Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (815)

Search Parameters:
Keywords = O2 plasma treatment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 602 KiB  
Systematic Review
Methods of Orthodontic Microimplant Surface Modifications Providing Antibacterial Properties: A Systematic Review
by Alicja Wądołowska, Joanna Lis, Beata Kawala, Anna Ewa Kuc, Gabriela Zdrodowska, Agnieszka Rożdżestwieńska-Sowa and Michał Sarul
Materials 2025, 18(15), 3575; https://doi.org/10.3390/ma18153575 - 30 Jul 2025
Viewed by 186
Abstract
The use of orthodontic microimplants in daily practice is now an indispensable part of orthodontic treatment. Unfortunately, the use of skeletal anchorage is associated with a relatively high risk of loss of microimplant stability because of inflammation developing in the surrounding soft tissues. [...] Read more.
The use of orthodontic microimplants in daily practice is now an indispensable part of orthodontic treatment. Unfortunately, the use of skeletal anchorage is associated with a relatively high risk of loss of microimplant stability because of inflammation developing in the surrounding soft tissues. The aim of this systematic review is to identify possible methods of orthodontic microimplant surface modifications providing antibacterial properties. The PubMed, Web of Science, Embase, and Cochrane Reviews databases were searched, and a literature review was conducted. The search was performed between 1 December 2024 and 31 December 2024. The authors used the PICO format to facilitate the search of abstracts and ensure that the relevant components of the question are well defined. The systematic review was written based on the principles detailed in PRISMA. The quality of the papers was assessed based on a tool developed by the authors. Three papers were rated Low Risk of Bias (RoB), four were rated Moderate RoB, and three were rated High RoB. All of the studies presented a method to increase the antibacterial properties of microimplants. More research with a unified methodology is necessary to confirm the effectiveness of the analyzed methods. ZnO, antibiotics, chlorhexidine, silver compounds, selenium, HA, and PEG polymerization plasma represent an interesting perspective for improving the antibacterial properties of orthodontic microimplants. Full article
(This article belongs to the Special Issue Innovative Restorative Dental Materials and Fabrication Techniques)
Show Figures

Figure 1

11 pages, 4704 KiB  
Article
The Effect of Low-ΣCSL Grain Boundary Proportion on Molten Salt-Induced Hot Corrosion Behavior in Nickel-Based Alloy Welds
by Tingxi Chai, Youjun Yu, Hongtong Xu, Jing Han and Liqin Yan
Coatings 2025, 15(8), 882; https://doi.org/10.3390/coatings15080882 - 28 Jul 2025
Viewed by 370
Abstract
To enhance the molten salt corrosion resistance of Ni200 alloy plasma arc welds, the welds were subjected to tensile deformation followed by heat treatment. The grain boundary character distribution (GBCD) was analyzed using electron backscatter diffraction (EBSD) in conjunction with orientation imaging microscopy [...] Read more.
To enhance the molten salt corrosion resistance of Ni200 alloy plasma arc welds, the welds were subjected to tensile deformation followed by heat treatment. The grain boundary character distribution (GBCD) was analyzed using electron backscatter diffraction (EBSD) in conjunction with orientation imaging microscopy (OIM). A constant-temperature corrosion test at 900 °C was conducted to evaluate the impact of GBCD on the corrosion resistance of the welds. Results demonstrated that after processing with 6% tensile deformation, and annealing at 950 °C for 30 min, the fraction of low-ΣCSL grain boundaries increased from 1.2% in the as-welded condition to 57.3%, and large grain clusters exhibiting Σ3n orientation relationships were formed. During the heat treatment, an increased number of recrystallization nucleation sites led to a reduction in average grain size from 323.35 μm to 171.38 μm. When exposed to a high-temperature environment of 75% Na2SO4-25% NaCl mixed molten salt, the corrosion behavior was characterized by intergranular attack, with oxidation and sulfidation reactions resulting in the formation of NiO and Ni3S2. The corrosion resistance of Grain boundary engineering (GBE)-treated samples was significantly superior to that of Non-GBE samples, with respective corrosion rates of 0.3397 mg/cm2·h and 0.8484 mg/cm2·h. These findings indicate that grain boundary engineering can effectively modulate the grain boundary character distribution in Ni200 alloy welds, thereby enhancing their resistance to molten salt corrosion. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Figure 1

20 pages, 6490 KiB  
Article
Impact of Chitooligosaccharide Conjugated Epigallocatechin Gallate and Non-Thermal High-Voltage Atmospheric Cold Plasma on Vibrio parahaemolyticus: An In Vitro Study and the Use in Blood Clam Meat
by Mruganxi Harshad Sharma, Avtar Singh, Ankita Singh, Soottawat Benjakul, Suriya Palamae, Ajay Mittal and Jirayu Buatong
Foods 2025, 14(15), 2577; https://doi.org/10.3390/foods14152577 - 23 Jul 2025
Viewed by 290
Abstract
Vibrio parahaemolyticus is the leading cause of bacterial diarrhea in humans from shellfish consumption. In Thailand, blood clam is a popular shellfish, but homemade cooking often results in insufficient heating. Therefore, consumers may suffer from food poisoning due to Vibrio infection. This study [...] Read more.
Vibrio parahaemolyticus is the leading cause of bacterial diarrhea in humans from shellfish consumption. In Thailand, blood clam is a popular shellfish, but homemade cooking often results in insufficient heating. Therefore, consumers may suffer from food poisoning due to Vibrio infection. This study aimed to determine the effect of chitooligosaccharide conjugated with epigallocatechin gallate (COS-EGCG) at different concentrations (200 and 400 ppm) combined with high-voltage atmospheric cold plasma (HVACP) on inhibiting V. parahaemolyticus in vitro and in challenged blood clam meat. Firstly, HVACP conditions were optimized for gas composition and treatment time (20 and 60 s); a 70% Ar and 30% O2 gas mixture resulted in the highest ozone formation and a treatment time of 60 s was used for further study. COS-EGCG conjugate at 400 ppm with HVACP (ACP-CE400) completely killed V. parahaemolyticus after incubation at 37 °C for 6 h. Furthermore, an antibacterial ability of ACP-CE400 treatment against bacterial cells was advocated due to the increased cell membrane damage, permeability, and leakage of proteins and nucleic acids. Scanning electron microscopy (SEM) showed cell elongation and pore formation, while confocal microscopy revealed disrupted biofilm formation. Additionally, the shelf life of challenged blood clam meat treated with ACP-CE400 was extended to nine days. SEM analysis revealed damaged bacterial cells on the meat surface after ACP-CE400 treatment, indicating the antibacterial activity of the combined treatment. Thus, HVACP combined with COS-EGCG conjugate, especially at a highest concentration (400 ppm), effectively inhibited microbial growth and extended the shelf life of contaminated blood clam meat. Full article
(This article belongs to the Special Issue Research on Aquatic Product Processing and Quality Control)
Show Figures

Graphical abstract

22 pages, 4817 KiB  
Article
LightSpot Fluorescent Conjugates as Highly Efficient Tools for Lysosomal P-gp Quantification in Olaparib-Treated Triple-Negative Breast Cancer Cells
by Antoine Goisnard, Pierre Daumar, Maxime Dubois, Elodie Gay, Manon Roux, Marie Depresle, Frédérique Penault-Llorca, Emmanuelle Mounetou and Mahchid Bamdad
Int. J. Mol. Sci. 2025, 26(14), 6675; https://doi.org/10.3390/ijms26146675 - 11 Jul 2025
Viewed by 361
Abstract
P-glycoprotein (P-gp) is a key element of cancer treatment resistance, actively extruding cytotoxic drugs from cells and diminishing their efficacy. While its role at the plasma membrane is well established, its intracellular localization, particularly on lysosomes, is increasingly recognized as a critical contributor [...] Read more.
P-glycoprotein (P-gp) is a key element of cancer treatment resistance, actively extruding cytotoxic drugs from cells and diminishing their efficacy. While its role at the plasma membrane is well established, its intracellular localization, particularly on lysosomes, is increasingly recognized as a critical contributor to drug resistance. This study investigates four innovative LightSpot fluorescent compounds to detect and quantify both membrane and lysosomal P-gp in Triple-Negative Breast Cancer (TNBC) SUM1315 and DU4475 cell lines. Results highlighted lysosomal P-gp staining by the LightSpot-FL-1, LightSpot-BrX-1, and LightSpot-BdO-1 fluorescent compounds (Mander’s coefficients > 0.8 overlapping with LAMP2 immunostaining). After both cell lines were exposed to Olaparib, a significant increase in P-gp expression level and lysosomal distribution of P-gp was detected. Indeed, after 100 µM Olaparib exposure, LightSpot-FL-1 allowed us to quantify an increase in P-gp-positive lysosome number of 1293 and 334% for SUM1315 and DU4475 cells, respectively, compared to the control. Findings suggest that P-gp may relocate to lysosomes upon drug exposure, highlighting a dual resistance mechanism involving both membrane and lysosomal P-gp. This study demonstrated the potential of LightSpot fluorescent compounds to evaluate P-gp-mediated cell resistance to treatment and emphasized the need to assess global cell P-gp expression to improve cancer diagnosis. Full article
Show Figures

Figure 1

27 pages, 10769 KiB  
Article
Cold Plasma Treatment Alters the Morphology, Oxidative Stress Response and Specialized Metabolite Content in Yellow Iris (I. reichenbachii) Callus
by Slađana Jevremović, Milica Milutinović, Ksenija Veličković, Uroš Gašić, Nikola Škoro, Nevena Puač and Suzana Živković
Horticulturae 2025, 11(7), 781; https://doi.org/10.3390/horticulturae11070781 - 3 Jul 2025
Viewed by 536
Abstract
The application of non-thermal (cold) plasmas is considered an environmentally friendly method that could affect plant metabolism and cellular development or can be used for the commercial production of natural products that cannot be chemically synthesized. In the present study, the non-embryogenic callus [...] Read more.
The application of non-thermal (cold) plasmas is considered an environmentally friendly method that could affect plant metabolism and cellular development or can be used for the commercial production of natural products that cannot be chemically synthesized. In the present study, the non-embryogenic callus of iris (Iris reichenbachii Heuff.) was treated with a Radio Frequency (RF) plasma needle device using He as a working gas. We investigated short-term (up to seven days) and long-term (up to one year) changes on morphological, physiological and biochemical levels. An increased production of O2 and H2O2 was observed in the callus tissue after plasma treatment. The enzymes SOD and CAT represented the frontline in the antioxidant defense against reactive oxygen species (ROS) produced during the first hour of treatment, while POX was the leading antioxidant enzyme seven days after plasma treatment. Significant long-term morphological changes were observed in the calli due to the increased mitotic activity of the plant cells. In addition, three flavonoids (naringenin, apigenin and acacetin) and two isoflavonoids (irisolidone and irilone) were detected only in the plasma-treated tissue even one year after plasma treatment. The present study emphasizes the application of the plasma technique to promote meristematic activity and stimulate the production of specialized metabolites in iris calli. Full article
(This article belongs to the Special Issue Innovative Micropropagation of Horticultural and Medicinal Plants)
Show Figures

Graphical abstract

17 pages, 7582 KiB  
Article
Effects of Feeding Calcium Salts from a Mixture of Linseed and Fish Oil on Productive Response, Metabolic Status, and Reproductive Parameters in Early-Lactation Dairy Cows
by Pablo M. Roskopf, Alejandra Cuatrin, Matías Stangaferro, Gino Storani, Emmanuel Angeli, Gustavo J. Hein and Eloy E. Salado
Dairy 2025, 6(4), 34; https://doi.org/10.3390/dairy6040034 - 1 Jul 2025
Viewed by 535
Abstract
This study evaluated the effects of supplementing early-lactation Holstein cows with rumen-protected omega-3 fatty acids (calcium salts) on productive and reproductive performance. Thirty-six multiparous cows were randomly assigned to one of two treatments from 21 ± 2 days before calving to 105 ± [...] Read more.
This study evaluated the effects of supplementing early-lactation Holstein cows with rumen-protected omega-3 fatty acids (calcium salts) on productive and reproductive performance. Thirty-six multiparous cows were randomly assigned to one of two treatments from 21 ± 2 days before calving to 105 ± 5 days in milk (DIM): a Control group (C) or an Omega-3-supplemented group (O-3), receiving a blend of linseed and fish oil (60:40). Both groups were fed isoenergetic diets, with ground corn as the control supplement. Total dry matter and net energy intake did not differ between treatments. A treatment-by-time interaction was observed for milk yield, with cows in the O-3 group producing more milk than controls at specific time points. Additionally, O-3 cows had higher overall protein yield and improved feed efficiency. No differences were found in body weight, BCS, glucose, insulin, IGF-1, or urea concentrations, but a tendency toward higher plasma NEFA and BHBA concentrations and lower energy balance was observed in the O-3 group. Supplementation increased plasma cholesterol and progesterone concentrations and was associated with a higher proportion of cows being pregnant at 130 DIM. These findings suggest that omega-3 supplementation may improve specific aspects of lactational performance and reproductive efficiency without compromising metabolic status. Full article
(This article belongs to the Section Dairy Animal Nutrition and Welfare)
Show Figures

Figure 1

11 pages, 2422 KiB  
Article
Low-Temperature Degradation of Aflatoxins via Oxygen Plasma: Kinetics and Mechanism Driven by Atomic Oxygen Flux
by Nina Recek, Rok Zaplotnik, Gregor Primc, Peter Gselman and Miran Mozetič
Materials 2025, 18(13), 2924; https://doi.org/10.3390/ma18132924 - 20 Jun 2025
Viewed by 412
Abstract
Aflatoxins are toxic organic substances that are synthesized on the surfaces of seeds, nuts, and similar products by some fungi under elevated humidity. They decompose at temperatures well above 130 °C, so standard heating or autoclaving is an obsolete technique for the degradation [...] Read more.
Aflatoxins are toxic organic substances that are synthesized on the surfaces of seeds, nuts, and similar products by some fungi under elevated humidity. They decompose at temperatures well above 130 °C, so standard heating or autoclaving is an obsolete technique for the degradation of toxins on surfaces without significant modification of the treated material. Non-equilibrium plasma was used to degrade aflatoxins at low temperatures and determine the efficiency of O atoms. A commercial mixture of aflatoxins was deposited on smooth substrates, and the solvent was evaporated so that about a 3 nm thick film of dry toxins remained on the substrates. The samples were exposed to low-pressure oxygen plasma sustained by an inductively coupled radiofrequency (RF) discharge in either the E or H mode. The gas pressure was 20 Pa, the forward RF power was between 50 and 700 W, and the O-atom flux was between 1.2 × 1023 and 1.5 × 1024 m−2 s−1. Plasma treatment caused the rapid degradation of aflatoxins, whose concentration was deduced from the fluorescence signal at 455 nm upon excitation with a monochromatic source at 365 nm. The degradation was faster at higher discharge powers, but the degradation curves fitted well when plotted against the dose of O atoms. The experiments showed that the aflatoxin concentration dropped below the detection limit of the fluorescence probe after receiving the O-atom dose of just above 1025 m−2. This dose was achieved within 10 s of treatment in plasma in the H mode, and approximately a minute when plasma was in the E mode. The method provides a low-temperature solution for the efficient detoxification of agricultural products. Full article
(This article belongs to the Special Issue Advances in Plasma Treatment of Materials)
Show Figures

Graphical abstract

23 pages, 10093 KiB  
Article
Phase Evolution and Synthesis of Be12 Nb Intermetallic Compound in the 800–1300 °C Temperature Range
by Sergey Udartsev, Inesh E. Kenzhina, Timur Kulsartov, Kuanysh Samarkhanov, Zhanna Zaurbekova, Yuriy Ponkratov, Alexandr Yelishenkov, Meiram Begentayev, Saulet Askerbekov, Aktolkyn Tolenova, Manarbek Kylyshkanov, Mikhail Podoinikov, Ainur Kaynazarova and Oleg Obgolts
Materials 2025, 18(12), 2915; https://doi.org/10.3390/ma18122915 - 19 Jun 2025
Viewed by 443
Abstract
Beryllium-based intermetallic compounds, such as Be12Nb, are attracting growing interest for their high thermal stability and potential to replace pure beryllium as neutron reflectors and multipliers in both fission and future fusion reactors, with additional applications in metallurgy, aerospace, and hydrogen [...] Read more.
Beryllium-based intermetallic compounds, such as Be12Nb, are attracting growing interest for their high thermal stability and potential to replace pure beryllium as neutron reflectors and multipliers in both fission and future fusion reactors, with additional applications in metallurgy, aerospace, and hydrogen technology. The paper presents the results of an investigation of the thermal treatment and phase formation of the intermetallic compound Be12Nb from a mixture of niobium and beryllium powders in the temperature range of 800–1300 °C. The phase evolution was assessed as a function of sintering temperature and time. A nearly single-phase Be12Nb composition was achieved at 1100 °C, while decomposition into lower-order beryllides such as Be17Nb2 occurred at temperatures ≥1200 °C, indicating thermal instability of Be12Nb under vacuum. Careful handling of sintering in low vacuum minimized oxidation, though signs of possible BeO formation were noted. The findings complement and extend earlier reports on Be12Nb synthesis via plasma sintering, mechanical alloying, and other powder metallurgy routes, providing broader insight into phase formation and synthesis. These results provide a foundation for optimizing the manufacturing parameters required to produce homogeneous Be12Nb-based components and billets at an industrial scale. Additionally, they help define the operational temperature limits necessary to preserve the material’s phase integrity during application. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

16 pages, 4367 KiB  
Article
Non-Thermal Plasma-Assisted Synthesis of ZnO for Enhanced Photocatalytic Performance
by Harshini Mohan, Subash Mohandoss, Natarajan Balasubramaniyan and Sivachandiran Loganathan
Plasma 2025, 8(2), 25; https://doi.org/10.3390/plasma8020025 - 18 Jun 2025
Viewed by 529
Abstract
Non-thermal plasma (NTP)-assisted material synthesis and surface modification provide a promising approach in various applications, particularly in wastewater treatment. In this study, we reported the synthesis of photocatalytic zinc oxide (ZnO) from zinc hydroxide (Zn(OH)2) utilizing NTP discharge generated by dielectric [...] Read more.
Non-thermal plasma (NTP)-assisted material synthesis and surface modification provide a promising approach in various applications, particularly in wastewater treatment. In this study, we reported the synthesis of photocatalytic zinc oxide (ZnO) from zinc hydroxide (Zn(OH)2) utilizing NTP discharge generated by dielectric barrier discharge (DBD). The results demonstrated that the 40 min plasma treatment at 200 °C (ZnO-P) with a voltage of 20 kV significantly improved the material’s physicochemical properties compared to conventional calcination at 600 °C (ZnO-600). ZnO-P exhibited better crystallinity, a significantly reduced particle size of 41 nm, and a narrower band gap of 3.1 eV compared to ZnO-600. Photocatalytic performance was evaluated through crystal violet degradation, where ZnO-P achieved an 60% degradation rate after 90 min of UV exposure, whereas ZnO-600 exhibited only a 50% degradation rate under identical conditions. These findings underscore the effectiveness of NTP synthesis in enhancing the surface properties of ZnO, leading to superior photocatalytic performance. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2025)
Show Figures

Graphical abstract

22 pages, 16513 KiB  
Article
Investigation of Superhydrophobic, Drag-Reducing and Anti-Icing Properties of Swimming Goggles
by Junyi Ding, Haiqi Lin, Xubin Guo, Guangfei Wang, Yangyang Jia and Lu Tang
Coatings 2025, 15(6), 664; https://doi.org/10.3390/coatings15060664 - 30 May 2025
Viewed by 473
Abstract
Swimming goggles still face numerous challenges in practical use, including deterioration and failure of anti-fog coatings, residual water marks on lens surfaces, and relatively short service life in complex environments. When swimming outdoors during winter, goggles also present an icing problem. To address [...] Read more.
Swimming goggles still face numerous challenges in practical use, including deterioration and failure of anti-fog coatings, residual water marks on lens surfaces, and relatively short service life in complex environments. When swimming outdoors during winter, goggles also present an icing problem. To address these problems and enhance the performance of swimming goggles, this study employs a combination of plasma cleaning and mechanical spraying methods, utilizing HB-139 SiO2 to modify the surface of goggle lenses, thereby fabricating lenses with superhydrophobic properties. The changes in lens surfaces before and after friction and immersion treatments were characterized using three-dimensional profilometry and scanning electron microscopy, further investigating the hydrophobic, drag-reducing, wear-resistant, and anti-icing properties of the lenses. Experimental results demonstrate that SiO2 can enhance the hydrophobic, drag-reducing, durability, and anti-icing performance of the lenses. Under standard conditions, the contact angle of modified samples reached 162.33 ± 3.15°, representing a 48.77 ± 2.15% improvement over original samples. Under friction conditions, modified samples exhibited a 45.86 ± 2.53% increase in contact angle compared to original samples, with Sa values decreasing by 58.64 ± 3.21%. Under immersion conditions, modified samples showed a 54.37 ± 2.44% increase in contact angle relative to original samples. The modified samples demonstrated excellent droplet bouncing performance at temperatures of −10 °C, 10 °C, and 30 °C. De-icing efficiency improved by 14.94 ± 2.37%. Throughout the experimental process, SiO2 demonstrated exceptional hydrophobic, drag-reducing, durability, and anti-icing capabilities. This establishes a robust foundation for the exemplary performance of swimming goggles in both training and competitive contexts. Full article
Show Figures

Figure 1

22 pages, 16693 KiB  
Article
The Therapeutic Potential of Bombyx Batryticatus for Chronic Atrophic Gastritis Precancerous Lesions via the PI3K/AKT/mTOR Pathway Based on Network Pharmacology of Blood-Entering Components
by Xiaojie Wang, Miaomiao Chang, Kun Feng, Qingyue Wang, Bowen Li and Weijuan Gao
Pharmaceuticals 2025, 18(6), 791; https://doi.org/10.3390/ph18060791 - 25 May 2025
Viewed by 762
Abstract
Background: Chronic atrophic gastritis precancerous lesions (PL-CAG) are characterized by the atrophy of gastric mucosal glands, often accompanied by intestinal metaplasia or dysplasia. Timely intervention and treatment can effectively reverse its malignant progression and prevent the onset of gastric cancer. Bombyx Batryticatus (BB) [...] Read more.
Background: Chronic atrophic gastritis precancerous lesions (PL-CAG) are characterized by the atrophy of gastric mucosal glands, often accompanied by intestinal metaplasia or dysplasia. Timely intervention and treatment can effectively reverse its malignant progression and prevent the onset of gastric cancer. Bombyx Batryticatus (BB) exhibits a range of pharmacological effects, including anticoagulation, antiepileptic properties, anticancer activity, and antibacterial effects. However, the pharmacological basis and mechanisms underlying BB’s efficacy in treating PL-CAG remain unclear. Methods: A three-factor modeling approach was implemented to develop a rat PL-CAG model, while the MNNG-induced PLGC (precancerous lesions of gastric cancer) cell model was served as a cell PL-CAG model. UPLC-QE-Orbitrap-MS/MS (Ultra performance liquid chromatography-quadrupole-electrostatic field orbital trap high-resolution mass spectrometry) was utilized to perform an in-depth analysis of the components in the plasma extract of BB. Leveraging network pharmacology, molecular docking analyses, and experimental validation, we initially elucidated the potential mechanisms through which BB mediates its therapeutic effects on PL-CAG at both in vivo and in vitro levels. Results: Prototype compounds of 42 blood-entering components were identified by UPLC-QE-Orbitrap-MS/MS analysis. Network pharmacology analysis and molecular docking studies indicate that the core targets are primarily enriched in the PI3K-Akt signaling pathway, and the key components, including Nepitrin, Quercetin 3-O-neohesperidoside, Rutin, and others, exhibited stable docking conformations with the first eleven pivotal targets. Both in vivo and in vitro experiments validated that BB may effectively treat PL-CAG via modulation of the PI3K-Akt signaling pathway. Conclusions: The therapeutic efficacy of BB in the management of PL-CAG may be achieved through the synergistic interaction of multiple components and targets, which may be more closely related to the inhibition of the PI3K/AKT signaling pathway. This approach will establish a solid experimental foundation and provide essential data for the clinical application of BB in treating PL-CAG, while also facilitating further research initiatives. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

20 pages, 7633 KiB  
Article
Corrosion Performance of Chemically Passivated and Ion Beam-Treated Austenitic–Martensitic Steel in the Marine Environment
by Viktor Semin, Alexander Cherkasov, Konstantin Savkin, Maxim Shandrikov and Evgeniya Khabibova
J. Manuf. Mater. Process. 2025, 9(5), 167; https://doi.org/10.3390/jmmp9050167 - 20 May 2025
Viewed by 691
Abstract
In the present work, chemical and ion beam surface treatments were performed in order to modify the electrochemical behavior of industrial austenitic–martensitic steel VNS-5 in 3.5 wt. % NaCl. Immersion for 140 h in a solution containing 0.05 M potassium dichromate and 10% [...] Read more.
In the present work, chemical and ion beam surface treatments were performed in order to modify the electrochemical behavior of industrial austenitic–martensitic steel VNS-5 in 3.5 wt. % NaCl. Immersion for 140 h in a solution containing 0.05 M potassium dichromate and 10% phosphoric acid promotes formation of chromium hydroxides in the outer surface layer. By means of a new type of ion source, based on a high-current pulsed magnetron discharge with injection of electrons from vacuum arc plasma, ion implantation with Ar+ and Cr+ ions of the VNS-5 steel was performed. It has been found that the ion implantation leads to formation of an Fe- and Cr-bearing oxide layer with advanced passivation ability. Moreover, the ion beam-treated steel exhibits a lower corrosion rate (by ~7.8 times) and higher charge transfer resistance in comparison with an initial (mechanically polished) substrate. Comprehensive electrochemical and XPS analysis has shown that a Cr2O3-rich oxide film is able to provide an improved corrosion performance of the steel, while the chromium hydroxides may increase the specific conductivity of the surface layer. A scheme of a charge transfer between the microgalvanic elements was proposed. Full article
Show Figures

Figure 1

19 pages, 2997 KiB  
Article
Discharge Energy Versus Exposure Time in Atmospheric-Pressure Air Plasma Surface Treatment of Polyimide and Polyamide 6 Films
by Iustina Hatescu, Cătălin Borcia, Roxana Ciobanu and Gabriela Borcia
Polymers 2025, 17(10), 1394; https://doi.org/10.3390/polym17101394 - 19 May 2025
Viewed by 484
Abstract
Polyimide (PI) and polyamide 6 (PA6) films are treated under exposure times of 0.5 s and 1.0 s, and energy levels of 1.5, 2.0, and 2.3 mJ/pulse. PI exhibits the most substantial improvement in wettability and adhesion-related properties compared to PA6 and other [...] Read more.
Polyimide (PI) and polyamide 6 (PA6) films are treated under exposure times of 0.5 s and 1.0 s, and energy levels of 1.5, 2.0, and 2.3 mJ/pulse. PI exhibits the most substantial improvement in wettability and adhesion-related properties compared to PA6 and other studied polar polymers. The threshold level for stable surface modification is reduced, achieving a minimum water contact angle of 45°. The stability is markedly enhanced, with aged PI surfaces showing a 40% relative increase in adhesion work compared to untreated samples. The oxygen content on the PI surface reaches 22 at. %, surpassing the maximum of 18 at. % O observed for PA6. The surface roughness of PI increases by approximately a factor of 2, while PA6 shows an average increase of only 25%, attributed to higher ablation rates in the amorphous phase compared to the crystalline phase. The degree of surface modification achieved with [1.0 s; 1.5 mJ] treatment parameters is comparable to that with [0.5 s; 2.0 mJ], demonstrating that higher discharge energy can effectively shorten the required exposure time. This plasma treatment, even at very short exposure times, enables significant enhancement of the surface properties of PI, typically characterized by high chemical stability. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

34 pages, 2775 KiB  
Article
Production of Red Beetroot (Beta vulgaris L.) Pestil as an Alternative Healthy Snack: Effects of Traditional, Thermosonication, and Microwave Pretreatments on Physicochemical, Sensorial, Nutritional, and Chemometric Profiles
by Neslihan Ersoyak, Busra Acoglu Celik, Elif Koc Alibasoglu, Erturk Bekar, Taha Turgut Unal, Ersin Yetan, Senem Kamiloglu, Arzu Akpinar Bayizit, Omer Utku Copur, Irmak Aral Baskaya and Perihan Yolci Omeroglu
Foods 2025, 14(10), 1784; https://doi.org/10.3390/foods14101784 - 17 May 2025
Viewed by 672
Abstract
Red beetroot (Beta vulgaris L.) is a nutritionally rich root vegetable. It is a potential alternative raw material for pestil, a traditional fruit-based snack. This study aimed to develop a healthy beetroot-based pestil using traditional boiling (95 °C) and novel pretreatment methods, [...] Read more.
Red beetroot (Beta vulgaris L.) is a nutritionally rich root vegetable. It is a potential alternative raw material for pestil, a traditional fruit-based snack. This study aimed to develop a healthy beetroot-based pestil using traditional boiling (95 °C) and novel pretreatment methods, including thermosonication and microwave processing, with and without additional concentration steps. The effects of these methods on heat treatment period, hydroxymethylfurfural (HMF) formation, and the physicochemical, sensorial, nutritional, and chemometric profiles of pestils were evaluated. The beetroot-based snack formulated in this study was hedonically acceptable (≥5/9) and rich in essential minerals (Ca, K, Na, P, Mg) and trace elements (Zn, Fe, Mn), as determined by inductively coupled plasma–mass spectrometry. Total antioxidant capacity (CUPRAC) ranged from 113.11 to 870.78 mg Trolox® equivalent/100 g dry matter (DM). Total phenolic, flavonoid, and betalain contents varied between 220.6–313.8 mg gallic acid equivalent/100 g DM, 365.08–517.46 mg rutin equivalent/100 g DM, and 314.40–488.66 mg/kg, respectively. Major flavonoids identified and quantified included epicatechin, rutin, isoquercitrin, taxifolin, and quercetin, while major phenolic acids identified were chlorogenic acid, ferulic acid, caffeic acid, o-salicylic acid, p-coumaric acid, and vanillin, using liquid chromatography–electrospray tandem mass spectrometry. Reducing the soluble solids content of the pestil pulp from 40 to 20 Brix degrees, in combination with thermosonication and microwave treatments, significantly shortened the processing time by 10–67%. This approach also reduced the HMF content to the limit of quantification (LOQ). Pretreatment methods significantly (p < 0.05) affected the levels of minerals and bioactive compounds in the pestils. These findings highlight the importance of process optimization to improve overall safety and the nutritional quality of the pestil. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

14 pages, 3114 KiB  
Article
A Comparative Study on Absorption of Gaseous Formaldehyde by Electrospun Biomass Carbon Nanofiber Membranes Modified by Plasma Activation and Chemical Treatment
by Qian He, Jinhui Xiong, Huanbo Wang, Linkun Xie, Xijuan Chai, Lianpeng Zhang, Siqun Wang, Guanben Du and Kaimeng Xu
Molecules 2025, 30(10), 2184; https://doi.org/10.3390/molecules30102184 - 16 May 2025
Viewed by 519
Abstract
To comparatively study the effects of cold plasma activation and chemical treatment on the adsorption capacities of biomass carbon nanofiber membranes (BCNMs), microcrystalline cellulose (MCC) and chitosan (CS) were used to fabricate porous BCNMs by electrospinning and carbonization. Two modification methods, including oxygen [...] Read more.
To comparatively study the effects of cold plasma activation and chemical treatment on the adsorption capacities of biomass carbon nanofiber membranes (BCNMs), microcrystalline cellulose (MCC) and chitosan (CS) were used to fabricate porous BCNMs by electrospinning and carbonization. Two modification methods, including oxygen (O2) plasma activation and chemical treatment using nitric acid (HNO3), sulfuric acid (H2SO4), hydrogen peroxide (H2O2), and urea, were further employed to enhance their adsorption performance. Various carbonyl group (C=O), ether bond (C-O), carboxyl group (O-C=O) and pyridinic nitrogen (N), pyrrolic N, and quaternary N functional groups were successfully introduced onto the surface of the BCNMs by the two methods. The BCNM-O2 showed optimal formaldehyde absorption capacity (120.67 mg g−1), corresponding to its highest contents of N, O-containing functional groups, and intact network structure. However, chemical treatment in strong acid or oxidative solutions destructed the microporous structures and changed the size uniformity of fibers in the BCNMs, resulting in a decline in formaldehyde adsorption capacity. A synergistically physical–chemical adsorption took place during formaldehyde adsorption by the modified biomass nanofiber membranes, due to the coexistence of suitable functional groups and porous structures in the membranes. Full article
Show Figures

Figure 1

Back to TopTop