Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (807)

Search Parameters:
Keywords = Oakland

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4422 KiB  
Article
Advanced Deep Learning Methods to Generate and Discriminate Fake Images of Egyptian Monuments
by Daniyah Alaswad and Mohamed A. Zohdy
Appl. Sci. 2025, 15(15), 8670; https://doi.org/10.3390/app15158670 (registering DOI) - 5 Aug 2025
Abstract
Artificial intelligence technologies, particularly machine learning and computer vision, are being increasingly utilized to preserve, restore, and create immersive virtual experiences with cultural artifacts and sites, thus aiding in conserving cultural heritage and making it accessible to a global audience. This paper examines [...] Read more.
Artificial intelligence technologies, particularly machine learning and computer vision, are being increasingly utilized to preserve, restore, and create immersive virtual experiences with cultural artifacts and sites, thus aiding in conserving cultural heritage and making it accessible to a global audience. This paper examines the performance of Generative Adversarial Networks (GAN), especially Style-Based Generator Architecture (StyleGAN), as a deep learning approach for producing realistic images of Egyptian monuments. We used Sigmoid loss for Language–Image Pre-training (SigLIP) as a unique image–text alignment system to guide monument generation through semantic elements. We also studied truncation methods to regulate the generated image noise and identify the most effective parameter settings based on architectural representation versus diverse output creation. An improved discriminator design that combined noise addition with squeeze-and-excitation blocks and a modified MinibatchStdLayer produced 27.5% better Fréchet Inception Distance performance than the original discriminator models. Moreover, differential evolution for latent-space optimization reduced alignment mistakes during specific monument construction tasks by about 15%. We checked a wide range of truncation values from 0.1 to 1.0 and found that somewhere between 0.4 and 0.7 was the best range because it allowed for good accuracy while retaining many different architectural elements. Our findings indicate that specific model optimization strategies produce superior outcomes by creating better-quality and historically correct representations of diverse Egyptian monuments. Thus, the developed technology may be instrumental in generating educational and archaeological visualization assets while adding virtual tourism capabilities. Full article
(This article belongs to the Special Issue Novel Applications of Machine Learning and Bayesian Optimization)
Show Figures

Figure 1

21 pages, 3283 KiB  
Article
Atypical Pressure Dependent Structural Phonon and Thermodynamic Characteristics of Zinc Blende BeO
by Devki N. Talwar and Piotr Becla
Materials 2025, 18(15), 3671; https://doi.org/10.3390/ma18153671 - 5 Aug 2025
Viewed by 106
Abstract
Under normal conditions, the novel zinc blende beryllium oxide (zb BeO) exhibits in a metastable crystalline phase, which is less stable than its wurtzite counterpart. Ultrathin zb BeO epifilms have recently gained significant interest to create a wide range of advanced high-resolution, high-frequency, [...] Read more.
Under normal conditions, the novel zinc blende beryllium oxide (zb BeO) exhibits in a metastable crystalline phase, which is less stable than its wurtzite counterpart. Ultrathin zb BeO epifilms have recently gained significant interest to create a wide range of advanced high-resolution, high-frequency, flexible, transparent, nano-electronic and nanophotonic modules. BeO-based ultraviolet photodetectors and biosensors are playing important roles in providing safety and efficiency to nuclear reactors for their optimum operations. In thermal management, BeO epifilms have also been used for many high-tech devices including medical equipment. Phonon characteristics of zb BeO at ambient and high-pressure P ≠ 0 GPa are required in the development of electronics that demand enhanced heat dissipation for improving heat sink performance to lower the operating temperature. Here, we have reported methodical simulations to comprehend P-dependent structural, phonon and thermodynamical properties by using a realistic rigid-ion model (RIM). Unlike zb ZnO, the study of the Grüneisen parameter γ(T) and thermal expansion coefficient α(T) in zb BeO has revealed atypical behavior. Possible reasons for such peculiar trends are attributed to the combined effect of the short bond length and strong localization of electron charge close to the small core size Be atom in BeO. Results of RIM calculations are compared/contrasted against the limited experimental and first-principle data. Full article
(This article belongs to the Special Issue The Heat Equation: The Theoretical Basis for Materials Processing)
Show Figures

Figure 1

26 pages, 6698 KiB  
Article
Cumulative and Lagged Effects of Drought on the Phenology of Different Vegetation Types in East Asia, 2001–2020
by Kexin Deng, Mark Henderson, Binhui Liu, Weiwei Huang, Mingyang Chen, Pingping Zheng and Ruiting Gu
Remote Sens. 2025, 17(15), 2700; https://doi.org/10.3390/rs17152700 - 4 Aug 2025
Viewed by 206
Abstract
Drought disturbances are becoming more frequent with global warming. Accurately assessing the regulatory effect of drought on vegetation phenology is key to understanding terrestrial ecosystem response mechanisms in the context of climate change. Previous studies on cumulative and lagged effects of drought on [...] Read more.
Drought disturbances are becoming more frequent with global warming. Accurately assessing the regulatory effect of drought on vegetation phenology is key to understanding terrestrial ecosystem response mechanisms in the context of climate change. Previous studies on cumulative and lagged effects of drought on vegetation growth have mostly focused on a single vegetation type or the overall vegetation NDVI, overlooking the possible influence of different adaptation strategies of different vegetation types and differences in drought effects on different phenological nodes. This study investigates the cumulative and lagged effects of drought on vegetation phenology across a region of East Asia from 2001 to 2020 using NDVI data and the Standardized Precipitation Evapotranspiration Index (SPEI). We analyzed the start of growing season (SOS) and end of growing season (EOS) responses to drought across four vegetation types: deciduous needleleaf forests (DNFs), deciduous broadleaf forests (DBFs), shrublands, and grasslands. Results reveal contrasting phenological responses: drought delayed SOS in grasslands through a “drought escape” strategy but advanced SOS in forests and shrublands. All vegetation types showed earlier EOS under drought stress. Cumulative drought effects were strongest on DNFs, SOS, and shrubland SOS, while lagged effects dominated DBFs and grassland SOS. Drought impacts varied with moisture conditions: they were stronger in dry regions for SOS but more pronounced in humid areas for EOS. By confirming that drought effects vary by vegetation type and phenology node, these findings enhance our understanding of vegetation adaptation strategies and ecosystem responses to climate stress. Full article
Show Figures

Figure 1

20 pages, 1138 KiB  
Review
Integrating Circulating Tumor DNA into Clinical Management of Colorectal Cancer: Practical Implications and Therapeutic Challenges
by Nikhil Vojjala, Viktoriya Gibatova, Raj N. Shah, Sakshi Singal, Rishab Prabhu, Geetha Krishnamoorthy, Karen Riggins and Nagaishwarya Moka
Cancers 2025, 17(15), 2520; https://doi.org/10.3390/cancers17152520 - 30 Jul 2025
Viewed by 298
Abstract
The American Cancer Society estimates that over 152,000 new cases of colorectal cancer (CRC) were diagnosed in 2024, with more than 105,000 cases affecting the colon and 46,000 involving the rectum. CRC remains the second leading cause of cancer-related deaths in the United [...] Read more.
The American Cancer Society estimates that over 152,000 new cases of colorectal cancer (CRC) were diagnosed in 2024, with more than 105,000 cases affecting the colon and 46,000 involving the rectum. CRC remains the second leading cause of cancer-related deaths in the United States, with an estimated 53,010 deaths in 2024. In the era of precision medicine, which incorporates molecular and environmental information into clinical decision-making, identifying patients harboring a deficiency in Deoxyribonucleic acid (DNA) repair allowed for targeted immunotherapies and significantly reduced CRC-related mortality. A significant advancement in this domain is the application of liquid biopsy, which has emerged as a promising tool for prognostication, guiding therapy, and monitoring treatment response in CRC. This review aims to comprehensively explore the role of liquid biopsy in colorectal malignancies, describing its practical applications, prognostic significance, and potential to revolutionize CRC management in the future. At the end, we also aim to show a schematic representation of showing integration of Circulating Tumor (Ct) DNA in routine clinical management of CRC. The highlight of this article is the structured and evidence-based schematic framework and its integration into future practice. The schematic pathway is designed to optimize ctDNA utilization across various stages of colorectal cancer management. Full article
Show Figures

Figure 1

13 pages, 216 KiB  
Article
A Pilot Study of Integrated Digital Tools at a School-Based Health Center Using the RE-AIM Framework
by Steven Vu, Alex Zepeda, Tai Metzger and Kathleen P. Tebb
Healthcare 2025, 13(15), 1839; https://doi.org/10.3390/healthcare13151839 - 29 Jul 2025
Viewed by 325
Abstract
Introduction: Adolescents and young adults (AYAs), especially those from underserved communities, often face barriers to sexual and reproductive health (SRH). This pilot study evaluated the implementation of mobile health technologies to promote SRH care, including the integration of the Rapid Adolescent Prevention [...] Read more.
Introduction: Adolescents and young adults (AYAs), especially those from underserved communities, often face barriers to sexual and reproductive health (SRH). This pilot study evaluated the implementation of mobile health technologies to promote SRH care, including the integration of the Rapid Adolescent Prevention ScreeningTM (RAAPS) and the Health-E You/Salud iTuTM (Health-E You) app at a School-Based Health Center (SBHC) in Los Angeles using the RE-AIM (Reach, Effectiveness, Adoption, Implementation, Maintenance) framework. Methods: This multi-method pilot study included the implementation of an integrated tool with two components, the RAAPS electronic health screening tool and the Health-E You app, which delivers tailored SRH education and contraceptive decision support to patients (who were sex-assigned as female at birth) and provides an electronic summary to clinicians to better prepare them for the visit with their patient. Quantitative data on tool usage were collected directly from the back-end data storage for the apps, and qualitative data were obtained through semi-structured interviews and in-clinic observations. Thematic analysis was conducted to identify implementation barriers and facilitators. Results: Between April 2024 and June 2024, 60 unique patients (14–19 years of age) had a healthcare visit. Of these, 35.00% used the integrated RAAPS/Health-E You app, and 88.33% completed the Health-E You app only. All five clinic staff were interviewed and expressed that they valued the tools for their educational impact, noting that they enhanced SRH discussions and helped uncover sensitive information that students might not disclose face-to-face. However, the tools affected clinic workflows and caused rooming delays due to the time-intensive setup process and lack of integration with the clinic’s primary electronic medical record system. In addition, they also reported that the time to complete the screener and app within the context of a 30-min appointment limited the time available for direct patient care. Additionally, staff reported that some students struggled with the two-step process and did not complete all components of the tool. Despite these challenges, clinic staff strongly supported renewing the RAAPS license and continued use of the Health-E You app, emphasizing the platform’s potential for improving SRH care and its educational value. Conclusions: The integrated RAAPS and Health-E You app platform demonstrated educational value and improved SRH care but faced operational and technical barriers in implementing the tool. These findings emphasize the potential of such tools to address SRH disparities among vulnerable AYAs while providing a framework for future implementations in SBHCs. Full article
24 pages, 1616 KiB  
Systematic Review
Artificial Intelligence in Risk Stratification and Outcome Prediction for Transcatheter Aortic Valve Replacement: A Systematic Review and Meta-Analysis
by Shayan Shojaei, Asma Mousavi, Sina Kazemian, Shiva Armani, Saba Maleki, Parisa Fallahtafti, Farzin Tahmasbi Arashlow, Yasaman Daryabari, Mohammadreza Naderian, Mohamad Alkhouli, Jamal S. Rana, Mehdi Mehrani, Yaser Jenab and Kaveh Hosseini
J. Pers. Med. 2025, 15(7), 302; https://doi.org/10.3390/jpm15070302 - 11 Jul 2025
Viewed by 582
Abstract
Background/Objectives: Transcatheter aortic valve replacement (TAVR) has been introduced as an optimal treatment for patients with severe aortic stenosis, offering a minimally invasive alternative to surgical aortic valve replacement. Predicting these outcomes following TAVR is crucial. Artificial intelligence (AI) has emerged as a [...] Read more.
Background/Objectives: Transcatheter aortic valve replacement (TAVR) has been introduced as an optimal treatment for patients with severe aortic stenosis, offering a minimally invasive alternative to surgical aortic valve replacement. Predicting these outcomes following TAVR is crucial. Artificial intelligence (AI) has emerged as a promising tool for improving post-TAVR outcome prediction. In this systematic review and meta-analysis, we aim to summarize the current evidence on utilizing AI in predicting post-TAVR outcomes. Methods: A comprehensive search was conducted to evaluate the studies focused on TAVR that applied AI methods for risk stratification. We assessed various ML algorithms, including random forests, neural networks, extreme gradient boosting, and support vector machines. Model performance metrics—recall, area under the curve (AUC), and accuracy—were collected with 95% confidence intervals (CIs). A random-effects meta-analysis was conducted to pool effect estimates. Results: We included 43 studies evaluating 366,269 patients (mean age 80 ± 8.25; 52.9% men) following TAVR. Meta-analyses for AI model performances demonstrated the following results: all-cause mortality (AUC = 0.78 (0.74–0.82), accuracy = 0.81 (0.69–0.89), and recall = 0.90 (0.70–0.97); permanent pacemaker implantation or new left bundle branch block (AUC = 0.75 (0.68–0.82), accuracy = 0.73 (0.59–0.84), and recall = 0.87 (0.50–0.98)); valve-related dysfunction (AUC = 0.73 (0.62–0.84), accuracy = 0.79 (0.57–0.91), and recall = 0.54 (0.26–0.80)); and major adverse cardiovascular events (AUC = 0.79 (0.67–0.92)). Subgroup analyses based on the model development approaches indicated that models incorporating baseline clinical data, imaging, and biomarker information enhanced predictive performance. Conclusions: AI-based risk prediction for TAVR complications has demonstrated promising performance. However, it is necessary to evaluate the efficiency of the aforementioned models in external validation datasets. Full article
Show Figures

Graphical abstract

11 pages, 811 KiB  
Article
Comparative Analysis of Severe Clinical Outcomes in Hospitalized Patients with RSV, Influenza, and COVID-19 Across Early and Late COVID-19 Pandemic Phases (2021–2024)
by Yuying Xing and Amit Bahl
J. Clin. Med. 2025, 14(14), 4894; https://doi.org/10.3390/jcm14144894 - 10 Jul 2025
Viewed by 471
Abstract
Background: COVID-19, influenza, and respiratory syncytial virus (RSV) are major respiratory infections with overlapping clinical presentations. Comparative data on the severity of these infections in hospitalized adults are limited, particularly across phases of the COVID-19 pandemic. Objectives: The objectives of this study are [...] Read more.
Background: COVID-19, influenza, and respiratory syncytial virus (RSV) are major respiratory infections with overlapping clinical presentations. Comparative data on the severity of these infections in hospitalized adults are limited, particularly across phases of the COVID-19 pandemic. Objectives: The objectives of this study are to compare the risk of severe outcomes among hospitalized patients with COVID-19, influenza, or RSV and to evaluate the role of vaccination and demographic subgroups using recent, real-world data. Design: This is a retrospective cohort study. Setting: Eight hospitals within the Corewell Health system in Michigan, USA, were studied. Participants: The participants included adults aged ≥ 18 years hospitalized between 1 January 2021 and 20 July 2024 with a principal diagnosis of COVID-19, influenza, or RSV. Main Outcomes and Measures: The primary outcome was a composite of ICU admission, mechanical ventilation, or in-hospital death. Multivariable Cox proportional hazard models were used to estimate adjusted hazard ratios (aHRs), with subgroup analyses in terms of vaccination status, age group, and time period. Results: Among 27,885 hospitalized patients (90.5% COVID-19, 7.2% influenza, 2.3% RSV), COVID-19 was associated with a higher risk of severe outcomes compared to influenza (aHR 1.30, 95% CI: 1.11–1.54). RSV showed no significant difference from influenza. Across all infection groups, older age (≥65 years), high comorbidity burden, and immunocompromised status were associated with an increased risk of severe outcomes. Recent COVID-19 vaccination was protective, particularly among older adults. Differences in severity were more pronounced in the pre-March 2022 period. Conclusions: Using one of the most recent large-scale datasets, this study is among the first to directly compare the severity of COVID-19, influenza, and RSV in hospitalized adults. COVID-19 continues to pose a higher risk of severe illness compared to the other viral infections. The findings underscore the importance of up-to-date vaccination and focused clinical strategies for older and high-risk individuals. This study offers timely evidence to guide future respiratory virus response strategies across hospital settings. Full article
(This article belongs to the Section Infectious Diseases)
Show Figures

Figure 1

16 pages, 266 KiB  
Review
Risk Scores in Acute Lower Gastrointestinal Bleeding: Current Evidence and Clinical Applications
by Truong Thi Do, Dung Thi My Vo and Thong Duy Vo
Gastroenterol. Insights 2025, 16(3), 24; https://doi.org/10.3390/gastroent16030024 - 8 Jul 2025
Viewed by 488
Abstract
Lower gastrointestinal bleeding (LGIB) is a frequent and potentially life-threatening clinical condition. Over the past two decades, several prognostic scoring systems have been developed to stratify risk and guide the management of patients with LGIB. This comprehensive review aims to summarize and compare [...] Read more.
Lower gastrointestinal bleeding (LGIB) is a frequent and potentially life-threatening clinical condition. Over the past two decades, several prognostic scoring systems have been developed to stratify risk and guide the management of patients with LGIB. This comprehensive review aims to summarize and compare the current evidence on the utility, accuracy, and limitations of key LGIB scoring systems, including the Glasgow-Blatchford Score (GBS), AIMS65, ABC score, Oakland score, SALGIB, CHAMPS, and Rockall score. We conducted a structured literature review of studies evaluating these scores in adult patients with LGIB. For each scoring system, we analyzed its origin, components, intended use, and predictive performance regarding clinical outcomes such as severe bleeding, transfusion requirement, in-hospital mortality, rebleeding, and safe discharge. Comparative analyses of diagnostic accuracy were extracted where available. Our findings indicate that while no single score offers comprehensive predictive accuracy across all outcomes, certain tools are particularly effective for specific endpoints. The Oakland and GBS scores are useful for identifying patients at low risk who may be managed safely as outpatients. The ABC and CHAMPS scores demonstrate superior performance in predicting mortality, especially in elderly or comorbid populations. SALGIB, a newer score developed in Vietnam, shows promising performance for early triage but requires further validation. The Rockall score, although historically valuable in upper GI bleeding, offers limited applicability in LGIB due to its reliance on post-endoscopic findings. In conclusion, multiple prognostic tools are now available to support early decision-making in LGIB. Their optimal use requires understanding their strengths, limitations, and appropriate clinical contexts. Integrating these scores into routine practice, along with clinical judgment, can enhance patient outcomes and resource allocation. Full article
(This article belongs to the Section Gastrointestinal Disease)
16 pages, 1640 KiB  
Review
Hepatitis C—Everything a Primary Care Physician Needs to Know About Diagnosis, Management, and Follow-Up
by Sindhuri Benjaram, Shweta Kapur, Anusha McKay, Mohamad Khaled Almujarkesh, Kassandra S. Carter, Alexandra Picardal, Diane Levine and Prateek Lohia
J. Clin. Med. 2025, 14(13), 4801; https://doi.org/10.3390/jcm14134801 - 7 Jul 2025
Viewed by 515
Abstract
Hepatitis C virus (HCV) infection is a major public health concern, with more than 58 million people chronically infected worldwide. The management of HCV, once the domain of specialists only, has been revolutionized by the advent of direct-acting antiviral therapies. To reduce the [...] Read more.
Hepatitis C virus (HCV) infection is a major public health concern, with more than 58 million people chronically infected worldwide. The management of HCV, once the domain of specialists only, has been revolutionized by the advent of direct-acting antiviral therapies. To reduce the burden of HCV in the United States (US), emphasis is now being placed on the involvement of primary care physicians in the management of HCV patients. Inclusion of more primary care providers in the HCV diagnosis and treatment initiatives can assist in achieving the goal of HCV elimination, especially in the medically underserved areas. To actively engage in the management of HCV, primary care providers must understand its epidemiology, risk factors, natural history, current treatment regimen, and potential complications. This manuscript reviews these key areas, along with presenting the cost-effectiveness of treatment and evidence-based guidelines for follow-up care in adults with chronic HCV infection who have undergone HCV treatment. Equipped with this foundational knowledge about HCV management, primary care physicians can play a vital role in eliminating HCV. Full article
(This article belongs to the Section Gastroenterology & Hepatopancreatobiliary Medicine)
Show Figures

Figure 1

45 pages, 1606 KiB  
Review
A Comprehensive Review of Geothermal Heat Pump Systems
by Khaled Salhein, Sabriya Alghennai Salheen, Ahmed M. Annekaa, Mansour Hawsawi, Edrees Yahya Alhawsawi, C. J. Kobus and Mohamed Zohdy
Processes 2025, 13(7), 2142; https://doi.org/10.3390/pr13072142 - 5 Jul 2025
Viewed by 487
Abstract
Geothermal heat pump systems (GHPSs) offer a sustainable and energy-efficient solution for heating and cooling buildings. Ground heat exchanger (GHE) design and configuration significantly impact on the overall performance and installation expenses of geothermal heat pump systems. This paper presents a comprehensive analysis [...] Read more.
Geothermal heat pump systems (GHPSs) offer a sustainable and energy-efficient solution for heating and cooling buildings. Ground heat exchanger (GHE) design and configuration significantly impact on the overall performance and installation expenses of geothermal heat pump systems. This paper presents a comprehensive analysis of GHPSs, focusing on their advantages, disadvantages, key components, types, and particularly the various closed-loop GHE configurations. Detailed comparisons highlight how different designs affect thermal performance and installation costs. The findings reveal that helical GHEs offer superior thermal efficiency with reduced drilling requirements and cost savings, while coaxial GHEs, especially those using steel tubes, enhance heat transfer and enable shorter boreholes. Cost-effective options like W-type GHEs provide performance comparable to more complex systems. Additionally, triple U-tube and spiral configurations balance high efficiency with economic feasibility. The single and double U-tube remain the most common borehole geometry, though coaxial designs present distinct advantages in targeted scenarios. These insights support the optimization of vertical GHEs, advancing system performance, cost-effectiveness, and long-term sustainability in GHPS applications. Full article
(This article belongs to the Special Issue Application of Refrigeration and Heat Pump Technology)
Show Figures

Graphical abstract

22 pages, 3862 KiB  
Article
Composition-Dependent Structural, Phonon, and Thermodynamical Characteristics of Zinc-Blende BeZnO
by Devki N. Talwar and Piotr Becla
Materials 2025, 18(13), 3101; https://doi.org/10.3390/ma18133101 - 1 Jul 2025
Cited by 1 | Viewed by 301
Abstract
Both ZnO and BeO semiconductors crystallize in the hexagonal wurtzite (wz), cubic rock salt (rs), and zinc-blende (zb) phases, depending upon their growth conditions. Low-dimensional heterostructures ZnO/BexZn1-xO and BexZn1-xO ternary alloy-based devices have recently gained [...] Read more.
Both ZnO and BeO semiconductors crystallize in the hexagonal wurtzite (wz), cubic rock salt (rs), and zinc-blende (zb) phases, depending upon their growth conditions. Low-dimensional heterostructures ZnO/BexZn1-xO and BexZn1-xO ternary alloy-based devices have recently gained substantial interest to design/improve the operations of highly efficient and flexible nano- and micro-electronics. Attempts are being made to engineer different electronic devices to cover light emission over a wide range of wavelengths to meet the growing industrial needs in photonics, energy harvesting, and biomedical applications. For zb materials, both experimental and theoretical studies of lattice dynamics ωjq have played crucial roles for understanding their optical and electronic properties. Except for zb ZnO, inelastic neutron scattering measurement of ωjq for BeO is still lacking. For the BexZn1-xO ternary alloys, no experimental and/or theoretical studies exist for comprehending their structural, vibrational, and thermodynamical traits (e.g., Debye temperature ΘDT; specific heat CvT). By adopting a realistic rigid-ion model, we have meticulously simulated the results of lattice dynamics, and thermodynamic properties for both the binary zb ZnO, BeO and ternary BexZn1-xO alloys. The theoretical results are compared/contrasted against the limited experimental data and/or ab initio calculations. We strongly feel that the phonon/thermodynamic features reported here will encourage spectroscopists to perform similar measurements and check our theoretical conjectures. Full article
(This article belongs to the Special Issue Advanced Additive Manufacturing Processing of Ceramic Materials)
Show Figures

Figure 1

16 pages, 2296 KiB  
Article
Magnetoelectric Effects in Bilayers of PZT and Co and Ti Substituted M-Type Hexagonal Ferrites
by Sujoy Saha, Sabita Acharya, Sidharth Menon, Rao Bidthanapally, Michael R. Page, Menka Jain and Gopalan Srinivasan
J. Compos. Sci. 2025, 9(7), 336; https://doi.org/10.3390/jcs9070336 - 27 Jun 2025
Viewed by 298
Abstract
This report is on Co and Ti substituted M-type barium and strontium hexagonal ferrites that are reported to be single phase multiferroics due to a transition from Neel type ferrimagnetic order to a spiral spin structure that is accompanied by a ferroelectric polarization [...] Read more.
This report is on Co and Ti substituted M-type barium and strontium hexagonal ferrites that are reported to be single phase multiferroics due to a transition from Neel type ferrimagnetic order to a spiral spin structure that is accompanied by a ferroelectric polarization in an applied magnetic field. The focus here is the nature of magnetoelectric (ME) interactions in the bilayers of ferroelectric PZT and Co and Ti substituted BaM and SrM. The ME coupling in the ferrite-PZT bilayers arise due to the transfer of magnetostriction-induced mechanical deformation in a magnetic field in the ferrite resulting in an induced electric field in PZT. Polycrystalline Co and Ti doped ferrites, Ba (CoTi)x Fe12−2xO19, (BCTx), and Sr (CoTi)x Fe12−2xO19 (SCTx) (x = 0–4) were found to be free of impurity phases for all x-values except for SCTx, which had a small amount of α-Fe2O3 in the X-ray diffraction patterns for x ≤ 2.0. The magnetostriction for the ferrites increased with applied filed H to a maximum value of around 2 to 6 ppm for H~5 kOe. BCTx/SCTx samples showed ferromagnetic resonance (FMR) for x = 1.5–2.0, and the estimated anisotropy field was on the order of 5 kOe. The magnetization increased with the amount of Co and Ti doping, and it decreased rapidly with x for x > 1.0. Measurements of ME coupling strengths were conducted on the bilayers of BCTx/SCTx platelets bonded to PZT. The bilayer was subjected to an AC and DC magnetic field H, and the magnetoelectric voltage coefficient (MEVC) was measured as a function of H and frequency of the AC field. For BCTx-PZT, the maximum value of MEVC at low frequency was ~5 mV/cm Oe, and a 40-fold increase at electromechanical resonance (EMR). SCTx–PZT composites also showed a similar behavior with the highest MEVC value of ~14 mV/cm Oe at low frequencies and ~200 mV/cm Oe at EMR. All the bilayers showed ME coupling for zero magnetic bias due to the magnetocrystalline anisotropy field in the ferrite that provided a built-in bias field. Full article
(This article belongs to the Special Issue Metal Composites, Volume II)
Show Figures

Figure 1

11 pages, 805 KiB  
Opinion
Balancing Immunity: GSK-3’s Divergent Roles in Dendritic Cell-Mediated T-Cell Priming and Memory Responses
by Chunmei Fu, Tianle Ma, Li Zhou, Qing-Sheng Mi and Aimin Jiang
Int. J. Mol. Sci. 2025, 26(13), 6078; https://doi.org/10.3390/ijms26136078 - 25 Jun 2025
Viewed by 381
Abstract
Glycogen synthase kinase-3 (GSK-3)—particularly the GSK-3β isoform—plays a pivotal role in regulating dendritic cell (DC) functions, including maturation, cytokine production, and antigen presentation. In immature DCs, GSK-3β is continuously active, and its inhibition has been shown to enhance DC maturation and function. As [...] Read more.
Glycogen synthase kinase-3 (GSK-3)—particularly the GSK-3β isoform—plays a pivotal role in regulating dendritic cell (DC) functions, including maturation, cytokine production, and antigen presentation. In immature DCs, GSK-3β is continuously active, and its inhibition has been shown to enhance DC maturation and function. As a key upstream kinase of β-catenin, GSK-3 inhibition activates β-catenin in both human and murine DCs—a pathway traditionally linked to its immunomodulatory effects. However, our recent findings challenge this paradigm by uncovering β-catenin-independent, dual roles of GSK-3β in DCs. Our study reveals that while GSK-3β enhances DC-mediated cross-priming of CD8 T cells, it concurrently impairs the generation of memory CD8 T cells. These findings have significant implications for vaccine development and cancer immunotherapy, where both effective T-cell priming and durable memory responses are critical. This mini-review provides an in-depth analysis of mechanistic insights into GSK-3β’s paradoxical functions and discusses potential strategies to fine-tune GSK-3 activity for optimized immunotherapeutic outcomes. Full article
(This article belongs to the Special Issue State-of-the-Art Cancer Immunotherapies—2nd Edition)
Show Figures

Figure 1

21 pages, 2764 KiB  
Article
First Report of Stenotrophomonas maltophilia from Canine Dermatological Infections: Unravelling Its Antimicrobial Resistance, Biofilm Formation, and Virulence Traits
by Ria Rajeev, Porteen Kannan, Sureshkannan Sundaram, Sandhya Bhavani Mohan, Sivachandiran Radjendirane, Chaudhary Jeetendrakumar Harnathbhai, Anbazhagan Subbaiyan, Viswanathan Naveenkumar, Nithya Quintoil Mohanadasse, Wilfred Ruban Savariraj, Charley A. Cull and Raghavendra G. Amachawadi
Antibiotics 2025, 14(7), 639; https://doi.org/10.3390/antibiotics14070639 - 23 Jun 2025
Viewed by 537
Abstract
Background/Objectives: The present study was aimed at documenting S. maltophilia occurrence in dogs with skin ailments, investigating its virulence, biofilm-forming ability, antimicrobial susceptibility, and zoonotic potential to inform preventive and therapeutic strategies against multidrug resistant S. maltophilia infections. Methods: Skin swabs [...] Read more.
Background/Objectives: The present study was aimed at documenting S. maltophilia occurrence in dogs with skin ailments, investigating its virulence, biofilm-forming ability, antimicrobial susceptibility, and zoonotic potential to inform preventive and therapeutic strategies against multidrug resistant S. maltophilia infections. Methods: Skin swabs (n = 300) were collected from dogs with dermatological ailments. Isolation was performed using selective media and confirmed with molecular methods, validated by MALDI Biotyper. Antimicrobial susceptibility testing and efflux activity assessment were conducted. Resistance genes related to sulfonamides, quinolones, and β-lactams were screened. Virulence was assessed by biofilm formation, motility, and virulence gene profiling. Results: In total, 15 S. maltophilia (5%) isolates were identified. All 15 isolates were susceptible to trimethoprim-sulfamethoxazole, enrofloxacin, gatifloxacin, levofloxacin, minocycline, and tigecycline, but resistant to cefpodoxime and aztreonam. The following resistance genes qnr (93.3%), blaOXA-48 (46.7%), blaKPC (33.3%), blaNDM (33.3%), blaCTX-M (20%), blaSHV (20%), and blaTEM (6.7%) were detected. All 15 isolates displayed high efflux activity. Overall, 9 isolates (60%) were strong biofilm producers, and 6 (40%) were moderate. Virulence genes such as virB, motA, rmlA, and fliC were present in all 15 isolates, with others varying in frequency. All isolates exhibited swimming motility. Heat map clustering showed diverse profiles, with no identical isolate patterns. Correlation analysis indicated positive associations between several antimicrobial resistance and virulence genes. Conclusions: This study underscores the zoonotic potential of S. maltophilia from dogs, advocating for a One Health approach to mitigate infection risks and limit the spread of virulent multidrug resistant pathogens. Full article
(This article belongs to the Special Issue Antimicrobial Resistance and Infections in Veterinary Settings)
Show Figures

Graphical abstract

12 pages, 3214 KiB  
Article
Singular Value Decomposition (SVD) Method for LiDAR and Camera Sensor Fusion and Pattern Matching Algorithm
by Kaiqiao Tian, Meiqi Song, Ka C. Cheok, Micho Radovnikovich, Kazuyuki Kobayashi and Changqing Cai
Sensors 2025, 25(13), 3876; https://doi.org/10.3390/s25133876 - 21 Jun 2025
Viewed by 758
Abstract
LiDAR and camera sensors are widely utilized in autonomous vehicles (AVs) and robotics due to their complementary sensing capabilities—LiDAR provides precise depth information, while cameras capture rich visual context. However, effective multi-sensor fusion remains challenging due to discrepancies in resolution, data format, and [...] Read more.
LiDAR and camera sensors are widely utilized in autonomous vehicles (AVs) and robotics due to their complementary sensing capabilities—LiDAR provides precise depth information, while cameras capture rich visual context. However, effective multi-sensor fusion remains challenging due to discrepancies in resolution, data format, and viewpoint. In this paper, we propose a robust pattern matching algorithm that leverages singular value decomposition (SVD) and gradient descent (GD) to align geometric features—such as object contours and convex hulls—across LiDAR and camera modalities. Unlike traditional calibration methods that require manual targets, our approach is targetless, extracting matched patterns from projected LiDAR point clouds and 2D image segments. The algorithm computes the optimal transformation matrix between sensors, correcting misalignments in rotation, translation, and scale. Experimental results on a vehicle-mounted sensing platform demonstrate an alignment accuracy improvement of up to 85%, with the final projection error reduced to less than 1 pixel. This pattern-based SVD-GD framework offers a practical solution for maintaining reliable cross-sensor alignment under calibration drift, enabling real-time perception systems to operate robustly without recalibration. This method provides a practical solution for maintaining reliable sensor fusion in autonomous driving applications subject to long-term calibration drift. Full article
(This article belongs to the Special Issue Recent Advances in LiDAR Sensor)
Show Figures

Figure 1

Back to TopTop