Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = OMPS/LP

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 10016 KB  
Article
A Novel Enterococcus Phage Endolysin Lys22 with a Wide Host Range Against Mixed Biofilm of Enterococcus faecalis, Staphylococcus aureus, and Acinetobacter baumannii
by Ziqin Yang, Xue Du, Nannan Hu, Meng-Ai Feng, Jiaoyang Xu, Hailin Jiang, Na Zhang, Honglan Huang, Jinghua Li and Hongyan Shi
Pathogens 2025, 14(10), 1060; https://doi.org/10.3390/pathogens14101060 - 20 Oct 2025
Viewed by 365
Abstract
The global surge in multidrug-resistant (MDR) bacterial pathogens has created an urgent imperative for innovative antimicrobial strategies. Enterococcus faecalis, Staphylococcus aureus, and Acinetobacter baumannii demonstrate remarkable antibiotic resistance and dominate hospital-acquired infections. These bacteria often form biofilms, a complex community structure [...] Read more.
The global surge in multidrug-resistant (MDR) bacterial pathogens has created an urgent imperative for innovative antimicrobial strategies. Enterococcus faecalis, Staphylococcus aureus, and Acinetobacter baumannii demonstrate remarkable antibiotic resistance and dominate hospital-acquired infections. These bacteria often form biofilms, a complex community structure that shields them from immune system phagocytosis, resists antibiotic penetration, and enhances their survival in hostile environments. In clinical cases, these bacteria often form mixed biofilms and lead to treatment failures. Phages and their derivatives have emerged as promising candidates in the fight against drug-resistant bacteria. Lys22, an endolysin derived from an enterococcus phage, has been cloned and demonstrated to possess a broad host range, effectively targeting E. faecalis, various Staphylococcus species, and A. baumannii. When applied to the biofilms formed by these bacteria, Lys22 was found to significantly inhibit both simple and complex biofilms in vitro. Virulent genes, including agrA, sarA, and icaA in S. aureus; asa1, cylA, and gelE in E. faecalis; and OmpA and lpsB in A. baumannii were also downregulated by Lys22. Notably, Lys22 also exhibited a robust protective effect against dual or triple infections involving E. faecalis, S. aureus, and A. baumannii in a zebrafish embryos model, highlighting its potential as a therapeutic agent in combatting multi-bacterial infections. Full article
Show Figures

Figure 1

32 pages, 1122 KB  
Review
Carbapenem-Resistant Acinetobacter baumannii: Virulence Factors, Molecular Epidemiology, and Latest Updates in Treatment Options
by Theodoros Karampatakis, Katerina Tsergouli and Payam Behzadi
Microorganisms 2025, 13(9), 1983; https://doi.org/10.3390/microorganisms13091983 - 26 Aug 2025
Cited by 4 | Viewed by 2293
Abstract
Acinetobacter baumannii is a Gram-negative, non-motile pathogen commonly associated with healthcare settings. It is capable of causing severe infections, particularly in immunocompromised and critically ill individuals, and is linked to poor clinical outcomes. Infections caused by carbapenem-resistant A. baumannii (CRAB) represent a major [...] Read more.
Acinetobacter baumannii is a Gram-negative, non-motile pathogen commonly associated with healthcare settings. It is capable of causing severe infections, particularly in immunocompromised and critically ill individuals, and is linked to poor clinical outcomes. Infections caused by carbapenem-resistant A. baumannii (CRAB) represent a major public health concern due to limited treatment options and high resistance rates. Several virulence determinants contribute to CRAB’s pathogenicity, including capsular exopolysaccharide (CPS), lipopolysaccharide (LPS), lipooligosaccharide (LOS), efflux pumps, outer membrane proteins (OMPs), pili, metal acquisition systems, two-component regulatory systems (TCSs), and secretion systems (SSs). The dominant resistance mechanism in CRAB involves the production of carbapenemases, most notably oxacillinase-23 (OXA-23) and metallo-β-lactamases (MBLs) such as Verona integron-encoded MBL (VIM) and New Delhi MBL (NDM). Accurate identification of these resistance mechanisms is crucial for guiding effective antimicrobial therapy. Potential treatment options include older agents like polymyxins, ampicillin–sulbactam, high-dose carbapenems, tigecycline, and minocycline, along with newer antimicrobials such as eravacycline, cefiderocol, and aztreonam–avibactam. This review aims to explore the virulence mechanisms and molecular pathogenesis of CRAB, while also presenting recent developments in its epidemiology and available antimicrobial therapies. Full article
Show Figures

Figure 1

19 pages, 9449 KB  
Article
Mechanisms of Salmonella typhimurium Resistance to Cannabidiol
by Iddrisu Ibrahim, Joseph Atia Ayariga, Junhuan Xu, Daniel A. Abugri, Robertson K. Boakai and Olufemi S. Ajayi
Microorganisms 2025, 13(3), 551; https://doi.org/10.3390/microorganisms13030551 - 28 Feb 2025
Viewed by 1227
Abstract
The emergence of multi-drug resistance (MDR) poses a huge risk to public health globally. Yet these recalcitrant pathogens continue to rise in incidence rate with resistance rates significantly outpacing the speed of antibiotic development. This therefore presents related health issues such as untreatable [...] Read more.
The emergence of multi-drug resistance (MDR) poses a huge risk to public health globally. Yet these recalcitrant pathogens continue to rise in incidence rate with resistance rates significantly outpacing the speed of antibiotic development. This therefore presents related health issues such as untreatable nosocomial infections arising from organ transplants and surgeries, as well as community-acquired infections that are related to people with compromised immunity, e.g., diabetic and HIV patients, etc. There is a global effort to fight MRD pathogens spearheaded by the World Health Organization, thus calling for research into novel antimicrobial agents to fight multiple drug resistance. Previously, our laboratory demonstrated that Cannabidiol (CBD) is an effective antimicrobial against Salmonella typhimurium (S. typhimurium). However, we observed resistance development over time. To understand the mechanisms S. typhimurium uses to develop resistance to CBD, we studied the abundance of bacteria lipopolysaccharide (LPS) and membrane sterols of both CBD-susceptible and CBD-resistant S. typhimurium strains. Using real-time quantitative polymerase chain reaction (rt qPCR), we also analyzed the expression of selected genes known for aiding resistance development in S. typhimurium. We found a significantly higher expression of blaTEM (over 150 mRNA expression) representing over 55% of all the genes considered in the study, fimA (over 12 mRNA expression), fimZ (over 55 mRNA expression), and integron 2 (over 1.5 mRNA expression) in the CBD-resistant bacteria, and these were also accompanied by a shift in abundance in cell surface molecules such as LPS at 1.76 nm, ergosterols at 1.03 nm, oleic acid at 0.10 nm and MPPSE at 2.25nm. For the first time, we demonstrated that CBD-resistance development in S. typhimurium might be caused by several structural and genetic factors. These structural factors demonstrated here include LPS and cell membrane sterols, which showed significant differences in abundances on the bacterial cell surfaces between the CBD-resistant and CBD-susceptible strains of S. typhimurium. Specific key genetic elements implicated for the resistance development investigated included fimA, fimZ, int2, ompC, blaTEM, DNA recombinase (STM0716), leucine-responsive transcriptional regulator (lrp/STM0959), and the spy gene of S. typhimurium. In this study, we revealed that blaTEM might be the highest contributor to CBD-resistance, indicating the potential gene to target in developing agents against CBD-resistant S. typhimurium strains. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
Show Figures

Figure 1

13 pages, 2638 KB  
Article
Difference Analysis on Virulence Genes, Biofilms and Antimicrobial Susceptibility of Escherichia coli from Clinical and Subclinical Bovine Mastitis
by Jiakun Zuo, Zhaoyang Lv, Liyan Lian, Zihao Wu, Shaodong Fu, Haiyang Zhang, Jing Wu, Zihao Pan, Yong Yu, Wei Chen, Wei Jiang, Huifang Yin, Zhaoguo Chen, Yunpeng Yi, Xiangan Han and Jinfeng Miao
Vet. Sci. 2025, 12(2), 132; https://doi.org/10.3390/vetsci12020132 - 6 Feb 2025
Cited by 1 | Viewed by 2092
Abstract
Escherichia coli (E. coli) has the ability to induce clinical and subclinical mastitis in dairy cows, causing a huge loss for the dairy industry. In this study, 51 subclinical mastitis isolates and 36 clinical mastitis isolates from eight provinces of China [...] Read more.
Escherichia coli (E. coli) has the ability to induce clinical and subclinical mastitis in dairy cows, causing a huge loss for the dairy industry. In this study, 51 subclinical mastitis isolates and 36 clinical mastitis isolates from eight provinces of China between 2019 and 2021 were used to investigate the differences in their biological characteristics. The results showed that B1 (52.9%) and A (39.1%) were the predominant phylogroups; R1 (50.6%) was the predominant lipopolysaccharide (LPS) core type; and 44 STs (ST10 and ST58 were the most sequence-prevalent STs) and 2 new STs (ST14828 and ST14829) were identified; however, no significant difference was observed between the clinical and subclinical group strains. To compare the virulence gene differences between the clinical and subclinical mastitis-related isolates, 18 common virulence genes (including afaE, eaeA, papC, saa, sfa, ompA, aer, irp2, iucD, escV, sepD, east1, estB, stx2e, CNF1, cba, hlyA and traT) were determined using the PCR method. The results showed that the detection rates of traT, irp2 and iucD in clinical mastitis isolates were significantly higher than those in subclinical mastitis isolates (p ˂ 0.05). Meanwhile, subclinical-group E. coli had stronger biofilm formation abilities than the clinical group (p < 0.05) in 78 (89.7%) mastitis-related E. coli that could form biofilms. Furthermore, 87 mastitis-related E. coli showed severe resistance against tetracycline (37.9%), ampicillin (36.8%), streptomycin (34.5%) and cotrimoxazole (28.7%); their most prevalent resistance genes were blaCTX-M (33.3%), tetA (27.6%), sul2 (18.4%) and strB (28.7%). It was noteworthy that the clinical-group strains had a higher resistance against ampicillin and possessed higher amounts of the resistance gene blaCTX-M (p < 0.05) compared to the subclinical group. This study aims to provide references for preventing the E. coli isolates from inducing different types of mastitis. Full article
(This article belongs to the Special Issue Ruminant Mastitis: Therapies and Control)
Show Figures

Figure 1

27 pages, 14376 KB  
Article
Investigating Synoptic Influences on Tropospheric Volcanic Ash Dispersion from the 2015 Calbuco Eruption Using WRF-Chem Simulations and Satellite Data
by Douglas Lima de Bem, Vagner Anabor, Franciano Scremin Puhales, Damaris Kirsch Pinheiro, Fabio Grasso, Luiz Angelo Steffenel, Leonardo Brenner and Umberto Rizza
Remote Sens. 2024, 16(23), 4455; https://doi.org/10.3390/rs16234455 - 27 Nov 2024
Viewed by 1403
Abstract
We used WRF-Chem to simulate ash transport from eruptions of Chile’s Calbuco volcano on 22–23 April 2015. Massive ash and SO2 ejections reached the upper troposphere, and particulates transported over South America were observed over Argentina, Uruguay, and Brazil via satellite and [...] Read more.
We used WRF-Chem to simulate ash transport from eruptions of Chile’s Calbuco volcano on 22–23 April 2015. Massive ash and SO2 ejections reached the upper troposphere, and particulates transported over South America were observed over Argentina, Uruguay, and Brazil via satellite and surface data. Numerical simulations with the coupled Weather Research and Forecasting–Chemistry (WRF-Chem) model from 22 to 27 April covered eruptions and particle propagation. Chemical and aerosol parameters utilized the GOCART (Goddard Chemistry Aerosol Radiation and Transport) model, while the meteorological conditions came from NCEP-FNL reanalysis. In WRF-Chem, we implemented a more efficient methodology to determine the Eruption Source Parameters (ESP). This permitted each simulation to consider a sequence of eruptions and a time varying ESP, such as the eruption height and mass and the SO2 eruption rate. We used two simulations (GCTS1 and GCTS2) differing in the ash mass fraction in the finest bins (0–15.6 µm) by 2.4% and 16.5%, respectively, to assess model efficiency in representing plume intensity and propagation. Analysis of the active synoptic components revealed their impact on particle transport and the Andes’ role as a natural barrier. We evaluated and compared the simulated Aerosol Optical Depth (AOD) with VIIRS Deep Blue Level 3 data and SO2 data from Ozone Mapper and Profiler Suite (OMPS) Limb Profiler (LP), both of which are sensors onboard the Suomi National Polar Partnership (NPP) spacecraft. The model successfully reproduced ash and SO2 transport, effectively representing influencing synoptic systems. Both simulations showed similar propagation patterns, with GCTS1 yielding better results when compared with AOD retrievals. These results indicate the necessity of specifying lower mass fraction in the finest bins. Comparison with VIIRS Brightness Temperature Difference data confirmed the model’s efficiency in representing particle transport. Overestimation of SO2 may stem from emission inputs. This study demonstrates the feasibility of our implementation of the WRF-Chem model to reproduce ash and SO2 patterns after a multi-eruption event. This enables further studies into aerosol–radiation and aerosol–cloud interactions and atmospheric behavior following volcanic eruptions. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

23 pages, 3210 KB  
Article
Limb Temperature Observations in the Stratosphere and Mesosphere Derived from the OMPS Sensor
by Pedro Da Costa Louro, Philippe Keckhut, Alain Hauchecorne, Mustapha Meftah, Glen Jaross and Antoine Mangin
Remote Sens. 2024, 16(20), 3878; https://doi.org/10.3390/rs16203878 - 18 Oct 2024
Viewed by 1625
Abstract
Molecular scattering (Rayleigh scattering) has been extensively used from the ground with lidars and from space to observe the limb, thereby deriving vertical temperature profiles between 30 and 80 km. In this study, we investigate how temperature can be measured using the new [...] Read more.
Molecular scattering (Rayleigh scattering) has been extensively used from the ground with lidars and from space to observe the limb, thereby deriving vertical temperature profiles between 30 and 80 km. In this study, we investigate how temperature can be measured using the new Ozone Mapping and Profiler Suite (OMPS) sensor, aboard the Suomi NPP and NOAA-21 satellites. The OMPS consists of three instruments whose main purpose is to study the composition of the stratosphere. One of these, the Limb Profiler (LP), measures the radiance of the limb of the middle atmosphere (stratosphere and mesosphere, 12 to 90 km altitude) at wavelengths from 290 to 1020 nm. This new data set has been used with a New Simplified Radiative Transfer Model (NSRTM) to derive temperature profiles with a vertical resolution of 1 km. To validate the method, the OMPS-derived temperature profiles were compared with data from four ground-based lidars and the ERA5 and MSIS models. The results show that OMPS and the lidars are in agreement within a range of about 5 K from 30 to 80 km. Comparisons with the models also show similar results, except for ERA5 beyond 50 km. We investigated various sources of bias, such as different attenuation sources, which can produce errors of up to 120 K in the UV range, instrumental errors around 0.8 K and noise problems of up to 150 K in the visible range for OMPS. This study also highlighted the interest in developing a new miniaturised instrument that could provide real-time observation of atmospheric vertical temperature profiles using a constellation of CubeSats with our NSRTM. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

24 pages, 4575 KB  
Article
The Role of Propionate-Induced Rearrangement of Membrane Proteins in the Formation of the Virulent Phenotype of Crohn’s Disease-Associated Adherent-Invasive Escherichia coli
by Olga V. Pobeguts, Maria A. Galyamina, Elena V. Mikhalchik, Sergey I. Kovalchuk, Igor P. Smirnov, Alena V. Lee, Lyubov Yu. Filatova, Kirill V. Sikamov, Oleg M. Panasenko and Alexey Yu. Gorbachev
Int. J. Mol. Sci. 2024, 25(18), 10118; https://doi.org/10.3390/ijms251810118 - 20 Sep 2024
Cited by 2 | Viewed by 1935
Abstract
Adhesive-invasive E. coli has been suggested to be associated with the development of Crohn’s disease (CD). It is assumed that they can provoke the onset of the inflammatory process as a result of the invasion of intestinal epithelial cells and then, due to [...] Read more.
Adhesive-invasive E. coli has been suggested to be associated with the development of Crohn’s disease (CD). It is assumed that they can provoke the onset of the inflammatory process as a result of the invasion of intestinal epithelial cells and then, due to survival inside macrophages and dendritic cells, stimulate chronic inflammation. In previous reports, we have shown that passage of the CD isolate ZvL2 on minimal medium M9 supplemented with sodium propionate (PA) as a carbon source stimulates and inhibits the adherent-invasive properties and the ability to survive in macrophages. This effect was reversible and not observed for the laboratory strain K12 MG1655. We were able to compare the isogenic strain AIEC in two phenotypes—virulent (ZvL2-PA) and non-virulent (ZvL2-GLU). Unlike ZvL2-GLU, ZvL2-PA activates the production of ROS and cytokines when interacting with neutrophils. The laboratory strain does not cause a similar effect. To activate neutrophils, bacterial opsonization is necessary. Differences in neutrophil NADH oxidase activation and ζ-potential for ZvL2-GLU and ZvL2-PA are associated with changes in membrane protein abundance, as demonstrated by differential 2D electrophoresis and LC-MS. The increase in ROS and cytokine production during the interaction of ZvL2-PA with neutrophils is associated with a rearrangement of the abundance of membrane proteins, which leads to the activation of Rcs and PhoP/Q signaling pathways and changes in the composition and/or modification of LPS. Certain isoforms of OmpA may play a role in the formation of the virulent phenotype of ZvL2-PA and participate in the activation of NADPH oxidase in neutrophils. Full article
(This article belongs to the Special Issue Advanced Research in Gut Inflammation and Gut-Mediated Disorders)
Show Figures

Graphical abstract

27 pages, 12671 KB  
Article
Ozone Profile Retrieval Algorithm Based on GEOS-Chem Model in the Middle and Upper Atmosphere
by Yuan An, Xianhua Wang, Hanhan Ye, Hailiang Shi, Shichao Wu, Chao Li and Erchang Sun
Remote Sens. 2024, 16(8), 1335; https://doi.org/10.3390/rs16081335 - 10 Apr 2024
Cited by 2 | Viewed by 2202
Abstract
Ozone absorbs ultraviolet radiation, which has a significant impact on research in astrobiology and other fields in that investigate the middle and upper atmosphere. A retrieval algorithm for ozone profiles in the middle and upper atmosphere was developed using the spectral data from [...] Read more.
Ozone absorbs ultraviolet radiation, which has a significant impact on research in astrobiology and other fields in that investigate the middle and upper atmosphere. A retrieval algorithm for ozone profiles in the middle and upper atmosphere was developed using the spectral data from the TROPOspheric Monitoring Instrument (TROPOMI). A priori ozone profiles were constructed through the Goddard Earth Observing System-Chem (GEOS-Chem) model. These profiles were closer to the true atmosphere in the spatial and temporal dimensions when compared to the ozone climatology. The TpO3 ozone climatology was used as a reference to highlight the reliability of the a priori ozone profile from GEOS-Chem. The inversion results based on GEOS-Chem and TpO3 climatology were compared with ground-based ozone measurements and the satellite products of the Microwave Limb Sounder (MLS) and the Ozone Mapping and Profiles Suite_Limb Profile (OMPS_LP). The comparisons reveal that the correlation coefficient R values for the inversion results based on GEOS-Chem were greater than 0.90 at most altitudes, making them better than the values based on TpO3 climatology. The differences in subcolumn concentration between the GEOS-Chem inversion results and the ground-based measurements were smaller than those between TpO3 climatology results and the ground-based measurements. The relative differences between the inversion results based on the GEOS-Chem and the satellite products was generally smaller than those between the inversion results based on TpO3 climatology and the satellite products. The mean relative difference between the GEOS-Chem inversion results and MLS is −9.10%, and OMPS_LP is 1.46%, while those based on TpO3 climatology is −14.51% and −4.70% from 20 to 45 km These results imply that using a priori ozone profiles generated through GEOS-Chem leads to more accurate inversion results. Full article
Show Figures

Figure 1

18 pages, 4747 KB  
Article
Fingolimod Inhibits Exopolysaccharide Production and Regulates Relevant Genes to Eliminate the Biofilm of K. pneumoniae
by Xiang Geng, Ya-Jun Yang, Zhun Li, Wen-Bo Ge, Xiao Xu, Xi-Wang Liu and Jian-Yong Li
Int. J. Mol. Sci. 2024, 25(3), 1397; https://doi.org/10.3390/ijms25031397 - 23 Jan 2024
Cited by 6 | Viewed by 2675
Abstract
Klebsiella pneumoniae (K. pneumoniae) exhibits the ability to form biofilms as a means of adapting to its adverse surroundings. K. pneumoniae in this biofilm state demonstrates remarkable resistance, evades immune system attacks, and poses challenges for complete eradication, thereby complicating clinical [...] Read more.
Klebsiella pneumoniae (K. pneumoniae) exhibits the ability to form biofilms as a means of adapting to its adverse surroundings. K. pneumoniae in this biofilm state demonstrates remarkable resistance, evades immune system attacks, and poses challenges for complete eradication, thereby complicating clinical anti-infection efforts. Moreover, the precise mechanisms governing biofilm formation and disruption remain elusive. Recent studies have discovered that fingolimod (FLD) exhibits biofilm properties against Gram-positive bacteria. Therefore, the antibiofilm properties of FLD were evaluated against multidrug-resistant (MDR) K. pneumoniae in this study. The antibiofilm activity of FLD against K. pneumoniae was assessed utilizing the Alamar Blue assay along with confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), and crystal violet (CV) staining. The results showed that FLD effectively reduced biofilm formation, exopolysaccharide (EPS), motility, and bacterial abundance within K. pneumoniae biofilms without impeding its growth and metabolic activity. Furthermore, the inhibitory impact of FLD on the production of autoinducer-2 (AI-2) signaling molecules was identified, thereby demonstrating its notable anti-quorum sensing (QS) properties. The results of qRT-PCR analysis demonstrated that FLD significantly decreased the expression of genes associated with the efflux pump gene (AcrB, kexD, ketM, kdeA, and kpnE), outer membrane (OM) porin proteins (OmpK35, OmpK36), the quorum-sensing (QS) system (luxS), lipopolysaccharide (LPS) production (wzm), and EPS production (pgaA). Simultaneously, FLD exhibited evident antibacterial synergism, leading to an increased survival rate of G. mellonella infected with MDR K. pneumoniae. These findings suggested that FLD has substantial antibiofilm properties and synergistic antibacterial potential for colistin in treating K. pneumoniae infections. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

21 pages, 11514 KB  
Article
Investigating a Persistent Stratospheric Aerosol Layer Observed over Southern Europe during 2019
by Kalliopi Artemis Voudouri, Konstantinos Michailidis, Maria-Elissavet Koukouli, Samuel Rémy, Antje Inness, Ghassan Taha, Georgia Peletidou, Nikolaos Siomos, Dimitrios Balis and Mark Parrington
Remote Sens. 2023, 15(22), 5394; https://doi.org/10.3390/rs15225394 - 17 Nov 2023
Cited by 5 | Viewed by 2377
Abstract
A persistent stratospheric aerosol layer first appeared during July 2019 above Thessaloniki, Greece (40.5°N, 22.9°E). It was initially at 12 km and, during August 2019, was even up to 20 km, with increased thickness and reduced attenuated backscatter levels till the end of [...] Read more.
A persistent stratospheric aerosol layer first appeared during July 2019 above Thessaloniki, Greece (40.5°N, 22.9°E). It was initially at 12 km and, during August 2019, was even up to 20 km, with increased thickness and reduced attenuated backscatter levels till the end of the year. In this study, we analyze the geometrical and optical properties of this stratospheric layer, using ground-based Lidar measurements, CALIOP/CALIPSO & OMPS-LP space-borne observations, as well as CAMS/ECMWF assimilation experiments. The main aim of the paper is to present an overview of this atmospheric feature and to identify any temporal changes in the aerosol properties that would signify substantial changes in the composition of this long-lasting stratospheric plume over Thessaloniki. This aim is further enhanced by emphasizing the importance of the combined information based on active ground- and space-borne lidars, passive remote sensing, and models during the complex stratospheric aerosol conditions as those encountered during 2019. The layer’s origin is linked to the Raikoke volcanic eruption in the Kuril Islands in June 2019, yielding a particle linear depolarization ratio less than 0.05, while some indications exist that the intense forest fires at mid and high northern latitudes throughout the summer of 2019 also contributed to the persistent layer. We report that in July, mainly volcanic sulphate aerosol layers with a 1–3 km vertical extent were identified in the stratosphere at ~15 km over Thessaloniki, while after August and until the end of 2019, the plume heights showed a significant month-to-month variability and a broadening (with thickness greater than 3 km) towards lower altitudes. The aerosol optical thickness was found to be in the range between 0.004 and 0.125 (visible) and 0.001 and 0.095 (infrared) and the particle depolarization of the detected stratospheric plume was found to be 0.03 ± 0.04, indicative of spherical particles, such as sulphate aerosols. Full article
Show Figures

Figure 1

17 pages, 2548 KB  
Article
Genetic and Phenotypic Analysis of Phage-Resistant Mutant Fitness Triggered by Phage–Host Interactions
by Yanze Mi, Yile He, Jinhui Mi, Yunfei Huang, Huahao Fan, Lihua Song, Xiaoping An, Shan Xu, Mengzhe Li and Yigang Tong
Int. J. Mol. Sci. 2023, 24(21), 15594; https://doi.org/10.3390/ijms242115594 - 26 Oct 2023
Cited by 10 | Viewed by 3615
Abstract
The emergence of phage-resistant bacterial strains is one of the biggest challenges for phage therapy. However, the emerging phage-resistant bacteria are often accompanied by adaptive trade-offs, which supports a therapeutic strategy called “phage steering”. The key to phage steering is to guide the [...] Read more.
The emergence of phage-resistant bacterial strains is one of the biggest challenges for phage therapy. However, the emerging phage-resistant bacteria are often accompanied by adaptive trade-offs, which supports a therapeutic strategy called “phage steering”. The key to phage steering is to guide the bacterial population toward an evolutionary direction that is favorable for treatment. Thus, it is important to systematically investigate the impacts of phages targeting different bacterial receptors on the fitness of the bacterial population. Herein, we employed 20 different phages to impose strong evolutionary pressure on the host Pseudomonas aeruginosa PAO1 and examined the genetic and phenotypic responses of their phage-resistant mutants. Among these strains with impaired adsorptions, four types of mutations associated with bacterial receptors were identified, namely, lipopolysaccharides (LPSs), type IV pili (T4Ps), outer membrane proteins (OMPs), and exopolysaccharides (EPSs). PAO1, responding to LPS- and EPS-dependent phage infections, mostly showed significant growth impairment and virulence attenuation. Most mutants with T4P-related mutations exhibited a significant decrease in motility and biofilm formation ability, while the mutants with OMP-related mutations required the lowest fitness cost out of the bacterial populations. Apart from fitness costs, PAO1 strains might lose their resistance to antibiotics when counteracting with phages, such as the presence of large-fragment mutants in this study, which may inspire the usage of phage–antibiotic combination strategies. This work provides methods that leverage the merits of phage resistance relative to obtaining therapeutically beneficial outcomes with respect to phage-steering strategies. Full article
(This article belongs to the Special Issue Advances in the Study of Phage–Host Interactions)
Show Figures

Figure 1

17 pages, 1371 KB  
Article
Biopharmaceutical Assessment of Mesh Aerosolised Plasminogen, a Step towards ARDS Treatment
by Lucia Vizzoni, Chiara Migone, Brunella Grassiri, Ylenia Zambito, Baldassare Ferro, Paolo Roncucci, Filippo Mori, Alfonso Salvatore, Ester Ascione, Roberto Crea, Semih Esin, Giovanna Batoni and Anna Maria Piras
Pharmaceutics 2023, 15(6), 1618; https://doi.org/10.3390/pharmaceutics15061618 - 30 May 2023
Cited by 5 | Viewed by 3183
Abstract
Acute respiratory distress syndrome (ARDS) is a severe complication of lung injuries, commonly associated with bacterial, fungal and viral infections, including SARS-CoV-2 viral infections. ARDS is strongly correlated with patient mortality and its clinical management is very complex, with no effective treatment presently [...] Read more.
Acute respiratory distress syndrome (ARDS) is a severe complication of lung injuries, commonly associated with bacterial, fungal and viral infections, including SARS-CoV-2 viral infections. ARDS is strongly correlated with patient mortality and its clinical management is very complex, with no effective treatment presently available. ARDS involves severe respiratory failure, fibrin deposition in both airways and lung parenchyma, with the development of an obstructing hyaline membrane drastically limiting gas exchange. Moreover, hypercoagulation is related to deep lung inflammation, and a pharmacological action toward both aspects is expected to be beneficial. Plasminogen (PLG) is a main component of the fibrinolytic system playing key roles in various inflammation regulatory processes. The inhalation of PLG has been proposed in the form of the off-label administration of an eyedrop solution, namely, a plasminogen-based orphan medicinal product (PLG-OMP), by means of jet nebulisation. Being a protein, PLG is susceptible to partial inactivation under jet nebulisation. The aim of the present work is to demonstrate the efficacy of the mesh nebulisation of PLG-OMP in an in vitro simulation of clinical off-label administration, considering both the enzymatic and immunomodulating activities of PLG. Biopharmaceutical aspects are also investigated to corroborate the feasibility of PLG-OMP administration by inhalation. The nebulisation of the solution was performed using an Aerogen® SoloTM vibrating-mesh nebuliser. Aerosolised PLG showed an optimal in vitro deposition profile, with 90% of the active ingredient impacting the lower portions of a glass impinger. The nebulised PLG remained in its monomeric form, with no alteration of glycoform composition and 94% of enzymatic activity maintenance. Activity loss was observed only when PLG-OMP nebulisation was performed under simulated clinical oxygen administration. In vitro investigations evidenced good penetration of aerosolised PLG through artificial airway mucus, as well as poor permeation across an Air–Liquid Interface model of pulmonary epithelium. The results suggest a good safety profile of inhalable PLG, excluding high systemic absorption but with good mucus diffusion. Most importantly, the aerosolised PLG was capable of reversing the effects of an LPS-activated macrophage RAW 264.7 cell line, demonstrating the immunomodulating activity of PLG in an already induced inflammatory state. All physical, biochemical and biopharmaceutical assessments of mesh aerosolised PLG-OMP provided evidence for its potential off-label administration as a treatment for ARDS patients. Full article
(This article belongs to the Special Issue Inhaled Treatment of Respiratory Infections)
Show Figures

Figure 1

14 pages, 2070 KB  
Article
Influence of Membrane Asymmetry on OmpF Insertion, Orientation and Function
by Annemarie Donoghue, Mathias Winterhalter and Thomas Gutsmann
Membranes 2023, 13(5), 517; https://doi.org/10.3390/membranes13050517 - 16 May 2023
Cited by 1 | Viewed by 2139
Abstract
The effect of asymmetric membranes containing lipopolysaccharides (LPS) on the outer membrane protein F (OmpF) reconstitution, channel orientation, and antibiotic permeation across the outer membrane was investigated. After forming an asymmetric planar lipid bilayer composed of LPS on one and phospholipids on the [...] Read more.
The effect of asymmetric membranes containing lipopolysaccharides (LPS) on the outer membrane protein F (OmpF) reconstitution, channel orientation, and antibiotic permeation across the outer membrane was investigated. After forming an asymmetric planar lipid bilayer composed of LPS on one and phospholipids on the other side, the membrane channel OmpF was added. The ion current recordings demonstrate that LPS has a strong influence on the OmpF membrane insertion, orientation, and gating. Enrofloxacin was used as an example of an antibiotic interacting with the asymmetric membrane and with OmpF. The enrofloxacin caused the blockage of the ion current through the OmpF, depending on the side of addition, the transmembrane voltage applied, and the composition of the buffer. Furthermore, the enrofloxacin changed the phase behavior of the LPS-containing membranes, demonstrating that its membrane activity influences the function of OmpF and potentially the membrane permeability. Full article
(This article belongs to the Special Issue Advances in Symmetric and Asymmetric Lipid Membranes)
Show Figures

Figure 1

17 pages, 6411 KB  
Article
Interaction of Tryptophan- and Arginine-Rich Antimicrobial Peptide with E. coli Outer Membrane—A Molecular Simulation Approach
by George Necula, Mihaela Bacalum and Mihai Radu
Int. J. Mol. Sci. 2023, 24(3), 2005; https://doi.org/10.3390/ijms24032005 - 19 Jan 2023
Cited by 17 | Viewed by 3448
Abstract
A short antimicrobial peptide (AMP), rich in tryptophan and arginine (P6—HRWWRWWRR-NH2), was used in molecular dynamics (MD) simulations to investigate the interaction between AMPs and lipopolysaccharides (LPS) from two E. coli outer membrane (OM) membrane models. The OM of Gram-negative bacteria is an [...] Read more.
A short antimicrobial peptide (AMP), rich in tryptophan and arginine (P6—HRWWRWWRR-NH2), was used in molecular dynamics (MD) simulations to investigate the interaction between AMPs and lipopolysaccharides (LPS) from two E. coli outer membrane (OM) membrane models. The OM of Gram-negative bacteria is an asymmetric bilayer, with the outer layer consisting exclusively of lipopolysaccharide molecules and the lower leaflet made up of phospholipids. The mechanisms by which short AMPs permeate the OM of Gram-negative bacteria are not well understood at the moment. For this study, two types of E. coli OM membrane models were built with (i) smooth LPS composed of lipid A, K12 core and O21 O-antigen, and (ii) rough type LPS composed of lipid A and R1 core. An OmpF monomer from E. coli was embedded in both membrane models. MD trajectories revealed that AMP insertion in the LPS layer was facilitated by the OmpF-created gap and allowed AMPs to form hydrogen bonds with the phosphate groups of inner core oligosaccharides. OM proteins such as OmpF may be essential for the permeation of short AMPs such as P6 by exposing the LPS binding site or even by direct translocation of AMPs across the OM. Full article
Show Figures

Figure 1

15 pages, 1247 KB  
Article
Extracellular Vesicles from 50,000 Generation Clones of the Escherichia coli Long-Term Evolution Experiment
by David Laurin, Corinne Mercier, Nyamekye Quansah, Julie Suzanne Robert, Yves Usson, Dominique Schneider, Thomas Hindré and Béatrice Schaack
Int. J. Mol. Sci. 2022, 23(23), 14580; https://doi.org/10.3390/ijms232314580 - 23 Nov 2022
Cited by 3 | Viewed by 2999
Abstract
Extracellular vesicles (EVs) are critical elements of cell–cell communication. Here, we characterized the outer membrane vesicles (OMVs) released by specific clones of Escherichia coli isolated from the Long-Term Evolution Experiment after 50,000 generations (50K) of adaptation to glucose minimal medium. Compared with their [...] Read more.
Extracellular vesicles (EVs) are critical elements of cell–cell communication. Here, we characterized the outer membrane vesicles (OMVs) released by specific clones of Escherichia coli isolated from the Long-Term Evolution Experiment after 50,000 generations (50K) of adaptation to glucose minimal medium. Compared with their ancestor, the evolved clones produce small OMVs but also larger ones which display variable amounts of both OmpA and LPS. Tracking ancestral, fluorescently labelled OMVs revealed that they fuse with both ancestral- and 50K-evolved cells, albeit in different proportions. We quantified that less than 2% of the cells from one 50K-evolved clone acquired the fluorescence delivered by OMVs from the ancestral strain but that one cell concomitantly fuses with several OMVs. Globally, our results showed that OMV production in E. coli is a phenotype that varies along bacterial evolution and question the contribution of OMVs-mediated interactions in bacterial adaptation. Full article
Show Figures

Figure 1

Back to TopTop