Types and Source Apportionment of Polycyclic Aromatic Hydrocarbons (PAHs) in Soil-Groundwater of a Closed Coking Plant in Shanxi Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection
2.3. Sample Pretreatment
2.4. Instrument Analysis Conditions
2.5. Quality Control and Quality Assurance (QA/QC)
2.6. PMF Models
2.7. Health Risk Assessment
2.8. Statistical Analysis
3. Results and Discussion
3.1. Occurrence of PAHs in Soil Underground
Pollution Level of PAHs in Soil Underground
3.2. Spatial Distribution of PAHs
3.2.1. Horizontal Distribution of PAHs
3.2.2. Vertical Distribution of PAHs
3.3. Source Identification of PAHs (PMF Method)
3.4. Health Risk Assessment
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liang, L.K.; Ru, X.; Wei, J.Y.; Lin, Z.D.; Wei, C.H.; Qian, Y.; Li, F.S. Spatiotemporal simulation and comprehensive evaluation of atmospheric coal-related PAHs emission reduction in China. Ecol. Indic. 2018, 93, 687–696. [Google Scholar] [CrossRef]
- Xia, F.; Zhu, Y.W.; Hu, B.F.; Chen, X.Y.; Li, H.Y.; Shi, K.J.; Xu, L.C. Pollution Characteristics, Spatial Patterns, and Sources of Toxic Elements in Soils from a Typical Industrial City of Eastern China. Land 2021, 10, 1126. [Google Scholar] [CrossRef]
- Cao, W.; Yin, L.; Zhang, D.; Wang, Y.; Yuan, J.; Zhu, Y.; Dou, J. Contamination, Sources, and Health Risks Associated with Soil PAHs in Rebuilt Land from a Coking Plant, Beijing, China. Int. J. Environ. Res. Public Health 2019, 16, 670. [Google Scholar] [CrossRef] [PubMed]
- Qiao, P.; Lai, D.; Yang, S.; Zhao, Q.; Wang, H. Effectiveness of predicting the spatial distributions of target contaminants of a coking plant based on their related pollutants. Environ. Sci. Pollut. Res. Int. 2022, 29, 33945–33956. [Google Scholar] [CrossRef] [PubMed]
- Simic, S.B.; Miljkovic, P.; Baumgertel, A.; Lukic, S.; Ljubicic, J.; Cakmak, D. Environmental and Health Risk Assessment Due to Potentially Toxic Elements in Soil near Former Antimony Mine in Western Serbia. Land 2023, 12, 421. [Google Scholar] [CrossRef]
- Zhang, Q.-Q.X.; Xing, J.-B.; Wang, H.-W.; Liu, J.-T.; Chen, X. Analysis on Contamination Characteristics, Pollution Source Identification and Ecological Risk Assessment of Polycyclic Aromatic Hydrocarbons of Groundwater in a Large Coking Plant Site of Province. Huan Jing Ke Xue 2021, 44, 807–815. [Google Scholar] [CrossRef]
- Krzyszczak, A.; Czech, B. Occurrence and toxicity of polycyclic aromatic hydrocarbons derivatives in environmental matrices. Sci. Total Environ. 2021, 788, 147738. [Google Scholar] [CrossRef]
- Boulange, M.; Lorgeoux, C.; Biache, C.; Michel, J.; Michels, R.; Faure, P. Aging as the main factor controlling PAH and polar-PAC (polycyclic aromatic compound) release mechanisms in historically coal-tar-contaminated soils. Environ. Sci. Pollut. Res. Int. 2019, 26, 1693–1705. [Google Scholar] [CrossRef]
- Chen, C.L.; Zeng, H.Q.; Gong, X.F.; Li, J.; Wang, L.Q. PAHs Source Identification in Sediments and Surrounding Soils of Poyang Lake in China Using Non-Negative Matrix Factorization Analysis. Land 2022, 11, 843. [Google Scholar] [CrossRef]
- Lodygin, E.; Abakumov, E.; Nizamutdinov, T. The Content of Polyarenes in Soils of Antarctica: Variability across Landscapes. Land 2021, 10, 1162. [Google Scholar] [CrossRef]
- Bai, L.; Li, C.H. Investigation of Indoor Polycyclic Aromatic Hydrocarbons (PAHs) in Rural Northeast China: Pollution Characteristics, Source Analysis, and Health Assessment. Buildings 2022, 12, 153. [Google Scholar] [CrossRef]
- Zhao, P.; Yu, K.P.; Lin, C.C. Risk assessment of inhalation exposure to polycyclic aromatic hydrocarbons in Taiwanese workers at night markets. Int. Arch. Occup. Environ. Health 2011, 84, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Johnston, G.P.; Lineman, D.; Johnston, C.G.; Leff, L. Characterization, sources and ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in long-term contaminated riverbank sediments. Environ. Earth Sci. 2015, 74, 3519–3529. [Google Scholar] [CrossRef]
- Pies, C.; Hoffmann, B.; Petrowsky, J.; Yang, Y.; Ternes, T.A.; Hofmann, T. Characterization and source identification of polycyclic aromatic hydrocarbons (PAHs) in river bank soils. Chemosphere 2008, 72, 1594–1601. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Y.; Wang, Y.; Yang, M.; Jiang, L.; Zhong, M.S.; Ma, L.; Wang, S.J.; Zhang, W.Y.; Gong, Y.Y.; Li, D.M. New insight into human health risk from polycyclic aromatic hydrocarbons on surfaces of buildings and facilities for industrial legacy regeneration. J. Hazard. Mater. 2022, 436, 129158. [Google Scholar] [CrossRef]
- Ye, M.; Sun, M.M.; Xie, S.N.; Liu, K.A.; Feng, Y.F.; Zhao, Y.; Wan, J.H.; Hu, F.; Li, H.X.; Zong, L.G.; et al. Feasibility of Tea Saponin-Enhanced Soil Washing in a Soybean Oil-Water Solvent System to Extract PAHs/Cd/Ni Efficiently from a Coking Plant Site. Pedosphere 2017, 27, 452–464. [Google Scholar] [CrossRef]
- Zeng, H.; Zhang, L.; Sun, F.Z.; Liu, J.J.; Fang, B.; Yang, W.Q.; Meng, C.Y.; Wang, M.M.; Wang, Q.; Hao, Y.L. Inhalation bioaccessibility, health risk assessment, and source appointment of ambient PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) in Caofeidian, China. Environ. Sci. Pollut. Res. 2021, 28, 47574–47587. [Google Scholar] [CrossRef]
- Jiang, C.L.; Zhao, D.S.; Chen, X.; Zheng, L.G.; Li, C.; Ren, M.X. Distribution, source and ecological risk assessment of polycyclic aromatic hydrocarbons in groundwater in a coal mining area, China. Ecol. Indic. 2022, 136, 10. [Google Scholar] [CrossRef]
- Kwon, H.O.; Choi, S.D. Polycyclic aromatic hydrocarbons (PAHs) in soils from a multi-industrial city, South Korea. Sci. Total Environ. 2014, 470–471, 1494–1501. [Google Scholar] [CrossRef]
- Qiao, X.; Zheng, B.; Li, X.; Zhao, X.; Dionysiou, D.D.; Liu, Y. Influencing factors and health risk assessment of polycyclic aromatic hydrocarbons in groundwater in China. J. Hazard. Mater. 2021, 402, 123419. [Google Scholar] [CrossRef]
- Zhang, S.; Li, H.; He, R.; Deng, W.; Ma, S.; Zhang, X.; Li, G.; An, T. Spatial distribution, source identification, and human health risk assessment of PAHs and their derivatives in soils nearby the coke plants. Sci. Total Environ. 2023, 861, 160588. [Google Scholar] [CrossRef] [PubMed]
- Huang, N.; Lin, T.; Guan, J.J.; Zhang, G.Q.; Qin, X.Y.; Liao, J.F.; Liu, Q.M.; Huang, Y.F. Identification and Regulation of Critical Source Areas of Non-Point Source Pollution in Medium and Small Watersheds Based on Source-Sink Theory. Land 2021, 10, 668. [Google Scholar] [CrossRef]
- Ma, W.L.; Li, Y.F.; Qi, H.; Sun, D.Z.; Liu, L.Y.; Wang, D.G. Seasonal variations of sources of polycyclic aromatic hydrocarbons (PAHs) to a northeastern urban city, China. Chemosphere 2010, 79, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Cheng, S.Q.; Li, H.F.; Fu, K.; Xu, Y. Groundwater pollution source identification and apportionment using PMF and PCA-APCA-MLR receptor models in a typical mixed land-use area in Southwestern China. Sci. Total Environ. 2020, 741, 140383. [Google Scholar] [CrossRef]
- Wang, D.; Zhu, S.; Wang, L.; Zhen, Q.; Han, F.; Zhang, X. Distribution, Origins and Hazardous Effects of Polycyclic Aromatic Hydrocarbons in Topsoil Surrounding Oil Fields: A Case Study on the Loess Plateau, China. Int. J. Environ. Res. Public Health 2020, 17, 1390. [Google Scholar] [CrossRef]
- Cai, T.; Ding, Y.; Zhang, Z.; Wang, X.; Wang, T.; Ren, Y.; Dong, Y. Effects of total organic carbon content and leaching water volume on migration behavior of polycyclic aromatic hydrocarbons in soils by column leaching tests. Environ. Pollut. 2019, 254, 112981. [Google Scholar] [CrossRef]
- Li, G.L.; Lang, Y.H.; Yang, W.; Peng, P.; Wang, X.M. Source contributions of PAHs and toxicity in reed wetland soils of Liaohe estuary using a CMB-TEQ method. Sci. Total Environ. 2014, 490, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Peng, N.N.; Li, Y.; Liu, Z.G.; Liu, T.T.; Gai, C. Emission, distribution and toxicity of polycyclic aromatic hydrocarbons (PAHs) during municipal solid waste (MSW) and coal co-combustion. Sci. Total Environ. 2016, 565, 1201–1207. [Google Scholar] [CrossRef]
- Han, L.; Qian, L.; Yan, J.; Liu, R.; Du, Y.; Chen, M. A comparison of risk modeling tools and a case study for human health risk assessment of volatile organic compounds in contaminated groundwater. Environ. Sci. Pollut. Res. Int. 2016, 23, 1234–1245. [Google Scholar] [CrossRef]
- Xue, Y.; Wang, X.; Gong, P.; Yao, T. Distribution and vertical migration of polycyclic aromatic hydrocarbons in forest soil pits of southeastern Tibet. Environ. Geochem. Health 2018, 40, 1941–1953. [Google Scholar] [CrossRef]
- Chen, D.; Feng, Q.; Liang, H.; Gao, B.; Alam, E. Distribution characteristics and ecological risk assessment of polycyclic aromatic hydrocarbons PAHs in underground coal mining environment of Xuzhou. Hum. Ecol. Risk Assess. 2019, 25, 1564–1578. [Google Scholar] [CrossRef]
- Batchamen Mougnol, J.B.; Waanders, F.; Fosso-Kankeu, E.; Al Alili, A.R. Leaching of Polycyclic Aromatic Hydrocarbons from the Coal Tar in Sewage Wastewater, Acidic and Alkaline Mine Drainage. Int. J. Environ. Res. Public Health 2022, 19, 4791. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Li, H.Y.; Zhang, X.R.; Bai, X.J.; Wu, L.Y.; Tan, C.H.; Zhang, Z.Y. Removal, migration, and distribution of naphthalene in bioretention facilities: The influences of particulate matter. Environ. Sci. Pollut. Res. 2023, 30, 46940–46949. [Google Scholar] [CrossRef]
- Xu, Q.N.; Yuan, H.; Wang, H.L.; Xu, Y.; Yang, D.Z. A Review on Modification Methods of Adsorbents for Naphthalene in Environment. Catalysts 2022, 12, 398. [Google Scholar] [CrossRef]
- Lu, Y.-T.; Xiang, X.-X.; Zhang, S.-C.; Liu, M.-L.; Wang, J.; Li, S.; Yao, H.; Sun, S.-B. Vertical Distribution Characteristics of PAHs in Soils with Different Land Use Types During Rapid Urbanization. Huan Jing Ke Xue = Huanjing Kexue 2019, 40, 3369–3377. [Google Scholar] [CrossRef]
- He, Y.; Wang, X.Y.; Zhang, Z.B. Polycyclic aromatic hydrocarbons (PAHs) in a sediment core from Lake Taihu and their associations with sedimentary organic matter. J. Environ. Sci. 2023, 129, 79–89. [Google Scholar] [CrossRef]
- Yu, B.Z.; Zhang, D.; Tan, L.H.; Zhao, S.P.; Wang, J.W.; Yao, L.; Cao, W.G. Polycyclic aromatic hydrocarbons in traditional Chinese medicines an analytical method based on different medicinal parts, levels, distribution, and sources.pdf. RSC Adv. 2017, 7, 4671–4680. [Google Scholar] [CrossRef]
- Duodu, G.O.O.; Ogogo, K.N.; Mummullage, S.; Harden, F.; Goonetilleke, A.; Ayoko, G.A. Source apportionment and risk assessment of PAHs in Brisbane River sediment, Australia. Ecol. Indic 2017, 73, 784–799. [Google Scholar] [CrossRef]
- Feng, X.; Feng, Y.; Chen, Y.J.; Cai, J.J.; Li, Q.; Chen, J.M. Source apportionment of PM2.5 during haze episodes in Shanghai by the PMF model with PAHs. J. Clean. Prod. 2022, 330, 129850. [Google Scholar] [CrossRef]
- Gao, P.; Li, H.; Wilson, C.P.; Townsend, T.G.; Xiang, P.; Liu, Y.G.; Ma, L.N.Q. Source identification of PAHs in soils based on stable carbon isotopic signatures. Crit. Rev. Environ. Sci. Technol. 2018, 48, 923–948. [Google Scholar] [CrossRef]
- Ambade, B.; Sethi, S.S.; Chintalacheruvu, M.R. Distribution, risk assessment, and source apportionment of polycyclic aromatic hydrocarbons (PAHs) using positive matrix factorization (PMF) in urban soils of East India. Environ. Geochem. Health 2023, 45, 491–505. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Cai, G.; Zhang, D.; Li, G.; Li, H.; Xu, B.; Zhang, J.; Wang, J. Distribution, Source Apportionment and Risk Assessment of Polycyclic Aromatic Hydrocarbons (PAHs) in Surface Sediments at the Basin Scale: A Case Study in Taihu Basin, China. Bull. Environ. Contam. Toxicol. 2022, 110, 27. [Google Scholar] [CrossRef]
- Pang, S.Y.; Suratman, S.; Latif, M.T.; Khan, M.F.; Simoneit, B.R.T.; Mohd Tahir, N. Polycyclic aromatic hydrocarbons in coastal sediments of Southern Terengganu, South China Sea, Malaysia: Source assessment using diagnostic ratios and multivariate statistic. Environ. Sci. Pollut. Res. Int. 2022, 29, 15849–15862. [Google Scholar] [CrossRef]
- Yan, Y.; He, Q.; Guo, L.L.; Li, H.Y.; Zhang, H.F.; Shao, M.; Wang, Y.H. Source apportionment and toxicity of atmospheric polycyclic aromatic. Atmos. Res. 2017, 193, 50–59. [Google Scholar] [CrossRef]
- Zhao, L.; Zhou, M.; Zhao, Y.; Yang, J.; Pu, Q.; Yang, H.; Wu, Y.; Lyu, C.; Li, Y. Potential Toxicity Risk Assessment and Priority Control Strategy for PAHs Metabolism and Transformation Behaviors in the Environment. Int. J. Environ. Res. Public Health 2022, 19, 10972. [Google Scholar] [CrossRef]
- Lang, Y.H.; Li, G.L.; Wang, X.M.; Peng, P. Combination of Unmix and PMF receptor model to apportion the potential sources and contributions of PAHs in wetland soils from Jiaozhou Bay, China. Mar. Pollut. Bull. 2015, 90, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Niu, J.; Guo, W.; An, X.; Zhao, L. Ecological and health risk-based characterization of agricultural soils contaminated with polycyclic aromatic hydrocarbons in the vicinity of a chemical plant in China. Chemosphere 2016, 163, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Li, C.C.; Zhang, X.P.; Wang, X.Q.; Zhang, X.B.; Liu, S.G.; Yuan, T.; Qu, W.G.; Zhang, Y.J. Distribution Characteristics and Potential Risks of Polycyclic Aromatic Hydrocarbon (PAH) Pollution at a Typical Industrial Legacy Site in Tianjin, North China. Land 2022, 11, 1806. [Google Scholar] [CrossRef]
- Sun, T.; Wang, Y.H.; Tian, J.M.; Kong, X.G. Characteristics of PAHs in soils under different land-use types and their associated health risks in the northern Taihu Basin, China. J. Soils Sediments 2022, 22, 134–145. [Google Scholar] [CrossRef]
- Szatylowicz, E.; Skoczko, I. Evaluation of the PAH Content in Soot from Solid Fuels Combustion in Low Power Boilers. Energies 2019, 12, 4254. [Google Scholar] [CrossRef]
PAHs | Detection Limit | Max | Min | Mean | SD | Variation Coefficient | Sta | Point Detection Rate | Points Exceeding Standard Rate | Sample Detection Rate | Samples Exceeding Standard Rate |
---|---|---|---|---|---|---|---|---|---|---|---|
NaP | 0.09 | 4080 | n.d. | 128.06 | 552.15 | 4.31 | 25 | 100 | 50 | 67.33 | 14.85 |
Acy | 0.09 | 202 | n.d. | 6.40 | 31.22 | 4.88 | — | 60 | — | 28.71 | — |
Ace | 0.1 | 374 | n.d. | 16.02 | 60.26 | 3.76 | — | 70 | — | 43.56 | — |
Flu | 0.08 | 497 | n.d. | 17.12 | 74.63 | 4.36 | — | 70 | — | 32.67 | — |
Phe | 0.1 | 486 | n.d. | 15.92 | 71.25 | 4.47 | — | 60 | — | 27.72 | — |
Ant | 0.1 | 85.5 | n.d. | 2.70 | 11.80 | 4.38 | — | 50 | — | 24.75 | — |
Flua | 0.2 | 128 | n.d. | 4.07 | 18.01 | 4.43 | — | 50 | — | 18.81 | — |
Pyr | 0.1 | 90.8 | n.d. | 2.95 | 13.10 | 4.45 | — | 50 | — | 23.76 | — |
BaA | 0.1 | 29 | n.d. | 0.87 | 3.96 | 4.53 | 5.5 | 50 | 22.64 | 17.82 | 3.96 |
Chr | 0.1 | 29.3 | n.d. | 0.96 | 4.43 | 4.63 | 490 | 50 | 0 | 17.82 | 0 |
BbF | 0.2 | 33.9 | n.d. | 1.01 | 4.78 | 4.74 | 5.5 | 50 | 28.30 | 14.85 | 3.96 |
BkF | 0.1 | 33.3 | n.d. | 0.55 | 3.46 | 6.33 | 55 | 50 | 1.89 | 13.86 | 0 |
BaP | 0.1 | 20.2 | n.d. | 0.59 | 2.70 | 4.57 | 0.55 | 50 | 64.15 | 16.83 | 16.83 |
InP | 0.1 | 15 | n.d. | 0.36 | 1.82 | 5.05 | 5.5 | 50 | 15.09 | 11.88 | 1.98 |
DbA | 0.1 | 5.4 | n.d. | 0.11 | 0.62 | 5.47 | 0.55 | 30 | 30.19 | 6.93 | 6.93 |
BPE | 0.1 | 15.7 | n.d. | 0.34 | 1.79 | 5.25 | — | 40 | — | 10.89 | — |
∑PAHs | — | 6077.7 | n.d. | 198.02 | 845.19 | 4.27 | — | 100 | — | 67.33 | — |
PAHs | Detection Limit | Max | Min | Mean | SD | Variation Coefficient | Sta | Point Detection Rate | Points Exceeding Standard Rate |
---|---|---|---|---|---|---|---|---|---|
NaP | 0.001 | 17.9 | n.d. | 8.92 | 7.11 | 0.80 | 0.1 | 76.92 | 69.23 |
Acy | 0.001 | 0.04 | n.d. | 0.02 | 0.01 | 0.65 | — | 76.92 | — |
Ace | 0.001 | 0.74 | n.d. | 0.33 | 0.26 | 0.77 | — | 76.92 | — |
Flu | 0.001 | 0.18 | n.d. | 0.09 | 0.07 | 0.78 | — | 76.92 | — |
Phe | 0.001 | 0.07 | n.d. | 0.03 | 0.02 | 0.88 | — | 76.92 | — |
Ant | 0.001 | n.d | n.d. | — | — | — | 1.8 | 0 | 0 |
Flua | 0.001 | n.d. | n.d. | — | — | — | 0.24 | 0 | 0 |
Pyr | 0.001 | n.d. | n.d. | — | — | — | — | 0 | 0 |
BaA | 0.001 | n.d. | n.d. | — | — | — | — | 0 | 0 |
Chr | 0.001 | n.d. | n.d. | — | — | — | — | 0 | 0 |
BbF | 0.001 | n.d. | n.d. | — | — | — | 0.004 | 0 | 0 |
BkF | 0.001 | n.d. | n.d. | — | — | — | — | 0 | 0 |
BaP | 0.001 | n.d. | n.d. | — | — | — | 1.0 × 10−5 | 0 | 0 |
InP | 0.001 | n.d. | n.d. | — | — | — | — | 0 | 0 |
DbA | 0.001 | n.d. | n.d. | — | — | — | — | 0 | 0 |
BPE | 0.001 | n.d. | n.d. | — | — | — | — | 0 | 0 |
∑PAHs | — | 18.30 | n.d. | 9.39 | 7.21 | 0.77 | — | 65.38 | — |
PAHs | TEQBaP−∑PAHs (mg·TEQ/g) | TEQTCDD−∑PAHs (μg·CEQ/g) | MEQBaP−∑PAHs (mg·MEQ/g) | ||||||
---|---|---|---|---|---|---|---|---|---|
Max | Min | Mean | Max | Min | Mean | Max | Min | Mean | |
NaP | 4.080 | n.d. | 0.128 | — | — | — | — | — | — |
Acy | 0.202 | n.d. | 0.006 | — | — | — | 0.113 | n.d. | 0.004 |
Ace | 0.374 | n.d. | 0.016 | — | — | — | — | — | — |
Flu | 0.497 | n.d. | 0.017 | — | — | — | — | — | — |
Phe | 0.486 | n.d. | 0.016 | — | — | — | — | — | — |
Ant | 0.855 | n.d. | 0.027 | — | — | — | — | — | — |
Flua | 0.128 | n.d. | 0.004 | — | — | — | — | — | — |
Pyr | 0.091 | n.d. | 0.003 | — | — | — | — | — | — |
BaA | 2.900 | n.d. | 0.087 | 0.725 | n.d. | 0.022 | 2.378 | n.d. | 0.071 |
Chr | 0.293 | n.d. | 0.009 | 5.860 | n.d. | 0.192 | 0.498 | n.d. | 0.016 |
BbF | 3.390 | n.d. | 0.101 | 85.767 | n.d. | 2.555 | 8.475 | n.d. | 0.253 |
BkF | 3.330 | n.d. | 0.055 | 162.171 | n.d. | 2.679 | 3.663 | n.d. | 0.061 |
BaP | 20.200 | n.d. | 0.590 | 7.151 | n.d. | 0.209 | 20.200 | n.d. | 0.590 |
InP | 1.500 | n.d. | 0.036 | 16.500 | n.d. | 0.396 | 4.650 | n.d. | 0.112 |
DbA | 27.000 | n.d. | 0.550 | 10.962 | n.d. | 0.223 | 1.566 | n.d. | 0.032 |
BPE | 0.157 | n.d. | 0.003 | — | — | — | 2.983 | n.d. | 0.065 |
∑PAHs | 51.257 | n.d. | 1.650 | 289.136 | n.d. | 6.276 | 40.218 | n.d. | 1.204 |
PAHs | TEQBaP−∑PAHs(μg·TEQ/g) | TEQTCDD−∑PAHs (μg·CEQ/g) | MEQBaP−∑PAHs (μg·MEQ/g) | ||||||
---|---|---|---|---|---|---|---|---|---|
Max | Min | Mean | Max | Min | Mean | Max | Min | Mean | |
NaP | 17.900 | n.d. | 8.920 | — | — | — | — | — | — |
Acy | 0.040 | n.d. | 0.020 | — | — | — | 0.022 | n.d. | 0.011 |
Ace | 0.740 | n.d. | 0.330 | — | — | — | — | — | — |
Flu | 0.180 | n.d. | 0.090 | — | — | — | — | — | — |
Phe | 0.070 | n.d. | 0.030 | — | — | — | — | — | — |
Ant | n.d. | n.d. | n.d. | — | — | — | — | — | — |
Flua | n.d. | n.d. | n.d. | — | — | — | — | — | — |
Pyr | n.d. | n.d. | n.d. | — | — | — | — | — | — |
BaA | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Chr | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
BbF | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
BkF | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
BaP | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
InP | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
DbA | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
BPE | n.d. | n.d. | n.d. | — | — | — | n.d. | n.d. | n.d. |
∑PAHs | 18.300 | n.d. | 9.390 | n.d. | n.d. | n.d. | 0.022 | n.d. | 0.011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Feng, Q.; Dang, J.; Rong, Y.; Zhu, X.; Meng, L.; Zhang, X. Types and Source Apportionment of Polycyclic Aromatic Hydrocarbons (PAHs) in Soil-Groundwater of a Closed Coking Plant in Shanxi Province, China. Water 2023, 15, 2002. https://doi.org/10.3390/w15112002
Li Z, Feng Q, Dang J, Rong Y, Zhu X, Meng L, Zhang X. Types and Source Apportionment of Polycyclic Aromatic Hydrocarbons (PAHs) in Soil-Groundwater of a Closed Coking Plant in Shanxi Province, China. Water. 2023; 15(11):2002. https://doi.org/10.3390/w15112002
Chicago/Turabian StyleLi, Ze, Qiyan Feng, Jinhua Dang, Yanqing Rong, Xueqiang Zhu, Lei Meng, and Xin Zhang. 2023. "Types and Source Apportionment of Polycyclic Aromatic Hydrocarbons (PAHs) in Soil-Groundwater of a Closed Coking Plant in Shanxi Province, China" Water 15, no. 11: 2002. https://doi.org/10.3390/w15112002
APA StyleLi, Z., Feng, Q., Dang, J., Rong, Y., Zhu, X., Meng, L., & Zhang, X. (2023). Types and Source Apportionment of Polycyclic Aromatic Hydrocarbons (PAHs) in Soil-Groundwater of a Closed Coking Plant in Shanxi Province, China. Water, 15(11), 2002. https://doi.org/10.3390/w15112002