Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (269)

Search Parameters:
Keywords = Nile-red

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3779 KB  
Article
Cycloastragenol Improves Fatty Acid Metabolism Through NHR-49/FAT-7 Suppression and Potent AAK-2 Activation in Caenorhabditis elegans Obesity Model
by Liliya V. Mihaylova, Martina S. Savova, Monika N. Todorova, Valeria Tonova, Biser K. Binev and Milen I. Georgiev
Int. J. Mol. Sci. 2026, 27(2), 772; https://doi.org/10.3390/ijms27020772 - 13 Jan 2026
Viewed by 287
Abstract
Obesity is among the top contributing factors for non-communicable chronic disease development and has attained menacing global proportions, affecting approximately one of eight adults. Phytochemicals that support energy metabolism and prevent obesity development have been the subject of intense research endeavors over the [...] Read more.
Obesity is among the top contributing factors for non-communicable chronic disease development and has attained menacing global proportions, affecting approximately one of eight adults. Phytochemicals that support energy metabolism and prevent obesity development have been the subject of intense research endeavors over the past several decades. Cycloastragenol is a natural triterpenoid compound and aglycon of astragaloside IV, known for activating telomerase and mitigating cellular aging. Here, we aim to characterize the effect of cycloastragenol on lipid metabolism in a glucose-induced obesity model in Caenorhabditis elegans. We assessed the changes in the body length, width, and area in C. elegans maintained under elevated glucose through automated WormLab system. Lipid accumulation in the presence of either cycloastragenol (100 μM) or orlistat (12 μM), used as a positive anti-obesity control drug, was quantified through Nile Red fluorescent staining. Furthermore, we evaluated the changes in key energy metabolism molecular players in GFP-reporter transgenic strains. Our results revealed that cycloastragenol treatment decreased mean body area and reduced lipid accumulation in the C. elegans glucose-induced model. The mechanistic data indicated that cycloastragenol suppresses the nuclear hormone receptor family member NHR-49 and the delta(9)-fatty-acid desaturase 7 (FAT-7) enzyme, and activates the 5′-AMP-activated protein kinase catalytic subunit alpha-2 (AAK-2) and the protein skinhead 1 (SKN-1) signaling. Collectively, our findings highlight that cycloastragenol reprograms lipid metabolism by down-regulating the insulin-like receptor (daf-2)/phosphatidylinositol 3-kinase (age-1)/NHR-49 signaling while simultaneously enhancing the activity of the AAK-2/NAD-dependent protein deacetylase (SIR-2.1) pathway. The anti-obesogenic potential of cycloastragenol rationalizes further validation in the context of metabolic diseases and obesity management. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Obesity and Metabolic Diseases)
Show Figures

Figure 1

23 pages, 1257 KB  
Article
Solvatochromic Polarity, Physicochemical Properties, and Spectral Analysis of New Triple NADES-Based on Urea–Glycerol
by Sezan Ahmed, Dimitar Bojilov, Ginka Exner, Soleya Dagnon, Stanimir Manolov and Iliyan Ivanov
Molecules 2026, 31(2), 233; https://doi.org/10.3390/molecules31020233 - 9 Jan 2026
Viewed by 323
Abstract
In the present study, ten type-V natural deep eutectic solvents (NADESs) were synthesized and comprehensively characterized, based on urea as a hydrogen-bond acceptor and three different groups of donors—glycerol, organic carboxylic acids, and carbohydrates. Their physicochemical parameters, spectral characteristics (FTIR), surface tension, and [...] Read more.
In the present study, ten type-V natural deep eutectic solvents (NADESs) were synthesized and comprehensively characterized, based on urea as a hydrogen-bond acceptor and three different groups of donors—glycerol, organic carboxylic acids, and carbohydrates. Their physicochemical parameters, spectral characteristics (FTIR), surface tension, and solvatochromic properties were determined using Nile Red, betaine 30, and Kamlet–Taft parameters. The densities of the systems (1.243–1.361 g/cm3) and the high values of molar refraction and polarizability indicate the formation of highly organized hydrogen-bonded networks, with the incorporated carboxyl and hydroxyl groups enhancing the structural compactness of the NADES. Surface tension varied significantly (46.9–80.3 mN/m), defining systems with low, medium, and high polarity. Solvatochromic analysis revealed high ENR, ET(30), and ETN values, positioning all NADES as highly polar media, comparable or close to water, but with distinguishable H-bond donating/accepting ability depending on the third component. The normalized Kamlet–Taft parameters show that the NADES cover a broad solvent spectrum—from highly H-bond accepting to strongly H-bond donating or dipolar systems—highlighting the potential for fine-tuning the solvent according to target applications. The obtained results highlight the applicability of these NADESs as green, tunable media for the extraction and solvation of bioactive compounds. Full article
Show Figures

Figure 1

18 pages, 3864 KB  
Article
Multi-Responsive and Antibacterial Dynamic Covalent Hydrogels Cross-Linked by Amphiphilic Copolymer Micelles
by Yuyao Wang, Dou Jin, Zichen Huang, Fan Chen, Kun Liu and Xiacong Zhang
Gels 2026, 12(1), 27; https://doi.org/10.3390/gels12010027 - 28 Dec 2025
Viewed by 281
Abstract
Dynamic covalent hydrogels exhibiting multi-responsive and antibacterial properties offer significant potential for biomedical applications, including smart wound dressings and controlled drug delivery. Herein, a series of amphiphilic quaternized copolymers (Q-C8PEG-n) with tunable quaternization degrees was synthesized from C8PEG via iodomethane addition and characterized [...] Read more.
Dynamic covalent hydrogels exhibiting multi-responsive and antibacterial properties offer significant potential for biomedical applications, including smart wound dressings and controlled drug delivery. Herein, a series of amphiphilic quaternized copolymers (Q-C8PEG-n) with tunable quaternization degrees was synthesized from C8PEG via iodomethane addition and characterized by 1H NMR, COSY, FTIR, UV-vis spectroscopy, DLS, TEM, and zeta potential analyses, confirming successful quaternization and micelle formation. These copolymers displayed thermosensitive behavior, with cloud point temperatures increasing due to enhanced hydrophilicity. Q-C8PEG-3 micelles, incorporating diethanolamine units, were crosslinked with phenylboronic acid-grafted hyaluronic acid (HA-PBA) to yield dynamic covalent hydrogels (Gel) through reversible boronic ester bonds stabilized by B-N coordination. The Gel exhibited multi-responsiveness, undergoing degradation in acidic or alkaline conditions and exposure to glucose or H2O2. SEM confirmed a porous microstructure, enabling efficient drug encapsulation, as demonstrated by the release of Nile red (NR). In vitro antibacterial tests revealed enhanced post-quaternization efficacy, with the Gel showing strong activity against S. aureus. This micelle-crosslinked platform synergistically combines tunable stimuli-responsiveness with inherent antibacterial properties, holding promise for applications in wound healing and tissue engineering. Full article
Show Figures

Graphical abstract

15 pages, 5457 KB  
Article
The UV-Visible Absorption Spectra of Coumarin and Nile Red in Aqueous Solution: A Polarizable QM/MM Study
by Tommaso Giovannini, Matteo Ambrosetti and Chiara Cappelli
Molecules 2025, 30(24), 4675; https://doi.org/10.3390/molecules30244675 - 5 Dec 2025
Viewed by 674
Abstract
We present a comprehensive computational study of the UV-visible absorption spectra of 7-methoxycoumarin and Nile red in aqueous solution. Our fully atomistic workflow couples classical molecular dynamics (MD) with polarizable QM/MM based on fluctuating charges (QM/FQ) and dipoles (QM/FQFμ). Ensemble-averaged spectra [...] Read more.
We present a comprehensive computational study of the UV-visible absorption spectra of 7-methoxycoumarin and Nile red in aqueous solution. Our fully atomistic workflow couples classical molecular dynamics (MD) with polarizable QM/MM based on fluctuating charges (QM/FQ) and dipoles (QM/FQFμ). Ensemble-averaged spectra are constructed from the snapshots extracted from the MD, embedding solvent fluctuations and specific solute–solvent interactions in the electronic response of organic dyes. The spectral profiles, obtained at the various levels, reflect the underlying solute–solvent interactions and dynamics, and we rationalize them in terms of hydrogen bonding and frontier molecular orbitals involved in the main electronic transitions. Finally, the simulated spectra and solvatochromic shifts are compared with the available experimental data, showing an overall good agreement and demonstrating the robustness of the computational protocol. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Figure 1

34 pages, 8333 KB  
Review
Genome-Edited Fish in the Field
by Kang Hee Kho, Zahid Parvez Sukhan, Yusin Cho, Doohyun Cho and Cheol Young Choi
Curr. Issues Mol. Biol. 2025, 47(12), 1013; https://doi.org/10.3390/cimb47121013 - 3 Dec 2025
Cited by 1 | Viewed by 1002
Abstract
Genome editing using site-directed nucleases (SDNs), particularly with the CRISPR/Cas9 system, has emerged as a powerful platform for aquaculture innovation, enabling precise, heritable, and non-transgenic modifications that enhance productivity, sustainability, and animal welfare. This review synthesizes molecular, regulatory, ecological, and societal perspectives to [...] Read more.
Genome editing using site-directed nucleases (SDNs), particularly with the CRISPR/Cas9 system, has emerged as a powerful platform for aquaculture innovation, enabling precise, heritable, and non-transgenic modifications that enhance productivity, sustainability, and animal welfare. This review synthesizes molecular, regulatory, ecological, and societal perspectives to highlight global advances in genome-edited fish and their transition from laboratory research to field applications. To date, over forty aquatic species have been successfully edited to improve traits such as growth, disease resistance, pigmentation, and reproductive control. Notably, market-approved SDN-1 fish lines, including mstn-knockout red seabream and Nile tilapia, and lepr-edited tiger puffer and olive flounder, have demonstrated improved productivity; however, publicly available welfare data remain limited. These examples illustrate how product-based SDN-1 regulatory frameworks in Japan, Argentina, and Brazil enable commercialization while ensuring biosafety. Nonetheless, limited field trials and regulatory heterogeneity continue to hinder global harmonization. Major challenges include the development of standardized welfare metrics, assessment of multigenerational stability, evaluation of ecological risks, and transparent data sharing. To address these gaps, a structured reporting checklist is proposed to guide consistent molecular validation, welfare assessment, biosafety containment, and data transparency. Genome editing through SDN-based precision, coupled with ethical governance, represents a crucial step toward sustainable, resilient, and publicly trusted aquaculture systems. Full article
(This article belongs to the Special Issue Innovations in Marine Biotechnology and Molecular Biology)
Show Figures

Figure 1

13 pages, 3774 KB  
Article
Evaluation of Skin Penetration of Fluorescent Dissolved Formulations Using Confocal Laser Scanning Microscopy
by Yoshihiro Oaku, Toshinari Kuwae, Takeshi Misono, Taku Ogura and Akinari Abe
Pharmaceutics 2025, 17(12), 1534; https://doi.org/10.3390/pharmaceutics17121534 - 28 Nov 2025
Viewed by 781
Abstract
Background/Objectives: Transdermal formulations are widely utilized in the pharmaceutical and cosmetic fields because they enable non-invasive administration and sustained local drug delivery. Conventional ex vivo skin permeation experiments using Franz diffusion cells have limitations in capturing the spatial and temporal dynamics of [...] Read more.
Background/Objectives: Transdermal formulations are widely utilized in the pharmaceutical and cosmetic fields because they enable non-invasive administration and sustained local drug delivery. Conventional ex vivo skin permeation experiments using Franz diffusion cells have limitations in capturing the spatial and temporal dynamics of skin penetration. This study aimed to develop a confocal laser scanning microscopy (CLSM)-based approach to visualize and semi-quantitatively assess the penetration behavior of fluorescent dyes with differing lipophilicities. Methods: Four fluorescent dyes with different Log P values—Rhodamine B (Rho-B), Rhodamine 123 (Rho-123), Fluorescein Sodium (Flu-Na), and Nile Red (NR)—were formulated into lotion-based vehicles and applied to excised human abdominal skin. CLSM imaging was performed from 10 min to 240 min post-application. Fluorescence intensities were extracted from depth-resolved regions (R1–R4, 30-μm intervals) to examine penetration kinetics and distribution. Results: CLSM imaging demonstrated that Rho-B penetrated through stratum corneum and entered deep into the skin via the hair follicles. Rho-123 and Flu-Na exhibited intercellular and follicular penetration; however, Flu-Na showed only a slight increase in intensity over time; NR showed negligible penetration into the deeper layers. The results of our analysis indicated that moderately lipophilic substances such as Rho-B and Rho-123 diffused deeply into the skin via both transdermal and follicular routes, whereas highly hydrophobic or lipophilic substances remained in the superficial layers. Conclusions: The CLSM-based approach enabled spatially and temporally resolved, semi-quantitative evaluation of transdermal penetration in a single, non-destructive experiment. Although restricted to fluorescent probes, this approach provides a practical early-stage screening tool for comparing route-specific and time-dependent penetration behaviors of compounds with different lipophilicities. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Graphical abstract

28 pages, 7923 KB  
Review
Illuminating the Invisible: Fluorescent Probes as Emerging Tools for Micro/Nanoplastic Identification
by Junhan Yang, Kaichao Zheng, Weiqing Chen, Xiaojun Zeng, Yao Chen, Fengping Lin and Daliang Li
Int. J. Mol. Sci. 2025, 26(23), 11283; https://doi.org/10.3390/ijms262311283 - 21 Nov 2025
Cited by 1 | Viewed by 878
Abstract
The pervasive environmental contamination by micro- and nanoplastics (MNPs) presents a formidable analytical challenge, necessitating the development of rapid and sensitive detection methods. While conventional techniques often suffer from limitations in sensitivity and throughput, fluorescent probe-based technology has emerged as a powerful alternative. [...] Read more.
The pervasive environmental contamination by micro- and nanoplastics (MNPs) presents a formidable analytical challenge, necessitating the development of rapid and sensitive detection methods. While conventional techniques often suffer from limitations in sensitivity and throughput, fluorescent probe-based technology has emerged as a powerful alternative. This review charts the evolution of these probes, from initial stains relying on hydrophobic adsorption to advanced molecular designs engineered for specific chemical recognition. We critically examine key operational mechanisms, including the solvatochromic response of Nile Red, polarity-discriminatory probes enabling a “microplastic rainbow,” and targeted systems achieving turn-on fluorescence via restriction of intramolecular rotation. Furthermore, we highlight cutting-edge signal enhancement strategies, such as plasmon- and metal-enhanced fluorescence, which amplify detection to the femtogram level. Special emphasis is placed on the distinct challenges posed by nanoplastics, including their propensity for aggregation in aqueous matrices that exacerbates false positives and their superior ability to breach biological barriers, and how AIE luminogens and PEF/MEF strategies mitigate these issues through enhanced signal-to-noise ratios and subcellular resolution, differing from their application to microplastics. Critically, we address the imperative for low-toxicity probe designs, emphasizing biocompatibility and biodegradability criteria to facilitate safe, long-term in vivo tracking and widespread ecological surveillance. The integration of these sophisticated probes with smart, “activate-on-target” systems is paving the way for next-generation MNP analysis, offering critical insights for environmental monitoring and toxicological assessment. Full article
(This article belongs to the Special Issue Toxicity of Metals, Metal-Based Drugs, and Microplastics)
Show Figures

Graphical abstract

17 pages, 3168 KB  
Article
Bisphenol A Alters the Expression of Genes Involved in Lipogenesis, Inflammation, and Oxidative Stress in the Liver of Adult Zebrafish
by Eronides Anathan de Heberle Salau, Daniela Diglio, Giuliano Rizzotto Guimarães, Orlando Vieira Furtado-Filho and Marilene Porawski
Pharmaceuticals 2025, 18(11), 1765; https://doi.org/10.3390/ph18111765 - 20 Nov 2025
Viewed by 2496
Abstract
Background: Bisphenol A (BPA) is a widespread environmental endocrine disruptor associated with metabolic dysfunction-associated steatotic liver disease (MASLD). However, its short-term effects at low, environmentally relevant concentrations are still poorly understood. Methods: Adult zebrafish were exposed to 5, 20, or 100 µg/L BPA [...] Read more.
Background: Bisphenol A (BPA) is a widespread environmental endocrine disruptor associated with metabolic dysfunction-associated steatotic liver disease (MASLD). However, its short-term effects at low, environmentally relevant concentrations are still poorly understood. Methods: Adult zebrafish were exposed to 5, 20, or 100 µg/L BPA for 48 h, 7, or 14 days in a pilot test. The lowest effective condition (20 µg/L for 7 days) was selected for a complete experiment. Fish were divided into two groups: control and BPA-exposed (n = 50/group). After exposure, livers were collected for histological (HE, Oil Red O, Nile Red) and molecular (RT-qPCR) analyses. Results: Exposure to 20 µg/L BPA for 7 days induced moderate to severe hepatic steatosis, characterized by vacuolization, hepatocyte ballooning, and lipid accumulation. Gene expression analysis showed upregulation of fasn (fatty acid synthase), acc1 (acetyl-CoA carboxylase 1), srebp-1c (sterol regulatory element-binding protein 1c), nfkb (nuclear factor kappa B), il-6 (interleukin-6), gpx1 (glutathione peroxidase 1), sod (superoxide dismutase), cyp1a (cytochrome P450 1A), and cyp2ad2 (cytochrome P450 2AD2), while adipor2 (adiponectin receptor 2) and gpx4 (glutathione peroxidase 4) were downregulated (decreased activity). Conclusions: Short-term exposure to a low, environmentally relevant concentration of BPA was sufficient to trigger hepatic steatosis in zebrafish. These effects were associated with enhanced lipogenesis, inflammation, oxidative imbalance, and altered xenobiotic metabolism, suggesting that even brief, low-dose BPA exposure may contribute to early events in MASLD pathogenesis. Full article
(This article belongs to the Special Issue Application of Zebrafish Model in Pharmacology and Toxicology)
Show Figures

Graphical abstract

8 pages, 613 KB  
Communication
Wild Mammals as Sentinels for West Nile Virus Circulation: Evidence from Serbia
by Ljubiša Veljović, Milan Paunović, Dimitrije Glišić, Sofija Šolaja, Zorana Zurovac Sapundžić, Jelena Maletić, Bojan Milovanović and Vesna Milićević
Pathogens 2025, 14(11), 1167; https://doi.org/10.3390/pathogens14111167 - 15 Nov 2025
Viewed by 503
Abstract
West Nile fever is a mosquito-borne zoonotic disease caused by West Nile virus (WNV), maintained in an enzootic cycle between avian hosts and Culex mosquitoes. While birds are the principal reservoirs, WNV also infects a wide range of mammals, including humans, horses, and [...] Read more.
West Nile fever is a mosquito-borne zoonotic disease caused by West Nile virus (WNV), maintained in an enzootic cycle between avian hosts and Culex mosquitoes. While birds are the principal reservoirs, WNV also infects a wide range of mammals, including humans, horses, and wildlife species. In this study, we assessed WNV seroprevalence in wild ungulates, wild boars, golden jackals, and the invasive rodent nutria in Serbia. A total of 522 serum samples from wild animals were tested. Antibodies against WNV were detected across all tested species, with seroprevalence rates of 37% in wild boars, 11.9% in nutrias, 32.4% in golden jackals, 50.6% in red deer, and 9.1% in roe deer. Detection of antibodies in both adults and juveniles provides evidence of recent transmission during the study period. These findings confirm widespread circulation of WNV in Serbian wildlife and suggest that wild ungulates, carnivores, and invasive rodents may serve as useful sentinel species for monitoring WNV prevalence and geographic spread in natural ecosystems. Full article
(This article belongs to the Special Issue Epidemiology of Infectious Diseases in Wild Animals)
Show Figures

Figure 1

16 pages, 2065 KB  
Article
Detection, Quantification, and Characterisation of Microplastics in Maltese Bottled Water
by Josmar Camilleri, Anthea Agius Anastasi and Sophie Marie Briffa
Microplastics 2025, 4(4), 88; https://doi.org/10.3390/microplastics4040088 - 11 Nov 2025
Viewed by 3020
Abstract
Plastics play a pivotal role in various industries owing to their versatility in engineering their physical, mechanical, and chemical properties while exploiting their remarkable durability, light-weight nature, and cost-effectiveness. Yet, their widespread use has led to the pollution of Earth’s water systems. Over [...] Read more.
Plastics play a pivotal role in various industries owing to their versatility in engineering their physical, mechanical, and chemical properties while exploiting their remarkable durability, light-weight nature, and cost-effectiveness. Yet, their widespread use has led to the pollution of Earth’s water systems. Over time, plastic waste degrades into microplastics, particles smaller than 5 mm. Recent studies have highlighted the growing concerns associated with microplastics, especially in bottled beverages, including bottled water, with associated hazards still in the very early stages of being fully understood. Furthermore, the global understanding of the extent of microplastic contamination in the environment and along the food chain remains limited. This study aimed to detect, quantify, and characterise microplastics in bottled drinking water produced and sold in Malta. Samples from five brands were filtered, stained with Nile red, and quantified using fluorescence microscopy. The average microplastic concentration was found to be 35,877 ± 23,542 particles per litre, with 84% of samples exhibiting contamination, which was noted to be statistically significant. The average particle diameter was measured to be 2.3696 ± 0.0035 µm. Raman spectroscopy was used to chemically characterise 10 larger particles per brand (i.e., 50 samples), identifying the presence of cellulose, polyurethane, polymethyl methacrylate, polyethylene, and smaller quantities of other polymers. Morphological analysis classified 36 of the larger particles as fragments and 14 as fibres. Excluding laboratory-introduced contamination, the primary source of microplastic contamination in the analysed bottled water was traced to the bottle caps. Full article
Show Figures

Graphical abstract

11 pages, 2723 KB  
Article
A Fluorescence-Based Histidine-Imidazole Polyacrylamide Gel Electrophoresis (HI-PAGE) Method for Rapid and Practical Lipoprotein Profiling and LDL-C Quantification in Clinical Samples
by Yasuhiro Takenaka, Ikuo Inoue, Masaaki Ikeda and Yoshihiko Kakinuma
Biomedicines 2025, 13(10), 2560; https://doi.org/10.3390/biomedicines13102560 - 21 Oct 2025
Viewed by 598
Abstract
Background: Polyacrylamide gel electrophoresis (PAGE) has long been used for lipoprotein analysis, enabling the separation and profiling of lipoprotein fractions such as LDL and HDL. However, conventional disc PAGE systems are limited by low throughput and inability to directly compare multiple samples [...] Read more.
Background: Polyacrylamide gel electrophoresis (PAGE) has long been used for lipoprotein analysis, enabling the separation and profiling of lipoprotein fractions such as LDL and HDL. However, conventional disc PAGE systems are limited by low throughput and inability to directly compare multiple samples under identical conditions. Alternative methods, including high-performance liquid chromatography and agarose gel electrophoresis, require specialized equipment and expertise, limiting their clinical utility. Methods: We present a colorimetric and fluorescence-based histidine-imidazole PAGE (HI-PAGE) system that provides rapid, cost-effective, and reproducible separation and profiling of lipoproteins in human serum. By combining electrophoretic separation with lipid-specific fluorescent staining using Nile Red, the fluorescence-based HI-PAGE (fHI-PAGE) not only visualizes distinct migration patterns of lipoprotein fractions, but also enables the quantification of LDL-cholesterol (LDL-C). Clear resolution of LDL and other lipoprotein fractions was achieved within 1 h without band distortion, allowing for direct comparison of multiple samples on a single gel. Results: We validated fHI-PAGE using serum from healthy individuals and patients, demonstrating that its fluorescence-based detection was more sensitive than conventional Sudan Black B staining while providing LDL-C estimates concordant with values calculated by the Friedewald formula. Moreover, fHI-PAGE proved advantageous in cases of hypertriglyceridemia, where Friedewald calculations are unreliable. Conclusions: These findings establish fHI-PAGE as a practical and clinically applicable platform for simultaneous lipoprotein profiling and LDL-C quantification. Full article
(This article belongs to the Section Biomedical Engineering and Materials)
Show Figures

Graphical abstract

20 pages, 806 KB  
Review
Enzymatic Control of Alcohol Metabolism in the Body—The Roles of Class I, II, III, and IV Alcohol Dehydrogenases/NADH Reoxidation System, Microsomal Ethanol Oxidizing System, Catalase/H2O2 System, and Aldehyde Dehydrogenase 2
by Takeshi Haseba
Int. J. Mol. Sci. 2025, 26(19), 9479; https://doi.org/10.3390/ijms26199479 - 27 Sep 2025
Viewed by 4941
Abstract
Alcohol metabolism in the body is a key theme in medical research on alcohol. It is primarily regulated by the alcohol dehydrogenase (ADH) and mitochondrial NADH reoxidation in the liver. Class I ADH1 is a well-known ADH isozyme and a key enzyme in [...] Read more.
Alcohol metabolism in the body is a key theme in medical research on alcohol. It is primarily regulated by the alcohol dehydrogenase (ADH) and mitochondrial NADH reoxidation in the liver. Class I ADH1 is a well-known ADH isozyme and a key enzyme in alcohol metabolism, with the lowest Kms for ethanol and the highest sensitivity to pyrazole (Pz) among the ADH isozymes. However, a Pz-insensitive metabolic pathway also plays a role in systemic alcohol metabolism, with increasing metabolic contributions at higher blood alcohol concentrations (BACs) and under chronic alcohol consumption (CAC). The Pz-insensitive pathway is referred to as the non-ADH pathway—specifically, it is a non-ADH1 pathway—and is assumed to involve the microsomal ethanol oxidizing system (MEOS) or catalase, as both enzymes are insensitive to Pz and exhibit higher Kms than ADH1. The MEOS is a favored candidate for this pathway, as its activity markedly increases with the rate of alcohol metabolism under CAC. However, the role of the MEOS in alcohol metabolism has not been proven in vivo (even under CAC conditions), nor has that of catalase. Here, we report Class III ADH3 as a new candidate in the non-ADH1 pathway, as it also has a lower sensitivity to Pz and a higher Km. It is markedly activated by lowering Km following the addition of amphiphilic substances, which increases the solution’s hydrophobicity in the reaction medium; additionally, Nile red staining demonstrates a higher solution hydrophobicity in the cytoplasm of mouse liver cells. The rate of alcohol metabolism in ADH1 knockout (Adh1−/−) mice—which depends solely on the non-ADH1 pathway—increased by more than twice under CAC and was significantly correlated with the amount of liver ADH3 protein, but not with CYP2E1 protein (a main component of the MEOS). The rate of alcohol metabolism in Adh3−/− mice lacking ADH3 decreased in a dose-dependent manner compared with wild mice. The liver ADH3 protein in wild-type mice increased in line with the ADH1 protein under CAC. These data suggest that ADH3 contributes to alcohol metabolism in vivo as a non-ADH1 pathway and to the enhancement of alcohol metabolism under CAC through activation of the ADH1/ADH3/NADH reoxidation system. In alcoholic liver diseases, ADH1 activity decreased with the progression of liver disease, while ADH3 activity increased or was maintained even in alcoholic liver cirrhosis. Therefore, the role of ADH3 in alcohol metabolism may be increased in the context of alcoholic liver diseases, complementing the reduced role of ADH1. It has also been suggested that Class II ADH2, Class IV ADH4, and aldehyde dehydrogenase (ALDH) 2 play roles in alcohol metabolism in vivo under certain limited conditions. However, ADH2 and 4 may not contribute to the enhancement of alcohol metabolism through CAC. Full article
(This article belongs to the Special Issue Molecular Advances in Alcohol Metabolism)
Show Figures

Figure 1

19 pages, 3271 KB  
Article
Mycobacterium Transcriptional Factor BlaI Regulates Cell Division and Growth and Potentiates β-Lactam Antibiotic Efficacy Against Mycobacteria
by Junqi Xu, Mingjun Zhang, Fuling Xie, Junfeng Zhen, Yuerigu Abuliken, Chaoyun Gao, Yongdong Dai, Zhiyong Jiang, Peibo Li and Jianping Xie
Microorganisms 2025, 13(10), 2245; https://doi.org/10.3390/microorganisms13102245 - 25 Sep 2025
Viewed by 878
Abstract
Cell division is critical for the survival, growth, pathogenesis, and antibiotic susceptibility of Mycobacterium tuberculosis (Mtb). However, the regulatory networks governing the transcription of genes involved in cell growth and division in Mtb remain poorly understood. This study aimed to investigate the impact [...] Read more.
Cell division is critical for the survival, growth, pathogenesis, and antibiotic susceptibility of Mycobacterium tuberculosis (Mtb). However, the regulatory networks governing the transcription of genes involved in cell growth and division in Mtb remain poorly understood. This study aimed to investigate the impact of BlaI overexpression on cell division and growth in Mtb and elucidate the underlying mechanisms. Mycobacterium smegmatis mc2155 was used as the model organism. Recombinant strains overexpressing BlaI were constructed. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), ethidium bromide and Nile red uptake assays, minimum inhibitory concentration (MIC) determination, drug resistance analysis, quantitative real-time PCR (qRT-PCR) assays, and electrophoretic mobility shift assay (EMSA) were employed to assess changes in bacterial morphology, cell wall permeability, antibiotic susceptibility, gene transcription levels, and the interaction between BlaI and its target genes. Overexpression of BlaI disrupted bacterial division in M. smegmatis, leading to growth delay, cell elongation, and formation of multi-septa. It also altered the lipid permeability of the cell wall and enhanced the sensitivity of M. smegmatis to β-lactam antibiotics. BlaI overexpression affected the transcription of cell division-related genes, particularly downregulating ftsQ. Additionally, BlaI negatively regulated the transcription of Rv1303—a gene co-transcribed with ATP synthase-encoding genes—inhibiting ATP synthesis. This impaired the phosphorylation of division complex proteins, ultimately affecting cell division and cell wall synthesis. Overexpression of BlaI in Mtb interferes with bacterial division, slows growth, and alters gene expression. Our findings identify a novel role for BlaI in regulating mycobacterial cell division and β-lactam susceptibility, providing a foundation for future mechanistic studies in M. tuberculosis, with validation required to assess relevance to clinical tuberculosis—though validation in M. tuberculosis and preclinical models is required. Full article
(This article belongs to the Special Issue Mycobacterial Research)
Show Figures

Figure 1

19 pages, 1399 KB  
Article
Low-Molecular-Weight Bovine Collagen Peptides Reduce Fat Accumulation in C. elegans and Ameliorate Obesity-Related Metabolic Dysfunction and Microbiota Diversity in C57BL/6 Male Diet-Induced Obese Mice
by Miguel López-Yoldi, Paula Aranaz, José I. Riezu-Boj, Itxaso González-Salazar, Jesús M. Izco, José I. Recalde, Carlos J. González-Navarro and Fermín I. Milagro
Int. J. Mol. Sci. 2025, 26(18), 9149; https://doi.org/10.3390/ijms26189149 - 19 Sep 2025
Viewed by 2309
Abstract
Collagen and its derivatives, including hydrolyzed collagen peptides, have emerged as promising bioactive compounds with potential benefits in obesity and metabolic syndrome prevention and management. This study aimed to evaluate the potential effects of a low-molecular-weight bovine collagen hydrolysate (COLLinstant® LMW) on [...] Read more.
Collagen and its derivatives, including hydrolyzed collagen peptides, have emerged as promising bioactive compounds with potential benefits in obesity and metabolic syndrome prevention and management. This study aimed to evaluate the potential effects of a low-molecular-weight bovine collagen hydrolysate (COLLinstant® LMW) on metabolic health using Caenorhabditis elegans and C57BL/6 diet-induced obese mice. In C. elegans, C-LMW (2 mg/mL) improved healthspan by significantly reducing fat accumulation (as measured with Nile Red) and reactive oxygen species measured through dihydroethidium, slowing the aging process measured with lipofuscin, and extending the median lifespan of the nematodes. In 32 male 20-week-old diet-induced obese mice, C-LMW supplementation (1 mg/animal/day) for 8 weeks led to a significant reduction in mesenteric, visceral and total adipose tissue (−28% −15% and −18%, respectively; p > 0.05), improved glucose tolerance, and partially restored glucose homeostasis, as demonstrated by intraperitoneal glucose tolerance (−26% AUC, p < 0.05). Additionally, collagen hydrolysate supplementation led to a significant impact on gut microbiota composition by increasing microbial diversity and modulating beneficial bacterial populations, which may contribute to the observed metabolic improvements. These findings suggest that bovine-derived collagen peptides exert anti-obesogenic and metabolic regulatory effects, supporting their potential as functional dietary ingredients for obesity management. Full article
Show Figures

Figure 1

20 pages, 14941 KB  
Article
Cold Plasma-Induced Changes in Polyethylene Particles and Their Binding Affinity to Selected Pharmaceuticals
by Aleksandra Wypart-Pawul, Beata Karwowska, Renata Caban and Anna Grobelak
Molecules 2025, 30(18), 3756; https://doi.org/10.3390/molecules30183756 - 16 Sep 2025
Viewed by 886
Abstract
Environmental contamination with microplastics and trace pharmaceuticals is an increasing ecological and health concern. This study aimed to investigate the effects of low-temperature cold plasma on polyethylene (PE) microplastic particles and to assess the potential for degradation of pharmaceuticals adsorbed onto their surfaces. [...] Read more.
Environmental contamination with microplastics and trace pharmaceuticals is an increasing ecological and health concern. This study aimed to investigate the effects of low-temperature cold plasma on polyethylene (PE) microplastic particles and to assess the potential for degradation of pharmaceuticals adsorbed onto their surfaces. Two types of PE samples were prepared: suspended in distilled water and in treated wastewater. All samples were exposed to cold plasma. In the second stage, PE particles were saturated with selected pharmaceuticals (diclofenac, sulfamethoxazole, trimethoprim) and then subjected to plasma treatment. Pharmaceutical concentrations were measured using high-performance liquid chromatography (HPLC). Particle morphology was analyzed via light microscopy (after Nile red staining) and scanning electron microscopy (SEM). The results showed that cold plasma treatment leads to agglomeration of PE particles, with the extent increasing with longer plasma exposure time. Pharmaceuticals adsorbed to the PE surface in the range of 20–70% of the applied dose. Cold plasma demonstrated the ability to remove pharmaceutical contaminants, particularly diclofenac (>98%), sulfamethoxazole (99.99%) and trimethoprim (>98%). These findings indicate that cold plasma has promising potential as a supportive technology for removing both microplastics and pharmaceutical residues from wastewater and aquatic environments. Full article
(This article belongs to the Special Issue Green Chemistry Approaches to Analysis and Environmental Remediation)
Show Figures

Figure 1

Back to TopTop