact of the composting process on the reduction in PAHs contained in ash was found. Composting the mixture at 20 °C resulted in a slight decrease in the ΣPAH16 content from 2185.46 µg∙kg−1 to 2063.48 µg∙kg−1. A greater reduction in ΣPAH16 was obtained in the mixture incubated at 40 °C, where an overall decrease in the ΣPAH16 content was recorded from 2185.46 µg∙kg−1 to 1372.38 µg∙kg−1. The composting process also had a positive impact on the TEQ = CEQ, MEQ, and TCDD-TEQ coefficients, causing their decrease. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

12 pages, 3524 KB  
Article
Behaviour of FITC-Labeled Polyallylamine in Polyelectrolyte Microcapsules
by Alexey V. Dubrovskii, Alexey V. Berezhnov, Aleksandr L. Kim and Sergey A. Tikhonenko
Polymers 2023, 15(16), 3330; https://doi.org/10.3390/polym15163330 - 8 Aug 2023
Cited by 3 | Viewed by 1785
Abstract
There are many studies devoted to the application of polyelectrolyte microcapsules (PMC) in various fields; however, there are significantly fewer studies devoted to the study of the polyelectrolyte microcapsules themselves. The study examined the mutual arrangement of the polyelectrolytes in 13-layered PMC capsules [...] Read more.
There are many studies devoted to the application of polyelectrolyte microcapsules (PMC) in various fields; however, there are significantly fewer studies devoted to the study of the polyelectrolyte microcapsules themselves. The study examined the mutual arrangement of the polyelectrolytes in 13-layered PMC capsules composed of (PAH/PSS)6PAH. The research showed that different layers of the polyelectrolyte microcapsules dissociate equally, as in the case of 13-layered PMC capsules composed of (PAH/PSS)6PAH with a well-defined shell, and in the case of 7-layered PMC capsules composed of (PAH/PSS)3PAH, where the shell is absent. The study showed that polyallylamine layers labeled with FITC migrate to the periphery of the microcapsule regardless of the number of layers. This is due to an increase in osmotic pressure caused by the rapid flow of ions from the interior of the microcapsule into the surrounding solution. In addition, FITC-polyallylamine has a lower charge density and less interaction with polystyrene sulfonate in the structure of the microcapsule. Meanwhile, the hydrophilicity of FITC-polyallylamine does not change or decreases slightly. The results suggest that this effect promotes the migration of labeled polyallylamine to a more hydrophilic region of the microcapsule, towards its periphery. Full article
(This article belongs to the Special Issue Advances in Polyelectrolytes)
Show Figures

Figure 1

17 pages, 7650 KB  
Article
A Multiphase Coupled Hydrodynamic Model for Fate and Transport Simulation of Polycyclic Aromatic Hydrocarbons in a Semi-Closed Narrow Bay
by Jiayi Cheng, Ying Wang, Yuxia Li, Lingna Kong, Xiaomeng Wang and Jianbo Han
Toxics 2023, 11(7), 634; https://doi.org/10.3390/toxics11070634 - 21 Jul 2023
Cited by 3 | Viewed by 1725
Abstract
With their unique geographical characteristics, semi-closed narrow bays are important places for human survival but vulnerable to pollution. Because pollutants (polycyclic aromatic hydrocarbons, PAHs) migrate and undergo transformation through a dynamic mechanism in bays of this type, environmental authorities have formulated a series [...] Read more.
With their unique geographical characteristics, semi-closed narrow bays are important places for human survival but vulnerable to pollution. Because pollutants (polycyclic aromatic hydrocarbons, PAHs) migrate and undergo transformation through a dynamic mechanism in bays of this type, environmental authorities have formulated a series of effective measures for pollution prevention and control, but these are difficult to realize. Based on monitoring and historical data, a multiphase-coupled hydrodynamic model combined with a carcinogenic risk-assessment model was able to solve the challenging environmental problem. Results showed that the hydrodynamic condition in the semi-closed narrow bay was very complex. A weaker hydrodynamic force had an adverse influence on the diffusion of pollutants, further amplified in part by the head of the semi-closed narrow bay, resulting in a higher ecological risk. The prediction results indicated that the total amount of PAHs transported from seawater to sediments was about 4.7 × 1013 ng/year, which might cause serious threats to aquaculture or human health. Full article
Show Figures

Figure 1

19 pages, 3869 KB  
Article
Types and Source Apportionment of Polycyclic Aromatic Hydrocarbons (PAHs) in Soil-Groundwater of a Closed Coking Plant in Shanxi Province, China
by Ze Li, Qiyan Feng, Jinhua Dang, Yanqing Rong, Xueqiang Zhu, Lei Meng and Xin Zhang
Water 2023, 15(11), 2002; https://doi.org/10.3390/w15112002 - 25 May 2023
Cited by 10 | Viewed by 2572
Abstract
To clarify the impact of coking industry activities on the soil-groundwater Polycyclic aromatic hydrocarbon (PAH) occurrence, a typical coking site in Shanxi Province was taken as the study area, and soil and groundwater samples were collected to analyze the pollution level, composition, and [...] Read more.
To clarify the impact of coking industry activities on the soil-groundwater Polycyclic aromatic hydrocarbon (PAH) occurrence, a typical coking site in Shanxi Province was taken as the study area, and soil and groundwater samples were collected to analyze the pollution level, composition, and distribution of PAHs in soil-groundwater. The sources of PAHs in the study area were identified based on the positive matrix decomposition model (PMF); the health risks of PAHs were calculated based on the carcinogenic and non-carcinogenic health risk model from the Technical Guidelines for Risk Assessment of Soil Pollution for Construction Land (HJ 25.3-2019) and toxicity equivalent quantity (TEQ). The results showed that ∑PAHs of soil ranged from 0 to 6077.7 mg/kg, with an average value of 198.02 mg/kg; ∑PAHs of groundwater ranged from 0 to 18.30 mg/L, with an average value of 9.39 mg/L. In horizontal distribution, ∑PAH content and types in the tar processing area were much higher than those in the surrounding area, and PAHs might migrate to the southwest through infiltration; in vertical distribution, ∑PAH content reached a peak at 5 m underground. According to the PMF model results, four primary sources of ∑PAHs were identified, which were the coking production source (55.0%), coal and petroleum combustion source (22.6%), atmospheric deposition source (13.1%) and residents living source (9.3%). The total average ∑PAH carcinogenic and non-carcinogenic health risks of soil in the study area were 7.05 × 10−6 and 0.695; the average TEQBaP−∑PAHs was 1.650 mg·TEQ/g; as for groundwater, they were 3.08 × 10−6 and 32.04; the average TEQBaP−∑PAHs was 9.390 μg·TEQ/L, indicating that PAHs both in soil and groundwater had potential health risks. This study provides a basis for the same coking site type for pollution control, secondary utilization, and data support for future site restoration. Full article
(This article belongs to the Special Issue Mine Water Safety and Environment)
Show Figures

Figure 1

21 pages, 1724 KB  
Article
Monitoring Moroccan Honeys: Physicochemical Properties and Contamination Pattern
by Abir Massous, Tarik Ouchbani, Vincenzo Lo Turco, Federica Litrenta, Vincenzo Nava, Ambrogina Albergamo, Angela Giorgia Potortì and Giuseppa Di Bella
Foods 2023, 12(5), 969; https://doi.org/10.3390/foods12050969 - 24 Feb 2023
Cited by 30 | Viewed by 3858
Abstract
The physicochemical traits and an array of organic and inorganic contaminants were monitored in monofloral honeys (i.e., jujube [Ziziphus lotus], sweet orange [Citrus sinensis], PGI Euphorbia [Euphorbia resinifera] and Globularia alyphum) from the Moroccan Béni Mellal-Khénifra [...] Read more.
The physicochemical traits and an array of organic and inorganic contaminants were monitored in monofloral honeys (i.e., jujube [Ziziphus lotus], sweet orange [Citrus sinensis], PGI Euphorbia [Euphorbia resinifera] and Globularia alyphum) from the Moroccan Béni Mellal-Khénifra region (i.e., Khénifra, Beni Méllal, Azlal and Fquih Ben Salah provinces). Moroccan honeys were in line with the physicochemical standards set by the European Union. However, a critical contamination pattern has been outlined. In fact, jujube, sweet orange, and PGI Euphorbia honeys contained pesticides, such as acephate, dimethoate, diazinon, alachlor, carbofuran and fenthion sulfoxide, higher than the relative EU Maximum Residue Levels. The banned 2,3′,4,4′,5-pentachlorobiphenyl (PCB118) and 2,2′,3,4,4′,5,5′-heptachlorobiphenyl (PCB180) were detected in all samples and quantified in jujube, sweet orange and PGI Euphorbia honeys; while polycyclic aromatic hydrocarbons (PAHs), such as chrysene and fluorene, stood out for their higher contents in jujube and sweet orange honeys. Considering plasticizers, all honeys showed an excessive amount of dibutyl phthalate (DBP), when (improperly) considering the relative EU Specific Migration Limit. Furthermore, sweet orange, PGI Euphorbia and G. alypum honeys were characterized by Pb exceeding the EU Maximum Level. Overall, data from this study may encourage Moroccan governmental bodies to strengthen their monitoring activity in beekeeping and to find suitable solutions for implementing more sustainable agricultural practices. Full article
Show Figures

Figure 1

20 pages, 2289 KB  
Article
Release of PAH from Secondary Products Made from End-of-Life Tire Recyclates into 20% Aqueous Ethanol as Assessment of Human Dermal Absorption
by Stefan Hoyer, Lothar Kroll, Benny Fischer, Kai Pisulla and Albrecht Seidel
Recycling 2023, 8(1), 6; https://doi.org/10.3390/recycling8010006 - 30 Dec 2022
Cited by 2 | Viewed by 3021
Abstract
Compliance with the legal limits set at the European level for the content of polycyclic aromatic hydrocarbons (PAH), which are harmful to human health and the environment, is of central importance for the recycling of rubber, particularly end-of-life tires (ELT), into secondary products, [...] Read more.
Compliance with the legal limits set at the European level for the content of polycyclic aromatic hydrocarbons (PAH), which are harmful to human health and the environment, is of central importance for the recycling of rubber, particularly end-of-life tires (ELT), into secondary products, e.g., elastic fall protection mats or anti-slip mats for the transport sector. However, different regulations associated with different analytical methods apply to newly produced tires on the one hand and secondary products made from ELT on the other. Given these discrepancies, ELT can potentially contain levels of PAH, which can be problematic when reused in consumer products. The total PAH content, however, is not without doubt a reliable risk indicator, which should ultimately be based primarily on the transfer of the substances from the product into the skin of human beings or their release into the environment. Accordingly, additional studies are required to determine the extent to which migration-based measurements are more suitable for risk assessment and how the PAH content correlates with migration. Complementing the recently published results of PAH content in different types of ELT, this study investigates the release of PAH for a range of typical secondary materials composed entirely or partly of ELT. In the present study, migration tests with 20% aqueous ethanol were applied, a methodology that has been shown in previous investigations by others to reflect human skin exposure well, and the resulting migration rates of PAH are determined. Full article
(This article belongs to the Special Issue Recycling of Rubber Waste)
Show Figures

Figure 1

19 pages, 4312 KB  
Article
Specificity Protein 1-Mediated Promotion of CXCL12 Advances Endothelial Cell Metabolism and Proliferation in Pulmonary Hypertension
by Evan R. DeVallance, Christopher M. Dustin, Daniel Simoes de Jesus, Imad Al Ghouleh, John C. Sembrat, Eugenia Cifuentes-Pagano and Patrick J. Pagano
Antioxidants 2023, 12(1), 71; https://doi.org/10.3390/antiox12010071 - 29 Dec 2022
Cited by 14 | Viewed by 2683
Abstract
Pulmonary arterial hypertension (PAH) is a rare yet devastating and incurable disease with few treatment options. The underlying mechanisms of PAH appear to involve substantial cellular proliferation and vascular remodeling, causing right ventricular overload and eventual heart failure. Recent evidence suggests a significant [...] Read more.
Pulmonary arterial hypertension (PAH) is a rare yet devastating and incurable disease with few treatment options. The underlying mechanisms of PAH appear to involve substantial cellular proliferation and vascular remodeling, causing right ventricular overload and eventual heart failure. Recent evidence suggests a significant seminal role of the pulmonary endothelium in the initiation and promotion of PAH. Our previous work identified elevated reactive oxygen species (ROS)-producing enzyme NADPH oxidase 1 (NOX1) in human pulmonary artery endothelial cells (HPAECs) of PAH patients promoting endothelial cell proliferation in vitro. In this study, we interrogated chemokine CXCL12′s (aka SDF-1) role in EC proliferation under the control of NOX1 and specificity protein 1 (Sp1). We report here that NOX1 can drive hypoxia-induced endothelial CXCL12 expression via the transcription factor Sp1 leading to HPAEC proliferation and migration. Indeed, NOX1 drove hypoxia-induced Sp1 activation, along with an increased capacity of Sp1 to bind cognate promoter regions in the CXCL12 promoter. Sp1 activation induced elevated expression of CXCL12 in hypoxic HPAECs, supporting downstream induction of expression at the CXCL12 promoter via NOX1 activity. Pathological levels of CXCL12 mimicking those reported in human PAH patient serum restored EC proliferation impeded by specific NOX1 inhibitor. The translational relevance of our findings is highlighted by elevated NOX1 activity, Sp1 activation, and CXCL12 expression in explanted lung samples from PAH patients compared to non-PAH controls. Analysis of phosphofructokinase, glucose-6-phosphate dehydrogenase, and glutaminase activity revealed that CXCL12 induces glutamine and glucose metabolism, which are foundational to EC cell proliferation. Indeed, in explanted human PAH lungs, demonstrably higher glutaminase activity was detected compared to healthy controls. Finally, infusion of recombinant CXCL12 into healthy mice amplified pulmonary arterial pressure, right ventricle remodeling, and elevated glucose and glutamine metabolism. Together these data suggest a central role for a novel NOX1-Sp1-CXCL12 pathway in mediating PAH phenotype in the lung endothelium. Full article
(This article belongs to the Special Issue NADPH Oxidases in Health and Aging)
Show Figures

Figure 1

Back to TopTop