Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (102)

Search Parameters:
Keywords = Nrf2 mutation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1222 KB  
Review
Melatonin-Mediated Nrf2 Activation as a Potential Therapeutic Strategy in Mutation-Driven Neurodegenerative Diseases
by Lucía Íñigo-Catalina, María Ortiz-Cabello, Elisa Navarro, Noemí Esteras, Lisa Rancan and Sergio D. Paredes
Antioxidants 2025, 14(10), 1190; https://doi.org/10.3390/antiox14101190 - 28 Sep 2025
Viewed by 1046
Abstract
Neurodegeneration is intrinsically linked to aging through processes such as oxidative stress, mitochondrial dysfunction, and chronic inflammation. Nuclear factor erythroid 2-related factor 2 (Nrf2) emerges as a central transcription factor regulating these molecular events and promoting cytoprotective responses. In neurodegenerative diseases, notably, frontotemporal [...] Read more.
Neurodegeneration is intrinsically linked to aging through processes such as oxidative stress, mitochondrial dysfunction, and chronic inflammation. Nuclear factor erythroid 2-related factor 2 (Nrf2) emerges as a central transcription factor regulating these molecular events and promoting cytoprotective responses. In neurodegenerative diseases, notably, frontotemporal dementia (FTD) and Parkinson’s disease (PD), genetic mutations—including MAPT, LRRK2, PINK1, PRKN, and SNCA—have been reported to alter Nrf2 signaling, both in vitro and in vivo. Melatonin, a neurohormone widely known for its strong antioxidant and mitochondria-stabilizing properties, has been shown to activate Nrf2 and restore redox balance in several experimental models of neurodegeneration. Its effects include a reduction in tau hyperphosphorylation, α-synuclein aggregation, and neuroinflammation. While most data are derived from sporadic models of Alzheimer’s disease and PD, emerging evidence supports a role for melatonin in familial forms of FTD and PD as well. Thus, targeting Nrf2 through melatonin may offer a promising approach to mitigating neurodegeneration, especially in the context of mutation-driven pathologies. Further investigation is warranted to explore mutation-specific responses and optimize the therapeutic strategies. Full article
(This article belongs to the Special Issue Oxidative Stress and NRF2 in Health and Disease—2nd Edition)
Show Figures

Graphical abstract

27 pages, 5855 KB  
Article
Derivation of Genetically Defined Murine Hepatoblastoma Cell Lines with Angiogenic Potential
by Keyao Chen, Ahmet Toksoz, Colin Henchy, Jessica Knapp, Jie Lu, Sarangarajan Ranganathan, Huabo Wang and Edward V. Prochownik
Cancers 2025, 17(18), 3002; https://doi.org/10.3390/cancers17183002 - 14 Sep 2025
Viewed by 620
Abstract
Background/Objectives: Hepatoblastoma (HB), the most common pediatric liver cancer, often bears mutations in and/or otherwise deregulates the oncogenic transcription factors β-catenin (B), YAP (Y) and NRF2 (N). HB research is hampered by a paucity of established cell lines, particularly those possessing these [...] Read more.
Background/Objectives: Hepatoblastoma (HB), the most common pediatric liver cancer, often bears mutations in and/or otherwise deregulates the oncogenic transcription factors β-catenin (B), YAP (Y) and NRF2 (N). HB research is hampered by a paucity of established cell lines, particularly those possessing these molecular drivers. All combinations of B, Y and N (BY, BN, YN and BYN) are tumorigenic when overexpressed in murine livers, but it has not been possible to establish cell lines from primary tumors. Recently, we found that concurrent, in vivo Crispr-mediated targeting of the Cdkn2a tumor suppressor locus allows for immortalized cell lines to be efficiently generated. Methods: We derived and characterized five immortalized cell lines from Cdkn2a-targeted BN and YN HBs. Results: Four of the above five cell lines retained their ability to grow as subcutaneous or “pseudo-metastatic” pulmonary tumors in the immunocompetent mice from which they originated. Most notably, when maintained under hypoxic conditions for as little as 2 days, BN cells transiently upregulated the expression of numerous endothelial cell (EC)-specific genes and acquired EC-like properties that benefited tumor growth. These lines and those from previously derived BY and BYN HBs also possessed similar sensitivities to four commonly employed chemotherapeutic drugs. Conclusions: The above-described approach is currently the only means to generate HB cell lines with pre-selected and clinically relevant oncogenic drivers. Its generic nature should also allow bespoke HB cell lines with other oncogenic drivers to be readily produced. A collection of such cell lines will be useful for studying tumor cell-to-EC trans-differentiation, interactions with the immune environment and drug sensitivities. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Graphical abstract

26 pages, 1663 KB  
Review
The Role of Reactive Oxygen Species in Lung Cancer Development: Nanomedicine as a Therapeutic Strategy
by Manuel Olazábal-Morán, Elena Pérez, Adrián Esteban-Arranz and Antonio Garrido
Biomolecules 2025, 15(9), 1316; https://doi.org/10.3390/biom15091316 - 13 Sep 2025
Viewed by 1071
Abstract
Lung cancer remains a leading cause of mortality worldwide, driven by increased tobacco use, industrialization, and air pollution. Despite advancements in diagnostics and treatments, effective therapies are still lacking. Reactive oxygen species (ROS) play a dual role in cancer development, regulating key signaling [...] Read more.
Lung cancer remains a leading cause of mortality worldwide, driven by increased tobacco use, industrialization, and air pollution. Despite advancements in diagnostics and treatments, effective therapies are still lacking. Reactive oxygen species (ROS) play a dual role in cancer development, regulating key signaling pathways and activating cell death pathways, making them a promising target for new drugs. Research shows that wild-type NRF2/KEAP1 lung tumors, which account for about 60% of lung malignancies, are sensitive to ROS induction, and mutated EGFR1 lung tumors exhibit high ROS levels. Proteolysis-targeting chimeras (PROTACs) have emerged as a promising alternative to small molecule inhibitors (SMIs) for cancer treatment, addressing limitations like undruggability and drug resistance. However, these face challenges such as limited cell penetration and potential toxic side effects. Nanotechnology has introduced “nano-PROTACs,” enhancing tissue accumulation, membrane permeability, and controlled release. In this review, the keystones of ROS in lung cancer will be summarized. Also, a potential therapy for tumors with wild-type NRF2 involving the delivery of ROS inductor nano-PROTAC will be designed. This potential therapy could suppose a potential therapeutic strategy for lung cancer patients with these genetic characteristics. Full article
Show Figures

Figure 1

20 pages, 1516 KB  
Review
Ferroptosis and Nrf2 Signaling in Head and Neck Cancer: Resistance Mechanisms and Therapeutic Prospects
by Jaewang Lee, Youngin Seo and Jong-Lyel Roh
Antioxidants 2025, 14(8), 993; https://doi.org/10.3390/antiox14080993 - 13 Aug 2025
Cited by 1 | Viewed by 1677
Abstract
Ferroptosis is an iron-dependent form of regulated cell death marked by lipid peroxidation in polyunsaturated phospholipids. In head and neck cancer (HNC), where resistance to chemotherapy and immunotherapy is common, ferroptosis offers a mechanistically distinct strategy to overcome therapeutic failure. However, cancer cells [...] Read more.
Ferroptosis is an iron-dependent form of regulated cell death marked by lipid peroxidation in polyunsaturated phospholipids. In head and neck cancer (HNC), where resistance to chemotherapy and immunotherapy is common, ferroptosis offers a mechanistically distinct strategy to overcome therapeutic failure. However, cancer cells often evade ferroptosis via activation of nuclear factor erythroid 2-related factor 2 (Nrf2), a key regulator of antioxidant and iron-regulatory genes. HNC remains therapeutically challenging due to therapy resistance driven by redox adaptation. This review highlights the ferroptosis pathway—a form of regulated necrosis driven by iron and lipid peroxidation—and its regulation by Nrf2, a master antioxidant transcription factor. We detail how Nrf2 contributes to ferroptosis evasion in HNC and summarize emerging preclinical studies targeting this axis. The review aims to synthesize molecular insights and propose therapeutic perspectives for overcoming resistance in HNC by modulating Nrf2–ferroptosis signaling. We conducted a structured narrative review of the literature using PubMed databases. Relevant studies from 2015 to 2025 focusing on ferroptosis, Nrf2 signaling, and head and neck cancer were selected based on their experimental design, novelty, and relevance to clinical resistance mechanisms. In HNC, Nrf2 mediates resistance through transcriptional upregulation of GPX4 and SLC7A11, epigenetic stabilization by PRMT4 and ALKBH5, and activation by FGF5 and platelet-derived extracellular vesicles. Epstein–Barr virus (EBV) infection also enhances Nrf2 signaling in nasopharyngeal carcinoma. More recently, loss-of-function KEAP1 mutations have been linked to persistent Nrf2 activation and upregulation of NQO1, which confer resistance to both ferroptosis and immune checkpoint therapy. Targeting NQO1 in KEAP1-deficient models restores ferroptosis and reactivates antitumor immunity. Additionally, the natural alkaloid trigonelline has shown promise in reversing Nrf2-mediated ferroptosis resistance in cisplatin-refractory tumors. Pharmacologic agents such as auranofin, fucoxanthin, carnosic acid, and disulfiram/copper complexes have demonstrated efficacy in sensitizing HNC to ferroptosis by disrupting the Nrf2 axis. This review summarizes emerging mechanisms of ferroptosis evasion and highlights therapeutic strategies targeting the Nrf2–ferroptosis network. Integrating ferroptosis inducers with immune and chemotherapeutic approaches may provide new opportunities for overcoming resistance in head and neck malignancies. Full article
(This article belongs to the Special Issue Oxidative Stress and NRF2 in Health and Disease—2nd Edition)
Show Figures

Graphical abstract

59 pages, 1351 KB  
Review
The Redox Revolution in Brain Medicine: Targeting Oxidative Stress with AI, Multi-Omics and Mitochondrial Therapies for the Precision Eradication of Neurodegeneration
by Matei Șerban, Corneliu Toader and Răzvan-Adrian Covache-Busuioc
Int. J. Mol. Sci. 2025, 26(15), 7498; https://doi.org/10.3390/ijms26157498 - 3 Aug 2025
Cited by 2 | Viewed by 3035
Abstract
Oxidative stress is a defining and pervasive driver of neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). As a molecular accelerant, reactive oxygen species (ROS) and reactive nitrogen species (RNS) compromise mitochondrial function, amplify lipid peroxidation, induce [...] Read more.
Oxidative stress is a defining and pervasive driver of neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). As a molecular accelerant, reactive oxygen species (ROS) and reactive nitrogen species (RNS) compromise mitochondrial function, amplify lipid peroxidation, induce protein misfolding, and promote chronic neuroinflammation, creating a positive feedback loop of neuronal damage and cognitive decline. Despite its centrality in promoting disease progression, attempts to neutralize oxidative stress with monotherapeutic antioxidants have largely failed owing to the multifactorial redox imbalance affecting each patient and their corresponding variation. We are now at the threshold of precision redox medicine, driven by advances in syndromic multi-omics integration, Artificial Intelligence biomarker identification, and the precision of patient-specific therapeutic interventions. This paper will aim to reveal a mechanistically deep assessment of oxidative stress and its contribution to diseases of neurodegeneration, with an emphasis on oxidatively modified proteins (e.g., carbonylated tau, nitrated α-synuclein), lipid peroxidation biomarkers (F2-isoprostanes, 4-HNE), and DNA damage (8-OHdG) as significant biomarkers of disease progression. We will critically examine the majority of clinical trial studies investigating mitochondria-targeted antioxidants (e.g., MitoQ, SS-31), Nrf2 activators (e.g., dimethyl fumarate, sulforaphane), and epigenetic reprogramming schemes aiming to re-establish antioxidant defenses and repair redox damage at the molecular level of biology. Emerging solutions that involve nanoparticles (e.g., antioxidant delivery systems) and CRISPR (e.g., correction of mutations in SOD1 and GPx1) have the potential to transform therapeutic approaches to treatment for these diseases by cutting the time required to realize meaningful impacts and meaningful treatment. This paper will argue that with the connection between molecular biology and progress in clinical hyperbole, dynamic multi-targeted interventions will define the treatment of neurodegenerative diseases in the transition from disease amelioration to disease modification or perhaps reversal. With these innovations at our doorstep, the future offers remarkable possibilities in translating network-based biomarker discovery, AI-powered patient stratification, and adaptive combination therapies into individualized/long-lasting neuroprotection. The question is no longer if we will neutralize oxidative stress; it is how likely we will achieve success in the new frontier of neurodegenerative disease therapies. Full article
Show Figures

Figure 1

17 pages, 1485 KB  
Article
Selective Inhibition of Vascular Smooth Muscle Cell Function by COVID-19 Antiviral Drugs: Impact of Heme Oxygenase-1
by Kelly J. Peyton, Giovanna L. Durante and William Durante
Antioxidants 2025, 14(8), 945; https://doi.org/10.3390/antiox14080945 - 31 Jul 2025
Viewed by 778
Abstract
Coronavirus disease 2019 (COVID-19) causes cardiovascular complications, which contributes to the high mortality rate of the disease. Emerging evidence indicates that aberrant vascular smooth muscle cell (SMC) function is a key driver of vascular disease in COVID-19. While antivirals alleviate the symptoms of [...] Read more.
Coronavirus disease 2019 (COVID-19) causes cardiovascular complications, which contributes to the high mortality rate of the disease. Emerging evidence indicates that aberrant vascular smooth muscle cell (SMC) function is a key driver of vascular disease in COVID-19. While antivirals alleviate the symptoms of COVID-19, it is not known whether these drugs directly affect SMCs. Accordingly, the present study investigated the ability of three approved COVID-19 antiviral drugs to influence SMC function. Treatment of SMCs with remdesivir (RDV), but not molnupiravir or nirmatrelvir, inhibited cell proliferation, DNA synthesis, and migration without affecting cell viability. RDV also stimulated an increase in heme oxygenase-1 (HO-1) expression that was not observed with molnupiravir or nirmatrelvir. The induction of HO-1 by RDV was abolished by mutating the antioxidant responsive element of the promoter, overexpressing dominant-negative NF-E2-related factor-2 (Nrf2), or treating cells with an antioxidant. Finally, silencing HO-1 partly rescued the proliferative and migratory response of RDV-treated SMCs, and this was reversed by carbon monoxide and bilirubin. In conclusion, the induction of HO-1 via the oxidant-sensitive Nrf2 signaling pathway contributes to the antiproliferative and antimigratory actions of RDV by generating carbon monoxide and bilirubin. These pleiotropic actions of RDV may prevent occlusive vascular disease in COVID-19. Full article
Show Figures

Graphical abstract

4 pages, 3729 KB  
Correction
Correction: Afjei et al. A New Nrf2 Inhibitor Enhances Chemotherapeutic Effects in Glioblastoma Cells Carrying p53 Mutations. Cancers 2022, 14, 6120
by Rayhaneh Afjei, Negar Sadeghipour, Sukumar Uday Kumar, Mallesh Pandrala, Vineet Kumar, Sanjay V. Malhotra, Tarik F. Massoud and Ramasamy Paulmurugan
Cancers 2025, 17(14), 2408; https://doi.org/10.3390/cancers17142408 - 21 Jul 2025
Viewed by 441
Abstract
In the original publication [...] Full article
Show Figures

Figure 1

34 pages, 765 KB  
Review
Transcription Factors and Methods for the Pharmacological Correction of Their Activity
by Svetlana V. Guryanova, Tatiana V. Maksimova and Madina M. Azova
Int. J. Mol. Sci. 2025, 26(13), 6394; https://doi.org/10.3390/ijms26136394 - 2 Jul 2025
Cited by 2 | Viewed by 1761
Abstract
Transcription factors (TFs) are proteins that control gene expression by binding to specific DNA sequences and are essential for cell development, differentiation, and homeostasis. Dysregulation of TFs is implicated in numerous diseases, including cancer, autoimmune disorders, and neurodegeneration. While TFs were traditionally considered [...] Read more.
Transcription factors (TFs) are proteins that control gene expression by binding to specific DNA sequences and are essential for cell development, differentiation, and homeostasis. Dysregulation of TFs is implicated in numerous diseases, including cancer, autoimmune disorders, and neurodegeneration. While TFs were traditionally considered “undruggable” due to their lack of well-defined binding pockets, recent advances have made it possible to modulate their activity using diverse pharmacological strategies. Major TF families include NF-κB, p53, STATs, HIF-1α, AP-1, Nrf2, and nuclear hormone receptors, which take part in the regulation of inflammation, tumor suppression, cytokine signaling, hypoxia and stress response, oxidative stress, and hormonal response, respectively. TFs can perform multiple functions, participating in the regulation of opposing processes depending on the context. NF-κB, for instance, plays dual roles in immunity and cancer, and is targeted by proteasome and IKKβ inhibitors. p53, often mutated in cancer, is reactivated using MDM2 antagonist Nutlin-3, refunctionalizing compound APR-246, or stapled peptides. HIF-1α, which regulates hypoxic responses and angiogenesis, is inhibited by agents like acriflavine or stabilized in anemia therapies by HIF-PHD inhibitor roxadustat. STATs, especially STAT3 and STAT5, are oncogenic and targeted via JAK inhibitors or novel PROTAC degraders, for instance SD-36. AP-1, implicated in cancer and arthritis, can be inhibited by T-5224 or kinase inhibitors JNK and p38 MAPK. Nrf2, a key antioxidant regulator, can be activated by agents like DMF or inhibited in chemoresistant tumors. Pharmacological strategies include direct inhibitors, activators, PROTACs, molecular glues, and epigenetic modulators. Challenges remain, including the structural inaccessibility of TFs, functional redundancy, off-target effects, and delivery barriers. Despite these challenges, transcription factor modulation is emerging as a viable and promising therapeutic approach, with ongoing research focusing on specificity, safety, and efficient delivery methods to realize its full clinical potential. Full article
(This article belongs to the Topic Research in Pharmacological Therapies, 2nd Edition)
Show Figures

Figure 1

15 pages, 513 KB  
Article
Genetic Variants in Oxidative Stress-Related Genes and Their Impact on Prognosis and Treatment Response in Chronic Myeloid Leukemia Patients
by Raquel Alves, Filipa Ventura, Joana Jorge, Gilberto Marques, Margarida Coucelo, Joana Diamond, Bárbara Oliveiros, Amélia Pereira, Paulo Freitas-Tavares, António M. Almeida, Ana Cristina Gonçalves and Ana Bela Sarmento-Ribeiro
Int. J. Mol. Sci. 2025, 26(12), 5682; https://doi.org/10.3390/ijms26125682 - 13 Jun 2025
Viewed by 894
Abstract
Chronic myeloid leukemia (CML) is a clonal myeloproliferative neoplasia characterized by the BCR::ABL1 fusion gene, which codifies the BCR-ABL protein with increased tyrosine kinase activity. Despite the clinical results for the outstanding tyrosine kinase inhibitors (TKIs), drug resistance is a problem in CML [...] Read more.
Chronic myeloid leukemia (CML) is a clonal myeloproliferative neoplasia characterized by the BCR::ABL1 fusion gene, which codifies the BCR-ABL protein with increased tyrosine kinase activity. Despite the clinical results for the outstanding tyrosine kinase inhibitors (TKIs), drug resistance is a problem in CML management. Genetic variants that alter redox homeostasis by changing antioxidant enzyme expression or activity may influence patient responses and could enhance patient stratification. We aimed to assess the association of SOD2, CAT GPX1, NRF2, and KEAP1 genetic variants with TKI response and disease prognosis. For this purpose, we genotyped the variants rs4880 (SOD2), rs1050450 (GPX1), rs1001179 (CAT), rs6721961, rs4893819, rs35652124, rs6706649, rs13001694 (NFE2L2), and rs113540846 (KEAP1) via PCR in 187 CML patients. Our results show that variants in genes related to oxidative stress influence the development and degree of TKI resistance (allele G and GG genotypes of GPX1 and CT genotype of NFE2L2 rs4893819), the appearance of mutations in the BCR::ABL1 gene (AG genotype of NFE2L2 rs13001694 and genetic profile GGCTTCCCGG of the NFE2L2/KEAP1 axis), disease evolution (AG genotype of SOD2 and CT genotype of NFE2L2 rs4893819), and overall survival (CC genotype of CAT and GG genotype of NFE2L2 rs13001694) of CML patients. Our study found that variants in oxidative stress-related genes impact treatment response and outcomes in CML. Full article
Show Figures

Graphical abstract

25 pages, 3056 KB  
Article
 High KYNU Expression Is Associated with Poor Prognosis, KEAP1/STK11 Mutations, and Immunosuppressive Metabolism in Patient-Derived but Not Murine Lung Adenocarcinomas
by Ling Cai, Thomas J. Rogers, Reza Mousavi Jafarabad, Hieu Vu, Chendong Yang, Nicole Novaresi, Ana Galán-Cobo, Luc Girard, Edwin J. Ostrin, Johannes F. Fahrmann, Jiyeon Kim, John V. Heymach, Kathryn A. O’Donnell, Guanghua Xiao, Yang Xie, Ralph J. DeBerardinis and John D. Minna
Cancers 2025, 17(10), 1681; https://doi.org/10.3390/cancers17101681 - 16 May 2025
Cited by 1 | Viewed by 1450
Abstract
Background/Objectives: We aimed to discover genes with bimodal expression linked to patient outcomes, to reveal underlying oncogenotypes and identify new therapeutic insights in lung adenocarcinoma (LUAD). Methods: We performed meta-analysis to screen LUAD datasets for prognostic genes with bimodal expression patterns. Kynureninase (KYNU), [...] Read more.
Background/Objectives: We aimed to discover genes with bimodal expression linked to patient outcomes, to reveal underlying oncogenotypes and identify new therapeutic insights in lung adenocarcinoma (LUAD). Methods: We performed meta-analysis to screen LUAD datasets for prognostic genes with bimodal expression patterns. Kynureninase (KYNU), a key enzyme in tryptophan catabolism, emerged as a top candidate. We then examined its relationship with LUAD mutations, metabolic alterations, immune microenvironment states, and expression patterns in human and mouse models using bulk and single-cell transcriptomics, metabolomics, and preclinical model datasets. Pan-cancer prognostic associations were also assessed. Results: Model-based clustering of KYNU expression outperformed median-based dichotomization in prognostic accuracy. KYNU was elevated in tumors with KEAP1 and STK11 co-mutations but remained a strong independent prognostic marker. Metabolomic analysis showed that KYNU-high tumors had increased anthranilic acid, a catalytic product, while maintaining stable kynurenine levels, suggesting a compensatory mechanism sustaining immunosuppressive signaling. Single-cell and bulk data showed KYNU expression was cancer cell-intrinsic in immune-cold tumors and myeloid-derived in immune-infiltrated tumors. In murine LUAD models, Kynu expression was predominantly immune-derived and uncoupled from Nrf2/Lkb1 signaling, indicating poor model fidelity. KYNU’s prognostic associations extended across cancer types, with poor outcomes in pancreatic and kidney cancers but favorable outcomes in melanoma, underscoring the need for lineage-specific considerations in therapy development. Conclusions:KYNU is a robust prognostic biomarker and potential immunometabolic target in LUAD, especially in STK11 and KEAP1 co-mutated tumors. Its cancer cell-intrinsic expression and immunosuppressive metabolic phenotype offer translational potential, though species-specific expression patterns pose challenges for preclinical modeling. Full article
Show Figures

Figure 1

22 pages, 2757 KB  
Review
Antioxidant and Anti-Inflammatory Defenses in Huntington’s Disease: Roles of NRF2 and PGC-1α, and Therapeutic Strategies
by Francesco D’Egidio, Elvira Qosja, Fabrizio Ammannito, Skender Topi, Michele d’Angelo, Annamaria Cimini and Vanessa Castelli
Life 2025, 15(4), 577; https://doi.org/10.3390/life15040577 - 1 Apr 2025
Cited by 3 | Viewed by 2256
Abstract
Huntington’s disease (HD) is a detrimental neurodegenerative disease caused by the expansion of a CAG triplet in the HTT gene. This mutation leads to the production of mutant Huntingtin (Htt) protein with toxic gain-of-function. The mHtt is responsible in several ways for the [...] Read more.
Huntington’s disease (HD) is a detrimental neurodegenerative disease caused by the expansion of a CAG triplet in the HTT gene. This mutation leads to the production of mutant Huntingtin (Htt) protein with toxic gain-of-function. The mHtt is responsible in several ways for the establishment of an intricate pathogenetic scenario in affected cells, particularly in HD neurons. Among the features of HD, oxidative stress plays a relevant role in the progression of the disease at the cellular level. Mitochondrial dysfunction, bioenergetic deficits, Reactive Oxygen Species (ROS) production, neuroinflammation, and general reduction of antioxidant levels are all involved in the promotion of a toxic oxidative environment, eventually causing cell death. Nonetheless, neuronal cells exert antioxidant molecules to build up defense mechanisms. Key components of these defensive mechanisms are the nuclear factor erythroid 2-related factor 2 (NRF2) and peroxisome proliferator-activated receptor gamma coactivator-1 α (PGC-1α). Thus, this review aims to describe the involvement of oxidative stress in HD by exploring the roles of NRF2 and PGC-1α, crucial actors in this play. Finally, antioxidant therapeutic strategies targeting such markers are discussed. Full article
(This article belongs to the Special Issue Neuroinflammation in Huntington’s Disease: Detrimental Crosstalk)
Show Figures

Figure 1

15 pages, 5734 KB  
Article
Trp31 Residue of Trx-1 Is Essential for Maintaining Antioxidant Activity and Cellular Redox Defense Against Oxidative Stress
by Zongmao He, Yi Yan, Xijun Guo, Tong Wang, Xinqiao Liu, Ren-Bo Ding, Yuanfeng Fu, Jiaolin Bao and Xingzhu Qi
Antioxidants 2025, 14(3), 257; https://doi.org/10.3390/antiox14030257 - 24 Feb 2025
Viewed by 797
Abstract
Thioredoxin-1 (Trx-1) is an important redox protein found in almost all prokaryotic and eukaryotic cells, which has a highly conserved active site sequence: Trp-Cys-Gly-Pro-Cys. To investigate whether the Trp31 residue is essential for the antioxidant activity of human Trx-1 (hTrx-1), we mutated Trx-1 [...] Read more.
Thioredoxin-1 (Trx-1) is an important redox protein found in almost all prokaryotic and eukaryotic cells, which has a highly conserved active site sequence: Trp-Cys-Gly-Pro-Cys. To investigate whether the Trp31 residue is essential for the antioxidant activity of human Trx-1 (hTrx-1), we mutated Trx-1 by replacing Trp31 with Ala31 (31Ala) or deleting Trp31 residue (31Del). We introduced 31Ala and 31Del mutations into prokaryotic cells for hTrx-1 protein expression, protein purification and evaluation of antioxidant activity. The results showed that neither the replacing mutation to Ala31 nor the deletion of Trp31 residue affected the efficient expression of hTrx-1 protein in prokaryotic cells, indicating that neither form of Trp31 mutation would disrupt the folded structure of the Trx-1 protein. Comparison of the antioxidant activity of purified hTrx-1 proteins of wild-type, 31Ala and 31Del forms revealed that both mutant forms significantly decreased the antioxidant capacity of hTrx-1. Further investigations on eukaryotic cells showed that H2O2 treatment caused massive cell death in EA.Hy926 human endothelial cells with 31Ala and 31Del mutations compared to wild-type cells, which was associated with increased ROS production and downregulation of antioxidant Nrf2 and HO-1 expression in the mutant cells. These results suggested that mutations in the Trp31 residue of hTrx-1 remarkably disrupted cellular redox defense against oxidative stress. The antioxidant activity of hTrx-1 relies on the thiol–disulfide exchange reaction, in which the content of thiol groups forming disulfide bonds in hTrx-1 is critical. We found that the content of free thiol groups specifically participating in disulfide bond formation was significantly lower in Trp31 mutant hTrx-1 than in wild-type hTrx-1; that was speculated to affect the formation of disulfide bonds between Cys32 and Cys35 by virtual analysis, thus abolishing the antioxidant activity of hTrx-1 in cleaving oxidized groups and defending against oxidative stress. The present study provided valuable insights towards understanding the importance of Trp31 residue of hTrx-1 in maintaining the correct conformation of the Trx fold structure, the antioxidant functionality of hTrx-1 and the cellular redox defense capability against oxidative stress. Full article
(This article belongs to the Section Antioxidant Enzyme Systems)
Show Figures

Figure 1

17 pages, 2160 KB  
Article
Harshly Oxidized Activated Charcoal Enhances Protein Persulfidation with Implications for Neurodegeneration as Exemplified by Friedreich’s Ataxia
by Anh T. T. Vo, Uffaf Khan, Anton V. Liopo, Karthik Mouli, Kenneth R. Olson, Emily A. McHugh, James M. Tour, Madhavan Pooparayil Manoj, Paul J. Derry and Thomas A. Kent
Nanomaterials 2024, 14(24), 2007; https://doi.org/10.3390/nano14242007 - 13 Dec 2024
Cited by 2 | Viewed by 1403
Abstract
Harsh acid oxidation of activated charcoal transforms an insoluble carbon-rich source into water-soluble, disc structures of graphene decorated with multiple oxygen-containing functionalities. We term these pleiotropic nano-enzymes as “pleozymes”. A broad redox potential spans many crucial redox reactions including the oxidation of hydrogen [...] Read more.
Harsh acid oxidation of activated charcoal transforms an insoluble carbon-rich source into water-soluble, disc structures of graphene decorated with multiple oxygen-containing functionalities. We term these pleiotropic nano-enzymes as “pleozymes”. A broad redox potential spans many crucial redox reactions including the oxidation of hydrogen sulfide (H2S) to polysulfides and thiosulfate, dismutation of the superoxide radical (O2*), and oxidation of NADH to NAD+. The oxidation of H2S is predicted to enhance protein persulfidation—the attachment of sulfur to cysteine residues. Persulfidated proteins act as redox intermediates, and persulfidation protects proteins from irreversible oxidation and ubiquitination, providing an important means of signaling. Protein persulfidation is believed to decline in several neurological disorders and aging. Importantly, and consistent with the role of persulfidation in signaling, the master antioxidant transcription factor Nrf2 is regulated by Keap1’s persulfidation. Here, we demonstrate that pleozymes increased overall protein persulfidation in cells from apparently healthy individuals and from individuals with the mitochondrial protein mutation responsible for Friedreich’s ataxia. We further find that pleozymes specifically enhanced Keap1 persulfidation, with subsequent increased accumulation of Nrf2 and Nrf2’s antioxidant targets. Full article
(This article belongs to the Special Issue Carbon-Based Nanomaterials for Biomedicine Applications)
Show Figures

Figure 1

25 pages, 2416 KB  
Review
The Impact of Genetic Mutations on the Efficacy of Immunotherapies in Lung Cancer
by Ki Lui, Kwok-Kuen Cheung, Winnie Wing-Man Ng, Yanping Wang, Doreen W. H. Au and William C. Cho
Int. J. Mol. Sci. 2024, 25(22), 11954; https://doi.org/10.3390/ijms252211954 - 7 Nov 2024
Cited by 2 | Viewed by 4014
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide, primarily driven by genetic mutations. The most common genetic alterations implicated in lung cancer include mutations in TP53, KRAS, KEAP1, NF1, EGFR, NRF2, ATM, ALK, [...] Read more.
Lung cancer is the leading cause of cancer-related mortality worldwide, primarily driven by genetic mutations. The most common genetic alterations implicated in lung cancer include mutations in TP53, KRAS, KEAP1, NF1, EGFR, NRF2, ATM, ALK, Rb1, BRAF, MET, and ERBB2. Targeted therapies have been developed to inhibit cancer growth by focusing on these specific genetic mutations. However, either the mutations are undruggable or the efficacy of these therapies is often compromised over time due to the emergence of drug resistance, which can occur through additional mutations in the targeted protein or alternative growth signaling pathways. In recent years, immunotherapy has emerged as a promising approach to enhance the effectiveness of cancer treatment by leveraging the body’s immune system. Notable advancements include immune checkpoint inhibitors, monoclonal antibodies targeting cell surface receptors, antibody–drug conjugates, and bispecific antibodies. This review provides an overview of the mechanisms of FDA-approved immunotherapeutic drugs, offering an updated perspective on the current state and future developments in lung cancer therapy. More importantly, the factors that positively and negatively impact the immunotherapy’s efficacy will also be discussed. Full article
(This article belongs to the Special Issue Challenges and Future Perspectives in Treatment for Lung Cancer)
Show Figures

Graphical abstract

21 pages, 4095 KB  
Article
Genome-Wide CRISPR Screen Identifies KEAP1 Perturbation as a Vulnerability of ARID1A-Deficient Cells
by Louis-Alexandre Fournier, Forouh Kalantari, James P. Wells, Joon Seon Lee, Genny Trigo-Gonzalez, Michelle M. Moksa, Theodore Smith, Justin White, Alynn Shanks, Siyun L. Wang, Edmund Su, Yemin Wang, David G. Huntsman, Martin Hirst and Peter C. Stirling
Cancers 2024, 16(17), 2949; https://doi.org/10.3390/cancers16172949 - 24 Aug 2024
Cited by 3 | Viewed by 2395
Abstract
ARID1A is the core DNA-binding subunit of the BAF chromatin remodeling complex and is mutated in about 8% of all cancers. The frequency of ARID1A loss varies between cancer subtypes, with clear cell ovarian carcinoma (CCOC) presenting the highest incidence at > 50% [...] Read more.
ARID1A is the core DNA-binding subunit of the BAF chromatin remodeling complex and is mutated in about 8% of all cancers. The frequency of ARID1A loss varies between cancer subtypes, with clear cell ovarian carcinoma (CCOC) presenting the highest incidence at > 50% of cases. Despite a growing understanding of the consequences of ARID1A loss in cancer, there remains limited targeted therapeutic options for ARID1A-deficient cancers. Using a genome-wide CRISPR screening approach, we identify KEAP1 as a genetic dependency of ARID1A in CCOC. Depletion or chemical perturbation of KEAP1 results in selective growth inhibition of ARID1A-KO cell lines and edited primary endometrial epithelial cells. While we confirm that KEAP1-NRF2 signalling is dysregulated in ARID1A-KO cells, we suggest that this synthetic lethality is not due to aberrant NRF2 signalling. Rather, we find that KEAP1 perturbation exacerbates genome instability phenotypes associated with ARID1A deficiency. Together, our findings identify a potentially novel synthetic lethal interaction of ARID1A-deficient cells. Full article
(This article belongs to the Special Issue Exploiting Liabilities in Mechanism of DNA Repair for Cancer Therapy)
Show Figures

Figure 1

Back to TopTop