Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (54)

Search Parameters:
Keywords = Ogden model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2882 KiB  
Article
Synergistic Enhancement of Fire Retardancy and Mechanical Performance in Silicone Foams Using Halogen-Free Fillers
by Seong-Jun Park, Tae-Soon Kwon, Hee-Joong Sim, Yeon-Gyo Seo, Kyungwho Choi and Hong-Lae Jang
Fire 2025, 8(7), 243; https://doi.org/10.3390/fire8070243 - 23 Jun 2025
Viewed by 354
Abstract
This study explores the flame retardancy and structural behavior of silicone foam composites filled with halogen-free flame retardants, aiming to evaluate their feasibility for use in mass transportation applications. Silicone foam specimens incorporating magnesium hydroxide and expandable graphite were prepared and compared with [...] Read more.
This study explores the flame retardancy and structural behavior of silicone foam composites filled with halogen-free flame retardants, aiming to evaluate their feasibility for use in mass transportation applications. Silicone foam specimens incorporating magnesium hydroxide and expandable graphite were prepared and compared with unfilled silicone foam under both static and dynamic loading conditions. Uniaxial compression and simple shear tests were conducted to assess mechanical behavior, and a second-order Ogden model was employed to represent hyperelasticity in the finite element analysis. Fire performance was evaluated using cone calorimeter tests in accordance with ISO 5660-1. The results showed a 53.6% reduction in peak heat release rate (PHRR) and a 48.1% decrease in MARHE upon the addition of flame retardants, satisfying relevant fire safety standards. Although the addition of fillers increased the compressive stiffness and reduced rebound resilience, static comfort indices remained within acceptable ranges. These findings confirm that halogen-free filled silicone foams exhibit significantly enhanced fire retardancy while maintaining sufficient mechanical integrity and seating comfort, demonstrating their potential as eco-friendly alternatives to conventional polyurethane foams in large-scale transportation applications. Full article
Show Figures

Graphical abstract

13 pages, 1018 KiB  
Article
Nonlinear Shear Waves in Compressible Media: Occurrence of Strong Shocks
by Vladimir Bratov and Sergey V. Kuznetsov
Mathematics 2025, 13(12), 1991; https://doi.org/10.3390/math13121991 - 17 Jun 2025
Viewed by 293
Abstract
Apparently for the first time, shear shock wave fronts (shear shocks) are observed in a hyperfoam at the propagation of shear waves. The hyperfoam is modelled by the Ogden compressible hyperelastic potential. A possible appearance of the shear shocks may explain the kinetic [...] Read more.
Apparently for the first time, shear shock wave fronts (shear shocks) are observed in a hyperfoam at the propagation of shear waves. The hyperfoam is modelled by the Ogden compressible hyperelastic potential. A possible appearance of the shear shocks may explain the kinetic and strain energy attenuation along with heat release at the propagation of shear waves in hyperfoams. The analysis is based on the Cauchy formalism for equations of motion, equations of energy balance, and FE analysis for solutions of the constructed nonlinear hyperbolic equation. Full article
(This article belongs to the Special Issue Computational Mathematics: Advanced Methods and Applications)
Show Figures

Figure 1

20 pages, 7144 KiB  
Article
Biodynamic Characteristics and Blood Pressure Effects of Stanford Type B Aortic Dissection Based on an Accurate Constitutive Model
by Yiwen Wang, Libo Xin, Lijie Zhou, Xuefeng Wu, Jinong Zhang and Zhaoqi Wang
Appl. Sci. 2025, 15(11), 5853; https://doi.org/10.3390/app15115853 - 23 May 2025
Viewed by 358
Abstract
Aortic dissection (AD) is a highly lethal cardiovascular emergency, and clinical studies have found that a high percentage of AD patients are hypertensive. In previous studies, the AD model was simplified, such as by treating the vessel wall as a single-layer rigid material, [...] Read more.
Aortic dissection (AD) is a highly lethal cardiovascular emergency, and clinical studies have found that a high percentage of AD patients are hypertensive. In previous studies, the AD model was simplified, such as by treating the vessel wall as a single-layer rigid material, ignoring the complex biomechanical factors of the vascular lumen. This study elucidates key biomechanical mechanisms by which hypertension promotes primary AD progression using multiscale modeling. First, based on experimental data from longitudinal and circumferential uniaxial tensile testing of porcine aortic walls (5–7-month-old specimens), a constitutive model of the aortic wall was developed using the Holzapfel–Gasser–Ogden (HGO) framework. The material parameters were calibrated via inverse optimization in ABAQUS-ISIGHT, achieving close alignment with mechanical properties of the human aorta. Using this validated model to define the hyperelastic properties of the aortic wall, a multiphysics coupling platform was constructed in COMSOL Multiphysics 6.2, integrating computational fluid dynamics (CFD) and fluid–structure interaction (FSI) algorithms. This framework systematically quantified the effects of blood pressure (bp) fluctuations on compressive stresses, von Mises stresses, and deformation of the intimal flap within the AD lesion region. With constant blood rheology, elevated blood pressure enhances wall stresses (compressive and von Mises), and intima-media sheet deformation, this can trigger initial rupture tears, false lumen dilation, and branch arterial flow obstruction, ultimately deteriorating end-organ perfusion. Full article
Show Figures

Figure 1

16 pages, 2251 KiB  
Article
Thermo-Oxidative Aging Effects on Hyperelastic Behavior of EPDM Rubber: A Constitutive Modeling Approach
by Zhaonan Xie, Xicheng Huang, Kai Zhang, Shunping Yan, Junhong Chen, Ren He, Jiaxing Li and Weizhou Zhong
Materials 2025, 18(10), 2236; https://doi.org/10.3390/ma18102236 - 12 May 2025
Cited by 1 | Viewed by 540
Abstract
The effect of thermo-oxidative aging on the hyperelastic behavior of ethylene propylene diene monomer (EPDM) rubber was investigated by a combined experimental and theoretical modeling approach. Firstly, the uniaxial tensile test of aged and unaged EPDM rubber was carried out. The test results [...] Read more.
The effect of thermo-oxidative aging on the hyperelastic behavior of ethylene propylene diene monomer (EPDM) rubber was investigated by a combined experimental and theoretical modeling approach. Firstly, the uniaxial tensile test of aged and unaged EPDM rubber was carried out. The test results show that the unaged EPDM rubber had the nonlinear large deformation characteristic of a “S” shape. The stiffness of the EPDM rubber was found to increase with the aging time and aging temperature. Then, in order to quantitatively characterize the hyperelastic behavior of unaged EPDM rubber, the fitting performances of the Mooney–Rivlin, Arruda–Boyce, and Ogden models were compared based on a uniaxial tensile stress–strain curve. The results show that the Ogden model provided a more accurate representation of the hyperelastic behavior of unaged EPDM rubber. Subsequently, the Dakin dynamic equation was adopted to associate the parameters of the Ogden model with the aging time, and the Arrhenius relationship was utilized to introduce the aging temperature into the rate term of the Dakin dynamic equation, thereby establishing an improved Ogden constitutive model. This improved model expanded the Ogden model’s ability to explain aging time and aging temperature. Finally, the improved model prediction results and the test results were compared, and they indicate that the proposed improved Ogden constitutive model can accurately describe the hyperelastic behavior of aged and unaged EPDM rubber. Full article
(This article belongs to the Section Polymeric Materials)
Show Figures

Figure 1

27 pages, 17457 KiB  
Article
High-Energy Low-Velocity Impact Behavior of Rubber-Coated Sandwich Composite Structure with Buoyancy Material Core: Experimental and Numerical Investigation
by Yi Zhu, Zhiyuan Mei, Haitao Li, Hongbo Tao and Guotao Chen
Materials 2025, 18(8), 1791; https://doi.org/10.3390/ma18081791 - 14 Apr 2025
Viewed by 308
Abstract
The dynamic response and failure of rubber-coated sandwich composite structures with buoyancy material core (RC-BMC-SCS) subjected to high-energy low-velocity impacts were experimentally and numerically investigated. Six types of BMC-SCSs were designed and manufactured, and high-energy low-velocity impact experiments were performed. Based on the [...] Read more.
The dynamic response and failure of rubber-coated sandwich composite structures with buoyancy material core (RC-BMC-SCS) subjected to high-energy low-velocity impacts were experimentally and numerically investigated. Six types of BMC-SCSs were designed and manufactured, and high-energy low-velocity impact experiments were performed. Based on the Mohr-Coulomb theory and the Ogden hyperelasticity constitutive model, a low-velocity impact finite element analysis model was developed. The results indicate that BMC-SCS damage stages could be divided into: (1) matrix damage, (2) core cracks, (3) debonding and fiber breakage. Three distinct damage stages of the RC-BMC-SCS were revealed: (1) rubber layer energy absorption, (2) core cracks, (3) debonding. The rubber layer can enhance the damage threshold by approximately 100% compared to BMC-SCS. However, rubber energy absorption capacity has an upper limit. Additionally, the larger the curvature of the BMC-SCS, the higher the initial stiffness of the structure and the larger the impact damage area. The results of this study provide valuable insights for the multifunctional design of composite deep-sea marine structures. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

14 pages, 5142 KiB  
Proceeding Paper
Numerical and Experimental Analysis of the Structural Behavior of an EPP Component
by Carlo Sabbatini, Gianluca Chiappini, Veronica Ilari, Giacomo Zandri and Marco Sasso
Eng. Proc. 2025, 85(1), 29; https://doi.org/10.3390/engproc2025085029 - 27 Feb 2025
Viewed by 390
Abstract
The use of expanded polymeric materials is becoming increasingly widespread in the industrial sector, not only for energy absorption purposes but also for structural applications. The most widely used approach to model the large strain elastic response of polymer foams in a finite [...] Read more.
The use of expanded polymeric materials is becoming increasingly widespread in the industrial sector, not only for energy absorption purposes but also for structural applications. The most widely used approach to model the large strain elastic response of polymer foams in a finite element (FE) solution is the use of the Ogden–Hill hyperelastic material model. We performed a uniaxial and simple shear test to calibrate the model’s parameters. In this work, a compression test was performed on a component, entirely made of expanded polypropylene, from a commercial machine. The experimental results, measured through 3D image analysis, were then compared with the simulation ones. This study aims to verify whether the Ogden foam model accurately describes the material’s behavior when the component has a complex geometry and large dimensions. Full article
Show Figures

Figure 1

26 pages, 10090 KiB  
Article
Wear Resistance of Additively Manufactured Footwear Soles
by Shuo Xu, Shuvodeep De, Meysam Khaleghian and Anahita Emami
Lubricants 2025, 13(2), 89; https://doi.org/10.3390/lubricants13020089 - 17 Feb 2025
Cited by 1 | Viewed by 1347
Abstract
This study systematically evaluated the wear resistance and mechanical performance of 3D-printed thermoplastic rubber (TPR) and flexible stereolithography (SLA) resin materials for footwear outsoles. Abrasion tests were conducted on 26 samples (2 materials × 13 geometries) to analyze the weight loss, variations in [...] Read more.
This study systematically evaluated the wear resistance and mechanical performance of 3D-printed thermoplastic rubber (TPR) and flexible stereolithography (SLA) resin materials for footwear outsoles. Abrasion tests were conducted on 26 samples (2 materials × 13 geometries) to analyze the weight loss, variations in the friction coefficient, temperature change, and deformation behavior. Finite element method (FEM) simulations incorporating the Ogden hyperelastic model were employed to investigate the stress distribution and wear patterns. The results revealed that TPR exhibits superior abrasion resistance and stable wear curves, making it suitable for high-load applications. On average, the TPR samples showed 27.3% lower weight loss compared to the SLA resin samples. The SLA resin samples exhibited a 65% higher mean coefficient of friction (COF) compared to the TPR samples. Furthermore, the SLA resin samples demonstrated a 94% higher temperature change during the sliding tests, reflecting greater friction-induced heating. The FEM simulations further validated TPR’s performance in high-stress regions and SLA resin’s deformation characteristics. This study’s findings not only highlight the performance differences between these two 3D-printed materials but also provide theoretical guidance for material selection based on wear behavior, contributing to the optimization of outsole design and its practical applications. Full article
(This article belongs to the Special Issue Wear and Friction in Hybrid and Additive Manufacturing Processes)
Show Figures

Figure 1

13 pages, 3729 KiB  
Article
Quasi-Static Mechanical Biomimetics Evaluation of Car Crash Dummy Skin
by Yurun Li, Zhixin Liu, Cuiru Sun, Xiaoya Zheng, Guorui Du, Xiaoshuang Wang, Songchen Wang and Weidong Liu
Biomimetics 2024, 9(12), 762; https://doi.org/10.3390/biomimetics9120762 - 15 Dec 2024
Viewed by 1120
Abstract
Accurate replication of soft tissue properties is essential for the development of car crash test dummy skin to ensure the precision of biomechanical injury data. However, the intricacy of multi-layer soft tissue poses challenges in standardizing the development and testing of dummy skin [...] Read more.
Accurate replication of soft tissue properties is essential for the development of car crash test dummy skin to ensure the precision of biomechanical injury data. However, the intricacy of multi-layer soft tissue poses challenges in standardizing the development and testing of dummy skin materials to emulate soft tissue properties. This study presents a comprehensive testing and analysis of the compressive mechanical properties of both single and multi-layered soft tissues and car crash dummy skin materials, aiming to enhance the biofidelity of dummy skin. We presented one-term Ogden hyperelastic models and generalized Maxwell viscoelastic models for single-layer and multi-layer soft tissues, as well as dummy skin materials. The comparative analysis results indicate that the existing dummy skin material fails to fully consider the strain-rate-dependent characteristic of soft tissue. Furthermore, dummy skin materials exhibited ~3 times shorter relaxation times and ~2–3 times lower stress decay rates compared to soft tissues, suggesting a less viscous nature. This study provides an accurate representation of the mechanics of soft tissue and dummy skin under quasi-static compressive loading. The findings are instrumental for the development of novel bionic skin materials or structures to more precisely replicate the biomechanical properties of soft tissues, thereby enhancing the accuracy and reliability of car crash test dummies. Full article
Show Figures

Figure 1

31 pages, 13872 KiB  
Article
Hyperelastic and Stacked Ensemble-Driven Predictive Modeling of PEMFC Gaskets Under Thermal and Chemical Aging
by Su-Yeon Park, Akeem Bayo Kareem, Toyyeebah Ajibola Mustapha, Woo-Jeong Joo and Jang-Wook Hur
Materials 2024, 17(22), 5675; https://doi.org/10.3390/ma17225675 - 20 Nov 2024
Cited by 1 | Viewed by 1283
Abstract
This study comprehensively investigates the stress distribution and aging effects in Ethylene Propylene Diene Monomer (EPDM) and Liquid Silicone Rubber (LSR) gasket materials through a novel integration of hyperelastic modeling and advanced machine learning techniques. By employing the Mooney–Rivlin, Ogden, and Yeoh hyperelastic [...] Read more.
This study comprehensively investigates the stress distribution and aging effects in Ethylene Propylene Diene Monomer (EPDM) and Liquid Silicone Rubber (LSR) gasket materials through a novel integration of hyperelastic modeling and advanced machine learning techniques. By employing the Mooney–Rivlin, Ogden, and Yeoh hyperelastic models, we evaluated the mechanical behavior of EPDM and LSR under conditions of no aging, heat aging, and combined heat- and sulfuric-acid exposure. Each model revealed distinct sensitivities to stress distribution and material deformation, with peak von Mises stress values indicating that LSR experiences higher internal stress than EPDM across all conditions. For instance, without aging, LSR shows a von Mises stress of 24.17 MPa compared to 14.96 MPa for EPDM, while under heat and sulfuric acid exposure, LSR still exhibits higher stress values, showcasing its resilience under extreme conditions. Additionally, the ensemble learning approach achieved a classification accuracy of 98% for LSR and 84% for EPDM in predicting aging effects, underscoring the robustness of our predictive framework. These findings offer practical implications for selecting suitable gasket materials and developing predictive maintenance strategies in industrial applications, such as fuel cells, where material integrity under stress and aging is paramount. Full article
(This article belongs to the Special Issue Advanced Materials: Process, Properties, and Applications)
Show Figures

Figure 1

15 pages, 4836 KiB  
Article
Constitutive Model for Thermal-Oxygen-Aged EPDM Rubber Based on the Arrhenius Law
by Xiaoling Hu, Xing Yang, Xi Jiang and Kui Song
Polymers 2024, 16(18), 2608; https://doi.org/10.3390/polym16182608 - 14 Sep 2024
Cited by 5 | Viewed by 1818
Abstract
Ethylene-propylene-diene monomer (EPDM) is a key engineering material; its mechanical characterization is important for the safe use of the material. In this paper, the coupled effects of thermal degradation temperature and time on the tensile mechanical behavior of EPDM rubber were investigated. The [...] Read more.
Ethylene-propylene-diene monomer (EPDM) is a key engineering material; its mechanical characterization is important for the safe use of the material. In this paper, the coupled effects of thermal degradation temperature and time on the tensile mechanical behavior of EPDM rubber were investigated. The tensile stress-strain curves of the aged and unaged EPDM rubber show strong nonlinearity, demonstrating especially rapid stiffening as the strain increases under small deformation. The popular Mooney–Rivlin and Ogden (N = 3) models were chosen to fit the test data, and the results indicate that neither of the classical models can accurately describe the tensile mechanical behavior of this rubber. Six hyperelastic constitutive models, which are excellent for rubber with highly nonlinearity, were employed, and their abilities to reproduce the stress-strain curve of the unaged EPDM were assessed. Finally, the Davis–De–Thomas model was found to be an appropriate hyperelastic model for EPDM rubber. A Dakin-type kinetic relationship was employed to describe the relationships between the model parameters and aging temperature and time, and, combined with the Arrhenius law, a thermal aging constitutive model for EPDM rubber was established. The ability of the proposed model was checked by independent testing data. In the moderate strain range of 200%, the errors remained below 10%. The maximum errors of the prediction results at 85 °C for 4 days and 100 °C for 2 and 4 days were computed to be 17.06%, 17.51% and 19.77%, respectively. This work develops a theoretical approach to predicting the mechanical behavior of rubber material that has suffered thermal aging; this approach is helpful in determining the safe long-term use of the material. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

19 pages, 6954 KiB  
Article
Prediction Accuracy of Hyperelastic Material Models for Rubber Bumper under Compressive Load
by Dávid Huri
Polymers 2024, 16(17), 2534; https://doi.org/10.3390/polym16172534 - 7 Sep 2024
Cited by 2 | Viewed by 2132
Abstract
Different hyperelastic material models (Mooney-Rivlin, Yeoh, Gent, Arruda-Boyce and Ogden) are able to estimate Treloar’s test data series containing uniaxial and biaxial tension and pure shear stress-strain characteristics of rubber. If the rubber behaviour is only determined for the specific load of the [...] Read more.
Different hyperelastic material models (Mooney-Rivlin, Yeoh, Gent, Arruda-Boyce and Ogden) are able to estimate Treloar’s test data series containing uniaxial and biaxial tension and pure shear stress-strain characteristics of rubber. If the rubber behaviour is only determined for the specific load of the product, which, in the case of rubber bumpers, is the compression, the time needed for the laboratory test can be significantly decreased. The stress-strain characteristics of the uniaxial compression test of rubber samples were used to fit hyperelastic material models. Laboratory and numerical tests of a rubber bumper with a given compound and complex geometry were used to determine the accuracy of the material models. Designing rubber products requires special consideration of the numerical discretization process due to the nonlinear behaviours (material nonlinearity, large deformation, connections, etc.). Modelling considerations were presented for the finite element analysis of the rubber bumper. The results showed that if only uniaxial compression test data are available for the curve fitting of the material model, the Yeoh model performs the best in predicting the rubber product material response under compressive load and complex strain state. Full article
(This article belongs to the Special Issue Mechanical Behaviors and Properties of Polymer Materials)
Show Figures

Figure 1

14 pages, 2095 KiB  
Article
Rate-Dependent Tensile Properties of Aluminum-Hydroxide-Enhanced Ethylene Propylene Diene Monomer Coatings for Solid Rocket Motors
by Ran Wang, Yiming Zhang, Ningfei Wang and Yi Wu
Materials 2024, 17(15), 3790; https://doi.org/10.3390/ma17153790 - 1 Aug 2024
Cited by 1 | Viewed by 952
Abstract
Quasi-static and dynamic tensile tests on aluminum-hydroxide-enhanced ethylene propylene diene monomer (EPDM) coatings were conducted using a universal testing machine and a Split Hopkinson Tension Bar (SHTB) over a strain rate range of 10−3 to 103 s−1. This comprehensive [...] Read more.
Quasi-static and dynamic tensile tests on aluminum-hydroxide-enhanced ethylene propylene diene monomer (EPDM) coatings were conducted using a universal testing machine and a Split Hopkinson Tension Bar (SHTB) over a strain rate range of 10−3 to 103 s−1. This comprehensive study explored the tensile performance of enhanced EPDM coatings in solid rocket motors. The results demonstrated a significant impact of strain rate on the mechanical properties of EPDM coatings. To capture the hyperelastic and viscoelastic characteristics of EPDM coatings at large strains, the Ogden hyperelastic model was used to replace the standard elastic component to develop an enhanced Zhu–Wang–Tang (ZWT) nonlinear viscoelastic constitutive model. The model parameters were fitted using a particle swarm optimization (PSO) algorithm. The improved constitutive model’s predictions closely matched the experimental data, accurately capturing stress–strain responses and inflection points. It effectively predicts the tensile behavior of aluminum-hydroxide-enhanced EPDM coatings within a 20% strain range and a wide strain rate range. Full article
Show Figures

Figure 1

21 pages, 15278 KiB  
Article
Dynamic Analysis and Optimization of the Coupling System of Vibrating Flip-Flow Screen and Material Group
by Sanpeng Gong, Chenhao Wang, Jialiang Guo, Ziqi Qiao, Guofeng Zhao, Junkai Fan, Ningning Xu and Xinwen Wang
Symmetry 2024, 16(7), 913; https://doi.org/10.3390/sym16070913 - 17 Jul 2024
Cited by 5 | Viewed by 1432
Abstract
Vibrating flip-flow screens (VFFSs) provide an effective solution for deeply screening moist and fine-grained minerals, and an accurate dynamic model of VFFSs is critical for its dynamic analysis and optimization, thereby improving the vibration stability and symmetry of VFFSs. In this paper, uniaxial [...] Read more.
Vibrating flip-flow screens (VFFSs) provide an effective solution for deeply screening moist and fine-grained minerals, and an accurate dynamic model of VFFSs is critical for its dynamic analysis and optimization, thereby improving the vibration stability and symmetry of VFFSs. In this paper, uniaxial tension, uniaxial compression, plane tension, and shear stress relaxation experiments were conducted on screen panel samples to illustrate that the third-order Ogden model and the generalized Maxwell model can accurately describe the hyperelasticity and viscoelasticity of screen panels. Then, the coupling method of finite element and discrete element was adopted to establish the simulation model of the screen panel and material group coupling system, and the dynamics of the coupling system under different loading conditions were explored. Finally, the dynamic model of the coupling system of VFFSs mass, screen panel, and material group was proposed, and the non-dominated sorting genetic algorithm II was applied to optimize the system’s dynamic response. The results reveal that the use of optimized shear springs can reduce the relative amplitude change rate of the main and floating screen frame by 44.30% while maintaining the periodic motion of the VFFSs under operation conditions, greatly enhancing the stability of the VFFSs system. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

21 pages, 6809 KiB  
Article
Improved Mechanical Characterization of Soft Tissues Including Mounting Stretches
by Toni Škugor, Lana Virag, Gerhard Sommer and Igor Karšaj
Math. Comput. Appl. 2024, 29(4), 55; https://doi.org/10.3390/mca29040055 - 12 Jul 2024
Viewed by 1196
Abstract
Finite element modeling has become one of the main tools necessary for understanding cardiovascular homeostasis and lesion progression. The accuracy of such simulations significantly depends on the precision of material parameters, which are obtained via the mechanical characterization process, i.e., experimental testing and [...] Read more.
Finite element modeling has become one of the main tools necessary for understanding cardiovascular homeostasis and lesion progression. The accuracy of such simulations significantly depends on the precision of material parameters, which are obtained via the mechanical characterization process, i.e., experimental testing and material parameter estimation using the optimization process. The process of mounting specimens on the machine often introduces slight preloading to avoid sagging and to ensure perpendicular orientation with respect to the loading axes. As such, the reference configuration proposes non-zero forces at zero-state displacements. This error further extends to the material parameters’ estimation where initial loading is usually manually annulled. In this work, we have developed a new computational procedure that includes prestretches during mechanical characterization. The verification of the procedure was performed on the series of simulated virtual planar biaxial experiments using the Gasser–Ogden–Holzapfel material model where the exact material parameters could be set and compared to the obtained ones. Furthermore, we have applied our procedure to the data gathered from biaxial experiments on aortic tissue and compared it with the results obtained through standard optimization procedure. The analysis has shown a significant difference between the material parameters obtained. The rate of error increases with the prestretches and decreases with an increase in maximal experimental stretches. Full article
Show Figures

Figure 1

30 pages, 18328 KiB  
Article
Investigation of Macroscopic Mechanical Behavior of Magnetorheological Elastomers under Shear Deformation Using Microscale Representative Volume Element Approach
by Ilda Abdollahi and Ramin Sedaghati
Polymers 2024, 16(10), 1374; https://doi.org/10.3390/polym16101374 - 11 May 2024
Cited by 2 | Viewed by 1839
Abstract
Magnetorheological elastomers (MREs) are a class of smart materials with rubber-like qualities, demonstrating revertible magnetic field-dependent viscoelastic properties, which makes them an ideal candidate for development of the next generation of adaptive vibration absorbers. This research study aims at the development of a [...] Read more.
Magnetorheological elastomers (MREs) are a class of smart materials with rubber-like qualities, demonstrating revertible magnetic field-dependent viscoelastic properties, which makes them an ideal candidate for development of the next generation of adaptive vibration absorbers. This research study aims at the development of a finite element model using microscale representative volume element (RVE) approach to predict the field-dependent shear behavior of MREs. MREs with different elastomeric matrices, including silicone rubber Ecoflex 30 and Ecoflex 50, and carbonyl iron particles (CIPs) have been considered as magnetic particles. The stress–strain characteristic of the pure silicon rubbers was evaluated experimentally to formulate the nonlinear Ogden strain energy function to describe hyper-elastic behavior of the rubbery matrix. The obtained mechanical and magnetic properties of the matrix and inclusions were integrated into COMSOL Multiphysics to develop the RVE for the MREs, in 2D and 3D configurations, with CIP volume fraction varying from 5% to 40%. Periodic boundary condition (PBC) was imposed on the RVE boundaries, while undergoing shear deformation subjected to magnetic flux densities of 0–0.4 T. Comparing the results from 2D and 3D modeling of isotropic MRE-RVE with the experimental results from the literature suggests that the 3D MRE-RVE can be effectively used to accurately predict the influence of varying factors including matrix type, volume fraction of magnetic particles, and applied magnetic field on the mechanical behavior of MREs. Full article
(This article belongs to the Special Issue Advances in Functional Rubber and Elastomer Composites II)
Show Figures

Figure 1

Back to TopTop