Mycobacterial Research

A special issue of Microorganisms (ISSN 2076-2607). This special issue belongs to the section "Molecular Microbiology and Immunology".

Deadline for manuscript submissions: 30 November 2025 | Viewed by 1070

Special Issue Editor

University of Chinese Academy of Sciences, Beijing, China
Interests: mycobacterial

Special Issue Information

Dear Colleagues,

Mycobacteria, with their complex biology and significant impact on human health, are a critical focus of microbiological research. Their ability to cause diseases such as tuberculosis and leprosy, combined with their adaptability to diverse host environments, highlights the need to deepen our understanding of their molecular mechanisms, immune interactions, and ecological roles. Mycobacteria’s distinctive cell wall, lipid metabolism, unique metabolic pathways, and ability to develop antimicrobial resistance position them as a key focus in research on infectious diseases, immunology, and microbiome interactions.

Recent advances have shed light on their multifaceted roles through key discoveries:

  • Novel insights into mycobacterial slow growth, rapid stress response, and immune evasion strategies;
  • Mechanisms of intrinsic and acquired antimicrobial resistance;
  • Host–pathogen interactions driving immune responses and co-infection dynamics;
  • The influence of the host microbiome on mycobacterial pathogenesis;
  • The development of next-generation diagnostics and therapeutics for mycobacterial infections.
  • This Special Issue seeks to compile cutting-edge research on the following topics:
  • Genomic and proteomic analyses of mycobacterial virulence factors;
  • The mechanisms of immune response modulation by mycobacteria;
  • Antimicrobial resistance and novel therapeutic targets;
  • Co-infections involving mycobacteria and their clinical implications;
  • Microbiome–mycobacteria interactions in health and disease;
  • Translational research for diagnostics, vaccines, and treatments.

We invite contributions employing multidisciplinary approaches—from molecular biology and immunology to computational modeling and clinical studies—that advance our understanding of mycobacterial biology and its broader implications. Both fundamental research and applied innovations are welcome, including studies that bridge basic science with clinical or public health applications.

Through this collection, we aim to foster new paradigms for understanding mycobacterial pathogenesis and develop innovative solutions to global health challenges posed by these resilient pathogens.

Dr. Kaixia Mi
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Microorganisms is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • mycobacterial biology
  • immune response
  • antimicrobial resistance
  • co-infections
  • microbiome interactions
  • therapeutic innovations

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

19 pages, 3271 KB  
Article
Mycobacterium Transcriptional Factor BlaI Regulates Cell Division and Growth and Potentiates β-Lactam Antibiotic Efficacy Against Mycobacteria
by Junqi Xu, Mingjun Zhang, Fuling Xie, Junfeng Zhen, Yuerigu Abuliken, Chaoyun Gao, Yongdong Dai, Zhiyong Jiang, Peibo Li and Jianping Xie
Microorganisms 2025, 13(10), 2245; https://doi.org/10.3390/microorganisms13102245 - 25 Sep 2025
Abstract
Cell division is critical for the survival, growth, pathogenesis, and antibiotic susceptibility of Mycobacterium tuberculosis (Mtb). However, the regulatory networks governing the transcription of genes involved in cell growth and division in Mtb remain poorly understood. This study aimed to investigate the impact [...] Read more.
Cell division is critical for the survival, growth, pathogenesis, and antibiotic susceptibility of Mycobacterium tuberculosis (Mtb). However, the regulatory networks governing the transcription of genes involved in cell growth and division in Mtb remain poorly understood. This study aimed to investigate the impact of BlaI overexpression on cell division and growth in Mtb and elucidate the underlying mechanisms. Mycobacterium smegmatis mc2155 was used as the model organism. Recombinant strains overexpressing BlaI were constructed. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), ethidium bromide and Nile red uptake assays, minimum inhibitory concentration (MIC) determination, drug resistance analysis, quantitative real-time PCR (qRT-PCR) assays, and electrophoretic mobility shift assay (EMSA) were employed to assess changes in bacterial morphology, cell wall permeability, antibiotic susceptibility, gene transcription levels, and the interaction between BlaI and its target genes. Overexpression of BlaI disrupted bacterial division in M. smegmatis, leading to growth delay, cell elongation, and formation of multi-septa. It also altered the lipid permeability of the cell wall and enhanced the sensitivity of M. smegmatis to β-lactam antibiotics. BlaI overexpression affected the transcription of cell division-related genes, particularly downregulating ftsQ. Additionally, BlaI negatively regulated the transcription of Rv1303—a gene co-transcribed with ATP synthase-encoding genes—inhibiting ATP synthesis. This impaired the phosphorylation of division complex proteins, ultimately affecting cell division and cell wall synthesis. Overexpression of BlaI in Mtb interferes with bacterial division, slows growth, and alters gene expression. Our findings identify a novel role for BlaI in regulating mycobacterial cell division and β-lactam susceptibility, providing a foundation for future mechanistic studies in M. tuberculosis, with validation required to assess relevance to clinical tuberculosis—though validation in M. tuberculosis and preclinical models is required. Full article
(This article belongs to the Special Issue Mycobacterial Research)
Show Figures

Figure 1

Review

Jump to: Research

17 pages, 637 KB  
Review
Challenges and Potential of Antibody–Drug Conjugates as Prospective Tuberculosis Therapeutics
by Kenneth W. Foreman and Hui-Chen Foreman
Microorganisms 2025, 13(10), 2234; https://doi.org/10.3390/microorganisms13102234 - 24 Sep 2025
Viewed by 79
Abstract
Tuberculosis (TB), primarily caused by Mycobacterium tuberculosis (Mtb), remains a leading cause of infectious disease mortality worldwide. Global TB control efforts face several hurdles, including the lack of a broadly effective vaccine, limited sensitivity of current diagnostics, particularly for paucibacillary and extrapulmonary TB, [...] Read more.
Tuberculosis (TB), primarily caused by Mycobacterium tuberculosis (Mtb), remains a leading cause of infectious disease mortality worldwide. Global TB control efforts face several hurdles, including the lack of a broadly effective vaccine, limited sensitivity of current diagnostics, particularly for paucibacillary and extrapulmonary TB, and significant adverse effects associated with prolonged small-molecule drug regimens. The growing prevalence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains further underscores the urgent need for innovative therapeutic strategies. We outline characteristics of next-generation TB therapeutics. We show that antibody (Ab)-drug conjugates (ADCs) satisfy many of those desirable characteristics. Since a major hurdle to this approach lies in Mtb-specific Abs, we highlight an open-access resource comprising a broad panel of Mtb-specific mouse monoclonal antibodies targeting key factors involved in Mtb survival, immune evasion, and pathogenesis. These critical Mtb virulence factors include heat shock proteins (GroES, DnaK, and HspX), surface-associated or secreted proteins (LAM, Ag85, HBHA, Mpt64/CFP-21, and PhoS1/PstS1), cell wall/envelope-associated proteins (LprG/p27), and detoxifying enzymes (KatG and SodA). The resource provides full-length sequences of the immunoglobulin variable regions, enabling antibody engineering and facilitating translational TB research across vaccine design, diagnostic development, and immunotherapeutic applications, in addition to ADCs. This ADC targeted delivery strategy holds promise for overcoming TB heterogeneity and eliminating both active and dormant Mtb populations within a single therapeutic formulation and offers a novel avenue for precision TB treatment. Full article
(This article belongs to the Special Issue Mycobacterial Research)
Show Figures

Figure 1

Back to TopTop