Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (344)

Search Parameters:
Keywords = Non-Line-Of-Sight (NLOS)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4137 KiB  
Article
Satellite Positioning Accuracy Improvement in Urban Canyons Through a New Weight Model Utilizing GPS Signal Strength Variability
by Hye-In Kim and Kwan-Dong Park
Sensors 2025, 25(15), 4678; https://doi.org/10.3390/s25154678 - 29 Jul 2025
Viewed by 320
Abstract
Urban environments present substantial obstacles to GPS positioning accuracy, primarily due to multipath interference and limited satellite visibility. To address these challenges, we propose a novel weighting approach, referred to as the HK model, that enhances real-time GPS positioning performance by leveraging the [...] Read more.
Urban environments present substantial obstacles to GPS positioning accuracy, primarily due to multipath interference and limited satellite visibility. To address these challenges, we propose a novel weighting approach, referred to as the HK model, that enhances real-time GPS positioning performance by leveraging the variability of the signal-to-noise ratio (SNR), without requiring auxiliary sensors. Analysis of 24 h observational datasets collected across diverse environments, including open-sky (OS), city streets (CS), and urban canyons (UC), demonstrates that multipath-affected non-line-of-sight (NLOS) signals exhibit significantly greater SNR variability than direct line-of-sight (LOS) signals. The HK model classifies received signals based on the standard deviation of their SNR and assigns corresponding weights during position estimation. Comparative performance evaluation indicates that relative to existing weighting models, the HK model improves 3D positioning accuracy by up to 22.4 m in urban canyon scenarios, reducing horizontal RMSE from 13.0 m to 4.7 m and vertical RMSE from 19.5 m to 6.9 m. In city street environments, horizontal RMSE is reduced from 11.6 m to 3.8 m. Furthermore, a time-sequential analysis at the TEHE site confirms consistent improvements in vertical positioning accuracy across all 24-hourly datasets, and in terms of horizontal accuracy, in 22 out of 24 cases. These results demonstrate that the HK model substantially surpasses conventional SNR- or elevation-based weighting techniques, particularly under severe multipath conditions frequently encountered in dense urban settings. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

18 pages, 1643 KiB  
Communication
A Localization Enhancement Method Based on Direct-Path Identification and Tracking for Future Networks
by Yuhong Huang and Youping Zhao
Sensors 2025, 25(15), 4538; https://doi.org/10.3390/s25154538 - 22 Jul 2025
Viewed by 245
Abstract
Localization is one of the essential problems in the Internet of Things (IoT). Dynamic changes in the radio environment may lead to poor localization accuracy or discontinuous localization in non-line-of-sight (NLOS) scenarios. To address this problem, this paper proposes a localization enhancement method [...] Read more.
Localization is one of the essential problems in the Internet of Things (IoT). Dynamic changes in the radio environment may lead to poor localization accuracy or discontinuous localization in non-line-of-sight (NLOS) scenarios. To address this problem, this paper proposes a localization enhancement method based on direct-path identification and tracking. More specifically, the proposed method significantly reduces the range error and localization error by quickly identifying the line-of-sight (LOS) to NLOS transition and effectively tracking the direct path. In a large testing hall, localization experiments based on the ultra-wideband (UWB) signal have been carried out. Experimental results show that the proposed method achieves a root mean square localization error of less than 0.3 m along the user equipment (UE) movement trajectory with serious NLOS propagation conditions. Compared with conventional methods, the proposed method significantly improves localization accuracy while ensuring continuous localization. Full article
Show Figures

Figure 1

21 pages, 4537 KiB  
Article
Evaluation of 5G Positioning Based on Uplink SRS and Downlink PRS Under LOS and NLOS Environments
by Syed Shahid Shah, Chao Sun, Dongkai Yang, Muhammad Wisal, Yingzhe He, Bai Lu and Ying Xu
Appl. Sci. 2025, 15(14), 7909; https://doi.org/10.3390/app15147909 - 15 Jul 2025
Viewed by 390
Abstract
The evolution of 5G technology has led to significant advancements in high-accuracy positioning. However, the actual performance of 5G signals for user equipment (UE) positioning has not been thoroughly examined, especially under varying propagation conditions. This research presents a comprehensive evaluation of 5G [...] Read more.
The evolution of 5G technology has led to significant advancements in high-accuracy positioning. However, the actual performance of 5G signals for user equipment (UE) positioning has not been thoroughly examined, especially under varying propagation conditions. This research presents a comprehensive evaluation of 5G positioning using both uplink sounding reference signals (UL-SRS) and downlink positioning reference signals (DL-PRS) under line-of-sight (LOS) and non-line-of-sight (NLOS) conditions. In the uplink scenario, the UE transmits SRS signals to the gNBs, enabling precise localization. In the downlink scenario, the gNBs transmit PRS signals to the UE for accurate position estimation. Expanding beyond LOS environments, this study explores the challenges posed by NLOS conditions and analyzes their impact on positioning accuracy. Through a comparative analysis of UL-SRS and DL-PRS signals, this study enhances the current understanding of 5G positioning performance, offering empirical insights and quantitative benchmarks that serve as a guide for the development of more precise localization methods. The simulation results show that DL-PRS achieves high accuracy in LOS conditions, while UL-SRS performs well for UE positioning under NLOS conditions in urban environments. Full article
Show Figures

Figure 1

20 pages, 1609 KiB  
Article
Research on Networking Protocols for Large-Scale Mobile Ultraviolet Communication Networks
by Leitao Wang, Zhiyong Xu, Jingyuan Wang, Jiyong Zhao, Yang Su, Cheng Li and Jianhua Li
Photonics 2025, 12(7), 710; https://doi.org/10.3390/photonics12070710 - 14 Jul 2025
Viewed by 226
Abstract
Ultraviolet (UV) communication, characterized by non-line-of-sight (NLOS) scattering, holds substantial potential for enabling communication networking in unmanned aerial vehicle (UAV) formations within strong electromagnetic interference environments. This paper proposes a networking protocol for large-scale mobile ultraviolet communication networks (LSM-UVCN). In large-scale networks, the [...] Read more.
Ultraviolet (UV) communication, characterized by non-line-of-sight (NLOS) scattering, holds substantial potential for enabling communication networking in unmanned aerial vehicle (UAV) formations within strong electromagnetic interference environments. This paper proposes a networking protocol for large-scale mobile ultraviolet communication networks (LSM-UVCN). In large-scale networks, the proposed protocol establishes multiple non-interfering transmission paths based on a connection matrix simultaneously, ensuring reliable space division multiplexing (SDM) and optimizing the utilization of network channel resources. To address frequent network topology changes in mobile scenarios, the protocol employs periodic maintenance of the connection matrix, significantly reducing the adverse impacts of node mobility on network performance. Simulation results demonstrate that the proposed protocol achieves superior performance in large-scale mobile UV communication networks. By dynamically adjusting the connection matrix update frequency, it adapts to varying node mobility intensities, effectively minimizing control overhead and data loss rates while enhancing network throughput. This work underscores the protocol’s adaptability to dynamic network environments, providing a robust solution for high-reliability communication requirements in complex electromagnetic scenarios, particularly for UAV swarm applications. The integration of SDM and adaptive matrix maintenance highlights its scalability and efficiency, positioning it as a viable technology for next-generation wireless communication systems in challenging operational conditions. Full article
(This article belongs to the Special Issue Free-Space Optical Communication and Networking Technology)
Show Figures

Figure 1

17 pages, 679 KiB  
Article
Low-Complexity Sum-Rate Maximization for Multi-IRS-Assisted V2I Systems
by Qi Liu, Beiping Zhou, Jie Zhou and Yongfeng Zhao
Electronics 2025, 14(14), 2750; https://doi.org/10.3390/electronics14142750 - 8 Jul 2025
Viewed by 252
Abstract
Intelligent reflecting surface (IRS) has emerged as a promising solution to establish propagation paths in non-line-of-sight (NLoS) scenarios, effectively mitigating blockage challenges in direct vehicle-to-infrastructure (V2I) links. This study investigates a time-varying multi-IRS-assisted multiple-input multiple-output (MIMO) communication system, aiming to maximize the system [...] Read more.
Intelligent reflecting surface (IRS) has emerged as a promising solution to establish propagation paths in non-line-of-sight (NLoS) scenarios, effectively mitigating blockage challenges in direct vehicle-to-infrastructure (V2I) links. This study investigates a time-varying multi-IRS-assisted multiple-input multiple-output (MIMO) communication system, aiming to maximize the system sum rate through the joint optimization of base station (BS) precoding and IRS phase configurations. The formulated problem exhibits inherent non-convexity and time-varying characteristics, posing significant optimization challenges. To address these, we propose a low-complexity dimension-wise sine maximization (DSM) algorithm, grounded in the sum path gain maximization (SPGM) criterion, to efficiently optimize the IRS phase shift matrix. Concurrently, the water-filling (WF) algorithm is employed for BS precoding design. Simulation results demonstrate that compared with traditional methods, the proposed DSM algorithm achieves a 14.9% increase in sum rate, while exhibiting lower complexity and faster convergence. Furthermore, the proposed multi-IRS design yields an 8.7% performance gain over the single-IRS design. Full article
Show Figures

Figure 1

24 pages, 3241 KiB  
Article
An Advanced Indoor Localization Method Based on xLSTM and Residual Multimodal Fusion of UWB/IMU Data
by Haoyang Wang, Jiaxing He and Lizhen Cui
Electronics 2025, 14(13), 2730; https://doi.org/10.3390/electronics14132730 - 7 Jul 2025
Viewed by 300
Abstract
To address the limitations of single-modality UWB/IMU systems in complex indoor environments, this study proposes a multimodal fusion localization method based on xLSTM. After extracting features from UWB and IMU data, the xLSTM network enables deep temporal feature learning. A three-stage residual fusion [...] Read more.
To address the limitations of single-modality UWB/IMU systems in complex indoor environments, this study proposes a multimodal fusion localization method based on xLSTM. After extracting features from UWB and IMU data, the xLSTM network enables deep temporal feature learning. A three-stage residual fusion module is introduced to enhance cross-modal complementarity, while a multi-head attention mechanism dynamically adjusts the sensor weights. The end-to-end trained network effectively constructs nonlinear multimodal mappings for two-dimensional position estimation under both static and dynamic non-line-of-sight (NLOS) conditions with human-induced interference. Experimental results demonstrate that the localization errors reach 0.181 m under static NLOS and 0.187 m under dynamic NLOS, substantially outperforming traditional filtering-based approaches. The proposed deep fusion framework significantly improves localization reliability under occlusion and offers an innovative solution for high-precision indoor positioning. Full article
Show Figures

Figure 1

29 pages, 3101 KiB  
Article
Off-Grid Sparse Bayesian Learning for Channel Estimation and Localization in RIS-Assisted MIMO-OFDM Under NLoS
by Ural Mutlu and Yasin Kabalci
Sensors 2025, 25(13), 4140; https://doi.org/10.3390/s25134140 - 2 Jul 2025
Viewed by 420
Abstract
Reconfigurable Intelligent Surfaces (RISs) are among the key technologies envisaged for sixth-generation (6G) multiple-input multiple-output (MIMO)–orthogonal frequency division multiplexing (OFDM) wireless systems. However, their passive nature and the frequent absence of a line-of-sight (LoS) path in dense urban environments make uplink channel estimation [...] Read more.
Reconfigurable Intelligent Surfaces (RISs) are among the key technologies envisaged for sixth-generation (6G) multiple-input multiple-output (MIMO)–orthogonal frequency division multiplexing (OFDM) wireless systems. However, their passive nature and the frequent absence of a line-of-sight (LoS) path in dense urban environments make uplink channel estimation and localization challenging tasks. Therefore, to achieve channel estimation and localization, this study models the RIS-mobile station (MS) channel as a double-sparse angular structure and proposes a hybrid channel parameter estimation framework for RIS-assisted MIMO-OFDM systems. In the hybrid framework, Simultaneous Orthogonal Matching Pursuit (SOMP) first estimates coarse angular supports. The coarse estimates are refined by a novel refinement stage employing a Variational Bayesian Expectation Maximization (VBEM)-based Off-Grid Sparse Bayesian Learning (OG-SBL) algorithm, which jointly updates azimuth and elevation offsets via Newton-style iterations. An Angle of Arrival (AoA)–Angle of Departure (AoD) matching algorithm is introduced to associate angular components, followed by a 3D localization procedure based on non-LoS (NLoS) multipath geometry. Simulation results show that the proposed framework achieves high angular resolution; high localization accuracy, with 97% of the results within 0.01 m; and a channel estimation error of 0.0046% at 40 dB signal-to-noise ratio (SNR). Full article
(This article belongs to the Special Issue Communication, Sensing and Localization in 6G Systems)
Show Figures

Figure 1

11 pages, 7023 KiB  
Proceeding Paper
Reinforcement Learning for UAV Path Planning Under Complicated Constraints with GNSS Quality Awareness
by Abdulla Alyammahi, Zhengjia Xu, Ivan Petrunin, Bo Peng and Raphael Grech
Eng. Proc. 2025, 88(1), 66; https://doi.org/10.3390/engproc2025088066 - 25 Jun 2025
Viewed by 365
Abstract
Requirements for Unmanned Aerial Vehicle (UAV) applications in low-altitude operations are escalating, which demands resilient Position, Navigation and Timing (PNT) solutions incorporating global navigation satellite system (GNSS) services. However, UAVs often operate in stringent environments with degraded GNSS performance. Practical challenges often arise [...] Read more.
Requirements for Unmanned Aerial Vehicle (UAV) applications in low-altitude operations are escalating, which demands resilient Position, Navigation and Timing (PNT) solutions incorporating global navigation satellite system (GNSS) services. However, UAVs often operate in stringent environments with degraded GNSS performance. Practical challenges often arise from dense, dynamic, complex, and uncertain obstacles. When flying in complex environments, it is important to consider signal degradation caused by reflections (multipath) and obscuration (Non-Line of Sight (NLOS)), which can lead to positioning errors that must be minimized to ensure mission reliability. Recent works integrate GNSS reliability maps derived from pseudorange error estimations into path planning to reduce loss-of-GNSS risks with PNT degradations. To accommodate multiple constraint conditions attempting to improve flight resilience against GNSS-degraded environments, this paper proposes a reinforcement learning (RL) approach to feature GNSS signal quality awareness during path planning. The non-linear relations between GNSS signal quality in the form of dilution of precision (DoP), geographic locations, and the policy of searching sub-minima points are learned by the clipped Proximal Policy Optimization (PPO) method. Other constraints considered include static obstacle occurrence, altitude boundary, forbidden flying regions, and operational volumes. The reward and punishment functions and the training method are designed to maximize the success criteria of approaching destinations. The proposed RL approach is demonstrated using a real 3D map of Indianapolis, USA, in the Godot engine, incorporating forecasted DoP data generated by a Geospatial Augmentation system named GNSS Foresight from Spirent. Results indicate a 36% enhancement in mission success rates when GNSS performance is included in the path planning training. Additionally, the varying tensor size, representing the UAV’s DoP perception range, exhibits a positive proportion relation to a higher mission rate, despite an increment in computational complexity. Full article
(This article belongs to the Proceedings of European Navigation Conference 2024)
Show Figures

Figure 1

24 pages, 2868 KiB  
Article
Intelligent 5G-Aided UAV Positioning in High-Density Environments Using Neural Networks for NLOS Mitigation
by Morad Mousa and Saba Al-Rubaye
Aerospace 2025, 12(6), 543; https://doi.org/10.3390/aerospace12060543 - 15 Jun 2025
Viewed by 480
Abstract
The accurate and reliable positioning of unmanned aerial vehicles (UAVs) in urban environments is crucial for urban air mobility (UAM) application, such as logistics, surveillance, and disaster management. However, global navigation satellite systems (GNSSs) often fail in densely populated areas due to signal [...] Read more.
The accurate and reliable positioning of unmanned aerial vehicles (UAVs) in urban environments is crucial for urban air mobility (UAM) application, such as logistics, surveillance, and disaster management. However, global navigation satellite systems (GNSSs) often fail in densely populated areas due to signal reflections (multipath propagation) and obstructions non-line-of-sight (NLOS), causing significant positioning errors. To address this, we propose a machine learning (ML) framework that integrates 5G position reference signals (PRSs) to correct UAV position estimates. A dataset was generated using MATLAB’s UAV simulation environment, including estimated coordinates derived from 5G time of arrival (TOA) measurements and corresponding actual positions (ground truth). This dataset was used to train a fully connected feedforward neural network (FNN), which improves the positioning accuracy by learning patterns between predicted and actual coordinates. The model achieved significant accuracy improvements, with a mean absolute error (MAE) of 1.3 m in line-of-sight (LOS) conditions and 1.7 m in NLOS conditions, and a root mean squared error (RMSE) of approximately 2.3 m. The proposed framework enables real-time correction capabilities for dynamic UAV tracking systems, highlighting the potential of combining 5G positioning data with deep learning to enhance UAV navigation in urban settings. This study addresses the limitations of traditional GNSS-based methods in dense urban environments and offers a robust solution for future UAV advancements. Full article
Show Figures

Figure 1

16 pages, 3216 KiB  
Article
UWB Indoor Localization Based on Artificial Rabbit Optimization Algorithm and BP Neural Network
by Chaochuan Jia, Can Tao, Ting Yang, Maosheng Fu, Xiancun Zhou and Zhendong Huang
Biomimetics 2025, 10(6), 367; https://doi.org/10.3390/biomimetics10060367 - 4 Jun 2025
Viewed by 424
Abstract
In the field of ultra-wideband (UWB) indoor localization, traditional backpropagation neural networks (BPNNs) are limited by their susceptibility to local minima, which restricts their ability to achieve global optimization. To overcome this challenge, this paper proposes a novel hybrid algorithm, termed ARO-BP, which [...] Read more.
In the field of ultra-wideband (UWB) indoor localization, traditional backpropagation neural networks (BPNNs) are limited by their susceptibility to local minima, which restricts their ability to achieve global optimization. To overcome this challenge, this paper proposes a novel hybrid algorithm, termed ARO-BP, which integrates the Artificial Rabbit Optimization (ARO) algorithm with a BPNN. The ARO algorithm optimizes the initial weights and thresholds of the BPNN, enabling the model to escape local optima and converge to a global solution. Experiments were conducted in both line-of-sight (LOS) and non-line-of-sight (NLOS) environments using a four-base-station configuration. The results demonstrate that the ARO-BP algorithm significantly outperforms traditional BPNNs. In LOS conditions, the ARO-BP model achieves a localization error of 6.29 cm, representing a 49.48% reduction compared to the 12.45 cm error of the standard BPNN. In NLOS scenarios, the error is further reduced to 9.86 cm (a 46.96% improvement over the 18.59 cm error of the baseline model). Additionally, in dynamic motion scenarios, the trajectory predicted by ARO-BP closely aligns with the ground truth, demonstrating superior stability. These findings validate the robustness and precision of the proposed algorithm, highlighting its potential for real-world applications in complex indoor environments. Full article
Show Figures

Figure 1

26 pages, 3548 KiB  
Article
Research on Advancing Radio Wave Source Localization Technology Through UAV Path Optimization
by Tomoroh Takahashi and Gia Khanh Tran
Future Internet 2025, 17(5), 224; https://doi.org/10.3390/fi17050224 - 16 May 2025
Viewed by 443
Abstract
With an increasing number of illegal radio stations, connected cars, and IoT devices, high-accuracy radio source localization techniques are in demand. Traditional methods such as GPS positioning and triangulation suffer from accuracy degradation in NLOS (non-line-of-sight) environments due to obstructions. In contrast, the [...] Read more.
With an increasing number of illegal radio stations, connected cars, and IoT devices, high-accuracy radio source localization techniques are in demand. Traditional methods such as GPS positioning and triangulation suffer from accuracy degradation in NLOS (non-line-of-sight) environments due to obstructions. In contrast, the fingerprinting method builds a database of pre-collected radio information and estimates the source location via pattern matching, maintaining relatively high accuracy in NLOS environments. This study aims to improve the accuracy of fingerprinting-based localization by optimizing UAV flight paths. Previous research mainly relied on RSSI-based localization, but we introduce an AOA model considering AOA (angle of arrival) and EOA (elevation of arrival), as well as a HYBRID model that integrates multiple radio features with weighting. Using Wireless Insite, we conducted ray-tracing simulations based on the Institute of Science Tokyo’s Ookayama campus and optimized UAV flight paths with PSO (Particle Swarm Optimization). Results show that the HYBRID model achieved the highest accuracy, limiting the maximum error to 20 m. Sequential estimation improved accuracy for high-error sources, particularly when RSSI was used first, followed by AOA or HYBRID. Future work includes estimating unknown frequency sources, refining sequential estimation, and implementing cooperative localization. Full article
Show Figures

Figure 1

21 pages, 4513 KiB  
Article
An Enhanced ZigBee-Based Indoor Localization Method Using Multi-Stage RSSI Filtering and LQI-Aware MLE
by Jianming Li, Shuyan Yu, Zhe Wei and Zhanpeng Zhou
Sensors 2025, 25(9), 2947; https://doi.org/10.3390/s25092947 - 7 May 2025
Cited by 1 | Viewed by 632
Abstract
Accurate indoor localization in wireless sensor networks remains a non-trivial challenge, particularly in complex environments characterized by signal variability and multipath propagation. This study presents a ZigBee-based localization approach that integrates multi-stage preprocessing of received signal strength indicator (RSSI) data with a reliability-aware [...] Read more.
Accurate indoor localization in wireless sensor networks remains a non-trivial challenge, particularly in complex environments characterized by signal variability and multipath propagation. This study presents a ZigBee-based localization approach that integrates multi-stage preprocessing of received signal strength indicator (RSSI) data with a reliability-aware extension of the maximum likelihood estimation (MLE) algorithm. To improve measurement stability, a hybrid filtering framework combining Kalman filtering, Dixon’s Q test, Gaussian smoothing, and mean averaging is applied to reduce the influence of noise and outliers. Building on the filtered data, the proposed method introduces a noise and link quality indicator (LQI)-based dynamic weighting mechanism that adjusts the contribution of each distance estimate during localization. The approach was evaluated under simulated and semi-physical non-line-of-sight (NLOS) indoor conditions designed to reflect practical deployment scenarios. While based on a limited set of representative test points, the method yielded improved positioning consistency and achieved an average accuracy gain of 11.7% over conventional MLE in the tested environments. These results suggest that the proposed method may offer a feasible solution for resource-constrained localization applications requiring robustness to signal degradation. Full article
Show Figures

Figure 1

18 pages, 5158 KiB  
Article
Research on Maximum Likelihood Decoding Algorithm and Channel Characteristics Optimization for 4FSK Ultraviolet Communication System Based on Poisson Distribution
by Li Kuang, Yingkai Zhao, Kangjian Li, Xingfa Wang, Linyi Li, Huishi Zhu, Weijie Zhang and Jianguo Liu
Photonics 2025, 12(5), 419; https://doi.org/10.3390/photonics12050419 - 27 Apr 2025
Viewed by 342
Abstract
This study focuses on a 4FSK-modulated ultraviolet (UV) communication system, introducing an innovative symbol-level maximum likelihood decoding approach based on Poisson statistics. A forward error correction (FEC) coding mechanism is integrated to enhance system robustness. Through Monte Carlo simulations, the proposed decoding scheme [...] Read more.
This study focuses on a 4FSK-modulated ultraviolet (UV) communication system, introducing an innovative symbol-level maximum likelihood decoding approach based on Poisson statistics. A forward error correction (FEC) coding mechanism is integrated to enhance system robustness. Through Monte Carlo simulations, the proposed decoding scheme and the error correction performances of Reed–Solomon (RS) and Low-Density Parity-Check (LDPC) codes are evaluated in UV channels. Both RS and LDPC codes significantly improve the Bit Error Rate (BER), with LDPC codes achieving superior gains under low SNR conditions. Hardware implementation and field tests validate the decoding algorithm and LDPC-optimized 4FSK system. Under non-line-of-sight (NLOS) conditions (10–45° transmit elevation angle), stable 60 m communication with BER < 10−3 is achieved. In line-of-sight (LOS) scenarios, the system demonstrates 900 m range with BER < 10−3, highlighting practical applicability in challenging atmospheric environments. Full article
Show Figures

Figure 1

23 pages, 2382 KiB  
Article
Deep Learning-Based Beam Selection in RIS-Aided Maritime Next-Generation Networks with Application in Autonomous Vessel Mooring
by Ioannis A. Bartsiokas, George K. Avdikos and Dimitrios V. Lyridis
J. Mar. Sci. Eng. 2025, 13(4), 754; https://doi.org/10.3390/jmse13040754 - 10 Apr 2025
Cited by 1 | Viewed by 783
Abstract
Maritime communication networks are critical for supporting the increasing demands of oceanic and coastal activities, including shipping, fishing, and offshore operations. However, traditional systems face significant challenges in providing reliable, high-throughput connectivity due to dynamic sea environments, mobility, and non-line-of-sight (NLoS) conditions. Reconfigurable [...] Read more.
Maritime communication networks are critical for supporting the increasing demands of oceanic and coastal activities, including shipping, fishing, and offshore operations. However, traditional systems face significant challenges in providing reliable, high-throughput connectivity due to dynamic sea environments, mobility, and non-line-of-sight (NLoS) conditions. Reconfigurable intelligent surfaces (RISs) have been proposed as a promising solution to overcome these limitations by enabling programmable control of electromagnetic wave propagation in next-generation mobile communication networks, such as beyond fifth generation and sixth generation ones (B5G/6G). This paper presents a deep learning-based (DL) scheme for beam selection in RIS-aided maritime next-generation networks. The proposed approach leverages deep learning to optimize beam selection dynamically, enhancing signal quality, coverage, and network efficiency in complex maritime environments. By integrating RIS configurations with data-driven insights, the proposed framework adapts to changing channel conditions and potential vessel mobility while minimizing latency and computational overhead. Simulation results demonstrate significant improvements in both machine learning (ML) metrics, such as beam selection accuracy, and overall communication reliability compared to traditional methods. More specifically, the proposed scheme reaches around 99% Top-K Accuracy levels while jointly improving energy efficiency (ee) and spectral efficiency (SE) by approx. 2 times compared to state-of-the-art approaches. This study provides a robust foundation for employing DL in RIS-aided maritime networks, contributing to the advancement of intelligent, high-performance wireless communication systems for advanced maritime applications, such as autonomous mooring, the autonomous approach, and just-in-time arrival (JIT). Full article
(This article belongs to the Special Issue Maritime Communication Networks and 6G Technologies)
Show Figures

Figure 1

23 pages, 8999 KiB  
Article
Multipath-Assisted Ultra-Wideband Vehicle Localization in Underground Parking Environment Using Ray-Tracing
by Shuo Hu, Lixin Guo, Zhongyu Liu and Shuaishuai Gao
Sensors 2025, 25(7), 2082; https://doi.org/10.3390/s25072082 - 26 Mar 2025
Cited by 1 | Viewed by 618
Abstract
In complex underground parking scenarios, non-line-of-sight (NLOS) obstructions significantly impede positioning signals, presenting substantial challenges for accurate vehicle localization. While traditional positioning approaches primarily focus on mitigating NLOS effects to enhance accuracy, this research adopts an alternative perspective by leveraging NLOS propagation as [...] Read more.
In complex underground parking scenarios, non-line-of-sight (NLOS) obstructions significantly impede positioning signals, presenting substantial challenges for accurate vehicle localization. While traditional positioning approaches primarily focus on mitigating NLOS effects to enhance accuracy, this research adopts an alternative perspective by leveraging NLOS propagation as valuable information, enabling precise positioning in NLOS-dominated environments. We introduce an innovative NLOS positioning framework based on the generalized source (GS) technique, which employs ray-tracing (RT) to transform NLOS paths into equivalent line-of-sight (LOS) paths. A novel GS filtering and weighting strategy to establish initial weights for the nonlinear equation system. To combat significant NLOS noise interference, a robust iterative reweighted least squares (W-IRLS) method synergizes initial weights with optimal position estimation. Integrating ultra-wideband (UWB) delay and angular measurements, four distinct localization modes based on W-IRLS are developed: angle-of-arrival (AOA), time-of-arrival (TOA), AOA/TOA hybrid, and AOA/time-difference-of-arrival (TDOA) hybrid. The comprehensive experimental and simulation results validate the exceptional effectiveness and robustness of the proposed NLOS positioning framework, demonstrating positioning accuracy up to 0.14 m in specific scenarios. This research not only advances the state of the art in NLOS positioning but also establishes a robust foundation for high-precision localization in challenging environments. Full article
(This article belongs to the Special Issue Multi‐sensors for Indoor Localization and Tracking: 2nd Edition)
Show Figures

Figure 1

Back to TopTop