A Novel Enterococcus Phage Endolysin Lys22 with a Wide Host Range Against Mixed Biofilm of Enterococcus faecalis, Staphylococcus aureus, and Acinetobacter baumannii
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Zebrafish Embryos
2.2. The Expression of Lys22
2.3. Determination of the Host Range of Endolysin Lys22
2.4. The Stability of Lys22
2.5. The Effect of Lys22 on Enterococcus Faecalis Biofilm
Confocal Laser Scanning Microscopy (CLSM) Analysis
2.6. Inhibition of Biofilm in Human Dentin Slices by Lys22
2.7. The Effect of Lys22 on Mixed Biofilms
2.7.1. Turbidity Test and Crystal Violet Method
2.7.2. Scanning Electronic Microscope Observation
2.8. Quantitative Real-Time PCR (qRT-PCR)
2.9. Protection of Lys22 to Zebrafish Embryos
2.10. Statistical Analysis
3. Results
3.1. Clone and Expression of Lys22
3.2. Host Range of Endolysin Lys22
3.3. Stability of Lys22
3.4. The Effect of Lys22 on E. faecalis Biofilm
3.5. The Effect of Lys22 Against Mixed Biofilms
3.6. Biofilm Removability by SEM
3.7. The Effect of Lys22 on Biofilm-Associated Gene Expression
3.8. The Protection of Lys22 to S. aureus-, E. faecalis-, and A. baumannii-Attacked Zebrafish Embryos
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rather, M.A.; Gupta, K.; Mandal, M. Microbial biofilm: Formation, architecture, antibiotic resistance, and control strategies. Braz. J. Microbiol. 2021, 52, 1701–1718. [Google Scholar] [CrossRef]
- Cortés, M.E.; Consuegra, J.; Ruben, D.S. Biofilm formation, control and novel strategies for eradication. Sci. Against Microb. Pathog. Commun. Curr. Res. Technol. Adv. 2011, 2, 896–905. [Google Scholar]
- Heo, S.; Lee, J.; Lee, J.H.; Jeong, D.W. Genomic Insight into the Salt Tolerance of Enterococcus faecium, Enterococcus faecalis and Tetragenococcus halophilus. J. Microbiol. Biotechnol. 2019, 29, 1591–1602. [Google Scholar] [CrossRef] [PubMed]
- Koch, S.; Hufnagel, M.; Theilacker, C.; Huebner, J. Enterococcal infections: Host response, therapeutic, and prophylactic possibilities. Vaccine 2004, 22, 822–830. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Wu, Y.; Lin, Z.; Wang, G.; Jiang, S.; Sun, X.; Tu, H.; Yu, Z.; Qu, D. ClpP participates in stress tolerance, biofilm formation, antimicrobial tolerance, and virulence of Enterococcus faecalis. BMC Microbiol. 2020, 20, 30. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ch’ng, J.H.; Chong, K.K.L.; Lam, L.N.; Wong, J.J.; Kline, K.A. Biofilm-associated infection by enterococci. Nat. Rev. Microbiol. 2019, 17, 82–94, Erratum in Nat. Rev. Microbiol. 2019, 17, 124. https://doi.org/10.1038/s41579-018-0128-7. [Google Scholar] [CrossRef] [PubMed]
- Ruhal, R.; Sahu, A.; Koujalagi, T.; Das, A.; Prasanth, H.; Kataria, R. Biofilm-specific determinants of enterococci pathogen. Arch. Microbiol. 2024, 206, 397. [Google Scholar] [CrossRef] [PubMed]
- Cheung, G.Y.C.; Bae, J.S.; Otto, M. Pathogenicity and virulence of Staphylococcus aureus. Virulence 2021, 12, 547–569. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cheng, M.; Zhang, L.; Zhang, H.; Li, X.; Wang, Y.; Xia, F.; Wang, B.; Cai, R.; Guo, Z.; Zhang, Y.; et al. An Ointment Consisting of the Phage Lysin LysGH15 and Apigenin for Decolonization of Methicillin-Resistant Staphylococcus aureus from Skin Wounds. Viruses 2018, 10, 244. [Google Scholar] [CrossRef]
- Idrees, M.; Sawant, S.; Karodia, N.; Rahman, A. Staphylococcus aureus Biofilm: Morphology, Genetics, Pathogenesis and Treatment Strategies. Int. J. Environ. Res. Public Health 2021, 18, 7602. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Guo, H.; Tong, Y.; Cheng, J.; Abbas, Z.; Li, Z.; Wang, J.; Zhou, Y.; Si, D.; Zhang, R. Biofilm and Small Colony Variants-An Update on Staphylococcus aureus Strategies toward Drug Resistance. Int. J. Mol. Sci. 2022, 23, 1241. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Silva-de-Jesus, A.C.; Ferrari, R.G.; Panzenhagen, P.; Conte-Junior, C.A. Staphylococcus aureus biofilm: The role in disseminating antimicrobial resistance over the meat chain. Microbiology 2022, 168, 001245. [Google Scholar] [CrossRef] [PubMed]
- Avery, T.M.; Boone, R.L.; Lu, J.; Spicer, S.K.; Guevara, M.A.; Moore, R.E.; Chambers, S.A.; Manning, S.D.; Dent, L.; Marshall, D.; et al. Analysis of Antimicrobial and Antibiofilm Activity of Human Milk Lactoferrin Compared to Bovine Lactoferrin against Multidrug Resistant and Susceptible Acinetobacter baumannii Clinical Isolates. ACS Infect. Dis. 2021, 7, 2116–2126. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Chowdhury, G.; Mukhopadhyay, A.K.; Dutta, S.; Basu, S. Convergence of Biofilm Formation and Antibiotic Resistance in Acinetobacter baumannii Infection. Front. Med. 2022, 9, 793615. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dolma, K.G.; Khati, R.; Paul, A.K.; Rahmatullah, M.; de Lourdes Pereira, M.; Wilairatana, P.; Khandelwal, B.; Gupta, C.; Gautam, D.; Gupta, M.; et al. Virulence Characteristics and Emerging Therapies for Biofilm-Forming Acinetobacter baumannii: A Review. Biology 2022, 11, 1343. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Naseef Pathoor, N.; Viswanathan, A.; Wadhwa, G.; Ganesh, P.S. Understanding the biofilm development of Acinetobacter baumannii and novel strategies to combat infection. APMIS 2024, 132, 317–335. [Google Scholar] [CrossRef] [PubMed]
- Shakib, P.; Saki, R.; Zolfaghari, M.R.; Goudarzi, G. Efflux Pump and Biofilm Inhibitory Activity of Nanoparticles in Acinetobacter Baumannii: A Systematic Review. Clin. Lab. 2023, 69, 2040–2046. [Google Scholar] [CrossRef] [PubMed]
- Lopes, S.P.; Jorge, P.; Sousa, A.M.; Pereira, M.O. Discerning the role of polymicrobial biofilms in the ascent, prevalence, and extent of heteroresistance in clinical practice. Crit. Rev. Microbiol. 2021, 47, 162–191. [Google Scholar] [CrossRef] [PubMed]
- Mariani, F.; Galvan, E.M. Staphylococcus aureus in Polymicrobial Skinand Soft Tissue Infections: Impact of Inter-Species Interactionsin Disease Outcome. Antibiotics 2023, 12, 1164. [Google Scholar] [CrossRef]
- Obeso, J.M.; Martínez, B.; Rodríguez, A.; García, P. Lytic activity of the recombinant staphylococcal bacteriophage PhiH5 endolysin active against Staphylococcus aureus in milk. Int. J. Food Microbiol. 2008, 128, 212–218. [Google Scholar] [CrossRef]
- Sousa, L.G.V.; Pereira, S.A.; Cerca, N. Fighting polymicrobial biofilms in bacterial vaginosis. Microb. Biotechnol. 2023, 16, 1423–1437. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nasser, A.; Dallal, M.M.S.; Jahanbakhshi, S.; Azimi, T.; Nikouei, L. Staphylococcus aureus: Biofilm Formation and Strategies Against it. Curr. Pharm. Biotechnol. 2022, 23, 664–678. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Lee, D.W.; Jin, J.S.; Kim, J. Antimicrobial activity of LysSS, a novel phage endolysin, against Acinetobacter baumannii and Pseudomonas aeruginosa. J. Glob. Antimicrob. Resist. 2020, 22, 32–39. [Google Scholar] [CrossRef]
- Park, S.H.; Kim, Y.J.; Lee, H.B.; Seok, Y.J.; Lee, C.R. Genetic Evidence for Distinct Functions of Peptidoglycan Endopeptidases in Escherichia coli. Front. Microbiol. 2020, 11, 565767. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, H.; Zhang, H.; Wang, J.; Yu, J.; Wei, H. A novel chimeric lysin with robust antibacterial activity against planktonic and biofilm methicillin-resistant Staphylococcus aureus. Sci. Rep. 2017, 7, 40182. [Google Scholar] [CrossRef]
- Kiefer, F.; Arnold, K.; Künzli, M.; Bordoli, L.; Schwede, T. The SWISS-MODEL Repository and associated resources. Nucleic Acids Res. 2009, 37, D387–D392. [Google Scholar] [CrossRef]
- Jiang, Y.T.; Yan, P.F.; Liang, J.P. Biological changes of Enterococcus faecalis in the viable but nonculturable state. GMR 2015, 14, 14790–14801. [Google Scholar] [CrossRef]
- Ahn, K.B.; Baik, J.E.; Yun, C.H.; Han, S.H. Lipoteichoic Acid Inhibits Staphylococcus aureus Biofilm Formation. Front. Microbiol. 2018, 9, 327. [Google Scholar] [CrossRef]
- Sandasi, M.; Leonard, C.M.; Viljoen, A.M. The in vitro antibiofilm activity of selected culinary herbs and medicinal plants against Listeria monocytogenes. Lett. Appl. Microbiol. 2010, 50, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Yao, F.; He, J.; Nyaruaba, R.; Wei, H.; Li, Y. Endolysins as Effective Agents for Decontaminating S. typhimurium, E. coli, and L. monocytogenes on Mung Bean Seeds. Int. J. Mol. Sci. 2025, 26, 2047. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.; Park, O.-J.; Kim, A.R.; Ahn, K.B.; Lee, D.; Kum, K.-Y.; Yun, C.-H.; Han, S.H. Lipoteichoic acids of lactobacilli inhibit Enterococcus faecalis biofilm formation and disrupt the preformed biofilm. J. Microbiol. 2019, 57, 310–315. [Google Scholar] [CrossRef]
- Velusamy, P.; Kumar, G.V.; Jeyanthi, V.; Das, J.; Pachaiappan, R. Bio-Inspired Green Nanoparticles: Synthesis, Mechanism, and Antibacterial Application. Toxicol. Res. 2016, 32, 95–102. [Google Scholar] [CrossRef]
- Liu, F.; Sun, Z.; Wang, F.; Liu, Y.; Zhu, Y.; Du, L.; Wang, D.; Xu, W. Inhibition of biofilm formation and exopolysaccharide synthesis of Enterococcus faecalis by phenyllactic acid. Food Microbiol. 2020, 86, 103344. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Cheng, M.; Zhang, H.; Dai, J.; Guo, Z.; Li, X.; Ji, Y.; Cai, R.; Xi, H.; Wang, X.; et al. Antibacterial Effects of Phage Lysin LysGH15 on Planktonic Cells and Biofilms of Diverse Staphylococci. Appl. Environ. Microbiol. 2018, 84, e00886-18. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.G.; Lee, J.H.; Park, S.; Kim, S.; Lee, J. Inhibition of polymicrobial biofilm formation by saw palmetto oil, lauric acid and myristic acid. Microb. Biotechnol. 2022, 15, 590–602. [Google Scholar] [CrossRef] [PubMed]
- Lieschke, G.J.; Currie, P.D. Animal models of human disease: Zebrafish swim into view. Nat. Rev. Genet. 2007, 8, 353–367. [Google Scholar] [CrossRef] [PubMed]
- Rothenbücher, T.S.P.; Ledin, J.; Gibbs, D.; Engqvist, H.; Persson, C.; Hulsart-Billström, G. Zebrafish embryo as a replacement model for initial biocompatibility studies of biomaterials and drug delivery systems. Acta Biomater. 2019, 100, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Neto, S.; Vieira, A.; Oliveira, H.; Espiña, B. Assessing Acinetobacter baumannii virulence and treatment with a bacteriophage using zebrafish embryos. FASEB J. 2023, 37, e23013. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Garcia, T.; Poncet, S.; Cuenot, E.; Douché, T.; Giai Gianetto, Q.; Peltier, J.; Courtin, P.; Chapot-Chartier, M.P.; Matondo, M.; Dupuy, B.; et al. Ser/Thr Kinase-Dependent Phosphorylation of the Peptidoglycan Hydrolase CwlA Controls Its Export and Modulates Cell Division in Clostridioides difficile. mBio 2021, 12, e00519-21. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, J.; Peng, Q.; Chen, Z.; Deng, C.; Shu, C.; Zhang, J.; Huang, D.; Song, F. Transcriptional regulation and characteristics of a novel N-acetylmuramoyl-L-alanine amidase gene involved in Bacillus thuringiensis mother cell lysis. J. Bacteriol. 2013, 195, 2887–2897. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schmelcher, M.; Donovan, D.M.; Loessner, M.J. Bacteriophage Endolysins as Novel Antimicrobials. Future Microbiol. 2012, 7, 1147–1171. [Google Scholar] [CrossRef]
- Lai, W.C.B.; Chen, X.; Ho, M.K.Y.; Xia, J.; Leung, S.S.Y. Bacteriophage-derived endolysins to target gram-negative bacteria. Int. J. Pharm. 2020, 589, 119833. [Google Scholar] [CrossRef] [PubMed]
- Røder, H.L.; Sørensen, S.J.; Burmølle, M. Studying Bacterial Multispecies Biofilms: Where to Start? Trends Microbiol. 2016, 24, 503–513. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Chen, Y.; Sun, E.; Hua, L.; Peng, Z.; Wu, B. Characterization of a Lytic Bacteriophage vB_EfaS_PHB08 Harboring Endolysin Lys08 Against Enterococcus faecalis Biofilms. Microorganisms 2020, 8, 1332. [Google Scholar] [CrossRef]
- Kim, S.; Jin, J.S.; Choi, Y.J.; Kim, J. LysSAP26, a New Recombinant Phage Endolysin with a Broad Spectrum Antibacterial Activity. Viruses 2020, 12, 1340. [Google Scholar] [CrossRef]
- Binte Muhammad Jai, H.S.; Dam, L.C.; Tay, L.S.; Koh, J.J.W.; Loo, H.L.; Kline, K.A.; Goh, B.C. Engineered Lysins with Customized Lytic Activities Against Enterococci and Staphylococci. Front. Microbiol. 2020, 11, 574739. [Google Scholar] [CrossRef]
- Lim, J.H.; Kim, M.-S.; Kim, H.-E.; Yano, T.; Oshima, Y.; Aggarwal, K.; Goldman, W.E.; Silverman, N.; Kurata, S.; Oh, B.-H. Structural basis for preferential recognition of diaminopimelic acid-type peptidoglycan by a subset of peptidoglycan recognition proteins. J. Biol. Chem. 2006, 281, 8286–8295. [Google Scholar] [CrossRef]
- Beenken, K.E.; Blevins, J.S.; Smeltzer, M.S. Mutation of sarA in Staphylococcus aureus limits biofilm formation. Infect. Immun. 2003, 71, 4206–4211. [Google Scholar] [CrossRef] [PubMed]
- Morfeldt, E.; Taylor, D.; von Gabain, A.; Arvidson, S. Activation of alpha-toxin translation in Staphylococcus aureus by the trans-encoded antisense RNA, RNAIII. EMBO J. 1995, 14, 4569–4577. [Google Scholar] [CrossRef]
- O’Gara, J.P. ica and beyond: Biofilm mechanisms and regulation in Staphylococcus epidermidis and Staphylococcus aureus. FEMS Microbiol. Lett. 2007, 270, 179–188. [Google Scholar] [CrossRef]
- Thompson, T.A.; Brown, P.D. Small interfering RNAs targeting agrA and sarA attenuate pathogenesis of Staphylococcus aureus in Caenorhabditis elegans. J. Infect. Dev. Ctries. 2021, 15, 1868–1875. [Google Scholar] [CrossRef]
- van Schaik, W.; Abee, T. The role of sigmaB in the stress response of Gram-positive bacteria–targets for food preservation and safety. Curr. Opin. Biotechnol. 2005, 16, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Gök, Ş.M.; Türk Dağı, H.; Kara, F.; Arslan, U.; Fındık, D. Investigation of Antibiotic Resistance and Virulence Factors of Enterococcus faecium and Enterococcus faecalis Strains Isolated from Clinical Samples. Mikrobiyol. Bul. 2020, 54, 26–39. [Google Scholar] [CrossRef] [PubMed]
- Nallapareddy, S.R.; Singh, K.V.; Sillanpää, J.; Zhao, M.; Murray, B.E. Relative contributions of Ebp Pili and the collagen adhesin ace to host extracellular matrix protein adherence and experimental urinary tract infection by Enterococcus faecalis OG1RF. Infect. Immun. 2011, 79, 2901–2910. [Google Scholar] [CrossRef] [PubMed]
- Beomidehagh, M.; Rezaee, M.A.; Ganbarov, K.; Jafari, F.; Hasani, A.; Alizadeh, N.; Tanomand, A.; Kafil, H.S. Effect of acidic and alkali shocks on expression of efaA gene in Enterococcus faecalis, isolated from root canal infection. Cell. Mol. Biol. 2018, 64, 1–5. [Google Scholar] [CrossRef]
- Kart, D.; Kuştimur, A.S. Investigation of Gelatinase Gene Expression and Growth of Enterococcus faecalis Clinical Isolates in Biofilm Models. Turk. J. Pharm. Sci. 2019, 16, 356–361. [Google Scholar] [CrossRef]
- Gaddy, J.A.; Tomaras, A.P.; Actis, L.A. The Acinetobacter baumannii 19606 OmpA protein plays a role in biofilm formation on abiotic surfaces and in the interaction of this pathogen with eukaryotic cells. Infect. Immun. 2009, 77, 3150–3160. [Google Scholar] [CrossRef]
- Luke, N.R.; Sauberan, S.L.; Russo, T.A.; Beanan, J.M.; Olson, R.; Loehfelm, T.W.; Cox, A.D.; St Michael, F.; Vinogradov, E.V.; Campagnari, A.A. Identification and characterization of a glycosyltransferase involved in Acinetobacter baumannii lipopolysaccharide core biosynthesis. Infect. Immun. 2010, 78, 2017–2023. [Google Scholar] [CrossRef]
- Russo, T.A.; MacDonald, U.; Beanan, J.M.; Olson, R.; MacDonald, I.J.; Sauberan, S.L.; Luke, N.R.; Schultz, L.W.; Umland, T.C. Penicillin-binding protein 7/8 contributes to the survival of Acinetobacter baumannii in vitro and in vivo. J. Infect. Dis. 2009, 199, 513–521. [Google Scholar] [CrossRef]
- Hamidian, M.; Hall, R.M. The AbaR antibiotic resistance islands found in Acinetobacter baumannii global clone 1–Structure, origin and evolution. Drug Resist. Updates Rev. Comment. Antimicrob. Anticancer Chemother. 2018, 41, 26–39. [Google Scholar] [CrossRef]
- Pakharukova, N.; Tuittila, M.; Paavilainen, S.; Zavialov, A. Methylation, crystallization and SAD phasing of the Csu pilus CsuC-CsuE chaperone-adhesin subunit pre-assembly complex from Acinetobacter baumannii. Acta Crystallogr. Sect. F Struct. Biol. Commun. 2017, 73, 450–454. [Google Scholar] [CrossRef] [PubMed]
- Liou, M.L.; Soo, P.-C.; Ling, S.-R.; Kuo, H.-Y.; Tang, C.Y.; Chang, K.-C. The sensor kinase BfmS mediates virulence in Acinetobacter baumannii. J. Microbiol. Immunol. Infect. 2014, 47, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Zhang, X.; Wang, Y.; Tao, Y.; Shao, X.; Li, Y.; Li, W. Insight into carbapenem resistance and virulence of Acinetobacter baumannii from a children’s medical centre in eastern China. Ann. Clin. Microbiol. Antimicrob. 2022, 21, 47. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Barredo, J.L.; Cantoral, J.M.; Alvarez, E.; Díez, B.; Martín, J.F. Cloning, sequence analysis and transcriptional study of the isopenicillin N synthase of Penicillium chrysogenum AS-P-78. Mol. Gen. Genet. 1989, 216, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Raetz, C.R.; Whitfield, C. Lipopolysaccharide endotoxins. Annu. Rev. Biochem. 2002, 71, 635–700. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Sensitive Bacteria | Accession Numbers of Sensitive Bacteria 16S rRNA |
---|---|
Enterococcusfaecalis | MH236308, MH236312, MH236314, MH236328, MH362705, MH236319, MH236320, MH591461 △, MH236341 △, MH236325 △, MH236318 △. |
Staphylococcus. aureus | OK642790 ◇, OK642791 ◇, OK642793 ◆, OK642796 ◆, OK642794, OK642795, OK642797, OK642798, OK642799, OK642792. |
Staphylococcus. epidemidis | OK642800, OK642801, OK642803, OK642804. |
Staphylococcus. haemolyticus | OK642805, OK642806, OK642807, OK642808, OK642809. |
Staphylococcus. hominis | OK642810 |
Staphylococcus cohnii | OK642811 |
Staphylococcus klosii | OK642812 |
Staphylococcus warneri | OK642813 |
Acinetobacter baumannii | PP659668, PP659669, PP659670, PP659673, PP660317, PP732465, PP660318, PP660321, PP660327, PP660328, PP732466, PP660333, PP660334, PP660338, PP660341, PP660342, PP660550 |
Acinetobacter pittii | PP660329, PP660332, PP660344, PP660545, PP660551, PP660552, PP659677 |
Acinetobacter nosocomialis | PP660549 |
Enterobacter hormaechei | PP659673 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Du, X.; Hu, N.; Feng, M.-A.; Xu, J.; Jiang, H.; Zhang, N.; Huang, H.; Li, J.; Shi, H. A Novel Enterococcus Phage Endolysin Lys22 with a Wide Host Range Against Mixed Biofilm of Enterococcus faecalis, Staphylococcus aureus, and Acinetobacter baumannii. Pathogens 2025, 14, 1060. https://doi.org/10.3390/pathogens14101060
Yang Z, Du X, Hu N, Feng M-A, Xu J, Jiang H, Zhang N, Huang H, Li J, Shi H. A Novel Enterococcus Phage Endolysin Lys22 with a Wide Host Range Against Mixed Biofilm of Enterococcus faecalis, Staphylococcus aureus, and Acinetobacter baumannii. Pathogens. 2025; 14(10):1060. https://doi.org/10.3390/pathogens14101060
Chicago/Turabian StyleYang, Ziqin, Xue Du, Nannan Hu, Meng-Ai Feng, Jiaoyang Xu, Hailin Jiang, Na Zhang, Honglan Huang, Jinghua Li, and Hongyan Shi. 2025. "A Novel Enterococcus Phage Endolysin Lys22 with a Wide Host Range Against Mixed Biofilm of Enterococcus faecalis, Staphylococcus aureus, and Acinetobacter baumannii" Pathogens 14, no. 10: 1060. https://doi.org/10.3390/pathogens14101060
APA StyleYang, Z., Du, X., Hu, N., Feng, M.-A., Xu, J., Jiang, H., Zhang, N., Huang, H., Li, J., & Shi, H. (2025). A Novel Enterococcus Phage Endolysin Lys22 with a Wide Host Range Against Mixed Biofilm of Enterococcus faecalis, Staphylococcus aureus, and Acinetobacter baumannii. Pathogens, 14(10), 1060. https://doi.org/10.3390/pathogens14101060