Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (248)

Search Parameters:
Keywords = Nigella Sativa

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 4836 KiB  
Article
Harnessing the Hepatoprotective and Nephroprotective Potential of Nigella sativa Fractions via per os Administration in CCl4-Intoxicated Wistar Rats: A Mixed Approach
by Mohammed Dalli, Nour Elhouda Daoudi, Salah-eddine Azizi, Mohammed Roubi, Ilyass Alami Merrouni, Faiza Souna, Mohammed Choukri, Bonglee Kim and Nadia Gseyra
Pharmaceuticals 2025, 18(8), 1147; https://doi.org/10.3390/ph18081147 - 1 Aug 2025
Viewed by 137
Abstract
Background: Nigella sativa, known as black cumin, is traditionally used to treat various illnesses. Objective: The current study aims to investigate the potential hepatoprotective and nephroprotective effect of black cumin fractions via per os route in CCl4-intoxicated Wistar rats. [...] Read more.
Background: Nigella sativa, known as black cumin, is traditionally used to treat various illnesses. Objective: The current study aims to investigate the potential hepatoprotective and nephroprotective effect of black cumin fractions via per os route in CCl4-intoxicated Wistar rats. This study used a computational approach to assess the interaction of bioactive compounds with key proteins (CYP P450 3E1, TNF-α, and Cox-2). Methods:Wistar rats were treated with CCl4 to induce liver injury and with different Nigella sativa fractions (250 mg/Kg) or Sylimarin (50 mg/Kg). Liver and kidney functions were assessed through biochemical markers, hepatic glycogen, malondialdehyde levels, molecular docking, and ADMET analysis to evaluate drug-likeliness. Results: The results revealed that intoxication with CCl4 induced an elevation in different liver and kidney biochemical parameters such as (ALT, AST, creatinine, urea...) indicating kidney and hepatic toxicity. However, treatment with different Nigella sativa fractions showed a significant improvement in animal body weight and significant amelioration of biochemical markers indicating a protective potential of these fractions against CCl4-induced intoxication. Furthermore, the molecular docking approach demonstrated high binding affinity with the target proteins. Conclusions: These current findings shed light on the therapeutic potential of Nigella sativa fractions as a promising protective agent of the liver and kidney against CCl4 intoxication. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

15 pages, 1055 KiB  
Article
Bee Pollen as a Dietary Mineral Source: In Vitro Bioaccessibility and Health Risk Evaluation
by Ceren Mutlu, Volkan Aylanc and Miguel Vilas-Boas
Molecules 2025, 30(13), 2745; https://doi.org/10.3390/molecules30132745 - 26 Jun 2025
Viewed by 413
Abstract
Pollen, the male gametophyte of flowering plants, is collected by honeybees as a primary source of protein and converted into bee pollen through the enzymatic activity of digestive secretions. The nutrients in bee pollen are available in amounts well beyond those of proteins, [...] Read more.
Pollen, the male gametophyte of flowering plants, is collected by honeybees as a primary source of protein and converted into bee pollen through the enzymatic activity of digestive secretions. The nutrients in bee pollen are available in amounts well beyond those of proteins, comprising macronutrients such as carbohydrates, lipids and dietary fiber, as well as micronutrients such as minerals, vitamins, organic acids, and phenolic compounds. This study aimed to determine the macro and trace mineral content of bee pollen from different botanical and geographical origins, and to assess their bioaccessibility through simulated in vitro digestion, their dietary contribution, and potential health risks. Seven bee pollen samples were investigated, three with a monofloral origin of above 80%, from Nigella spp., Helianthus annuus and Castanea sativa, and four with a multifloral origin. Mineral composition revealed potassium as the most abundant element, while iron, manganese, and copper were found at trace levels. Castanea sativa pollen had the highest overall mineral content, whereas Nigella spp. showed the lowest values for calcium, magnesium, and copper. The bioaccessibility of bee pollen was highest during the gastric phase for most minerals except copper, where most of the samples peaked in the intestinal phase. Overall, mineral bioaccessibility after simulated digestion followed the order K > Mg > Cu > Ca > Mn > Fe > Zn. While for manganese, the consumption of bee pollen showed the highest contribution to recommended dietary intake (16% for women and 12% for men), calcium had the lowest, with less than 1% of the RDA at a consumption level of 40 g/day. Health risk assessment confirmed that consuming 40 g/day of bee pollen poses no risk because the target hazard quotient and hazard index are below the risk threshold of 1.0. Full article
(This article belongs to the Special Issue Extraction and Antioxidant Activity of Bee Products)
Show Figures

Graphical abstract

2 pages, 142 KiB  
Retraction
RETRACTED: Shen et al. Cold-Pressed Nigella Sativa Oil Standardized to 3% Thymoquinone Potentiates Omega-3 Protection against Obesity-Induced Oxidative Stress, Inflammation, and Markers of Insulin Resistance Accompanied with Conversion of White to Beige Fat in Mice. Antioxidants 2020, 9, 489
by Hsin Hsueh Shen, Stephen J. Peterson, Lars Bellner, Abu Choudhary, Lior Levy, Leah Gancz, Ariel Sasson, Joseph Trainer, Rita Rezzani, Abraham Resnick, David E. Stec and Nader G. Abraham
Antioxidants 2025, 14(7), 758; https://doi.org/10.3390/antiox14070758 - 20 Jun 2025
Viewed by 488
Abstract
The journal retracts the article “Cold-Pressed Nigella Sativa Oil Standardized to 3% Thymoquinone Potentiates Omega-3 Protection against Obesity-Induced Oxidative Stress, Inflammation, and Markers of Insulin Resistance Accompanied with Conversion of White to Beige Fat in Mice” [...] Full article
13 pages, 1844 KiB  
Article
Adaptation of Grain Cleaning Equipment for Kalonji and Sesame Seeds
by Ramadas Narayanan, Vu Hoan Tram, Tieneke Trotter, Charissa Rixon, Gowrishankaran Raveendran, Federico Umansky and Surya P. Bhattarai
AgriEngineering 2025, 7(6), 179; https://doi.org/10.3390/agriengineering7060179 - 6 Jun 2025
Viewed by 828
Abstract
Threshing and cleaning are crucial for efficient harvest procedures that are carried out to separate the grains from the biomass and eliminate any potential contaminants or foreign debris. This study examines the cleaning capabilities of the grain cleaning equipment Kimseed Cleaner MK3, a [...] Read more.
Threshing and cleaning are crucial for efficient harvest procedures that are carried out to separate the grains from the biomass and eliminate any potential contaminants or foreign debris. This study examines the cleaning capabilities of the grain cleaning equipment Kimseed Cleaner MK3, a vibratory sieve and air-screen device, for tiny oilseed crops, particularly kalonji (Nigella sativa) and sesame (Sesamum indicum L.), which are valued for their industrial, medicinal, and nutritional properties. These crops frequently provide post-harvest cleaning issues because of their tiny size and vulnerability to contamination from weed seeds, plant residues, and immature or damaged conditions. In order to determine the ideal operating parameters, 0.5 kg of threshed seed samples with 10% moisture content were utilised in the experiment. A variety of shaker frequencies (0.1–10 Hz) and airflow speeds (0.1–10 m/s) were assessed. A two-stage cleaning method was applied for sesame: the first stage targeted larger contaminants (6.5–7.0 Hz and 1.25–1.5 m/s), while the second stage targeted finer impurities (5.25–5.5 Hz and 1.75–2.0 m/s). With a single-stage procedure (5.5–6.0 Hz and 1.0–1.5 m/s), kalonji was successfully cleaned. The findings demonstrated that sesame attained 98.5% purity at the output rate of 200.6 g/min (12.03 kg/h) while kalonji reached 97.6% seed purity at an output rate of 370.2 g/min (22.2 kg/h). These results demonstrate how important carefully regulated shaker frequency and airflow speed are for improving output quality and cleaning effectiveness. The study shows that the Kimseed MK3 is a suitable low-cost, scalable option for research operations and smallholder farmers, providing better seed quality and processing efficiency for underutilised yet economically valuable oilseed crops. Full article
(This article belongs to the Section Agricultural Mechanization and Machinery)
Show Figures

Figure 1

19 pages, 4135 KiB  
Article
Macro- and Microelement Composition, Antioxidant Activity, and Biological Effect of Cold-Pressed Edible Oils from Commercial and Amateur Companies
by Jolanta Marciniuk, Beata Sadowska, Marzena Więckowska-Szakiel, Mateusz Borkowski, Jacek Zebrowski, Bronisław K. Głód, Kacper Marciniuk and Paweł Marciniuk
Molecules 2025, 30(7), 1425; https://doi.org/10.3390/molecules30071425 - 23 Mar 2025
Cited by 2 | Viewed by 722
Abstract
The aim of this study was to examine cold-pressed oils available on the Polish market derived from different plants and manufacturers in the context of their biological activity, including micro- and macroelements, antioxidant properties, antimicrobial activity, and selected effects on eukaryotic cells. In [...] Read more.
The aim of this study was to examine cold-pressed oils available on the Polish market derived from different plants and manufacturers in the context of their biological activity, including micro- and macroelements, antioxidant properties, antimicrobial activity, and selected effects on eukaryotic cells. In total, 76 oil samples of 34 selected oil types from nine Polish companies (five commercial and four amateur) were tested. The content of macro- and micronutrients was assessed using ICP-OES, the level of fatty acid unsaturation was examined using Fourier transform infrared spectroscopy (FTIR), and total antioxidant potential (TAP) was assessed using the DPPH method. The antimicrobial activity of the selected oils against Gram-positive and Gram-negative bacteria, as well as fungi, representing both pathogens and human microbiota, was tested using the broth microdilution method. The MTT reduction assay was used to exclude the cytotoxic effect of the oils on the human fibroblast line HFF-1. It has been concluded that the composition of cold-pressed oils varied significantly depending on the plant used and the manufacturer. The total content of the elements tested ranged from 172.91 mg/kg in Helianthus annuus oil to 1580.73 mg/kg in Silybum marianum oil. The iron concentration limits were exceeded in 10 oils, the copper concentration limits were exceeded in 34 oils, and the lead concentration limits were exceeded in 18 oils. At least one of these elements was exceeded in 40 oils (53% of the tested samples), which is why testing the concentration of elements should be a standard procedure for assessing the quality of cold-pressed oils. There was no statistically significant correlation between the content of any macro- and microelements and TAP. While TAP was strongly correlated with the spectral unsaturation index of the oils, this relationship can be used to develop a simple and rapid assessment of oils quality. The strongest antioxidant activity (over 90%) was observed for Nigella sativa oils. Interestingly, among all the tested oils, only these from Nigella sativa L., whatever the producer, possessed also strong antimicrobial activity. None of the tested oils showed cytotoxicity against eukaryotic cells, so the cold-pressed oils can be considered safe. Full article
(This article belongs to the Section Food Chemistry)
Show Figures

Figure 1

15 pages, 1713 KiB  
Article
Cardiometabolic Effects of Nigella sativa in Postmenopausal Women with Hypertension: A Prospective, Observational, Pilot Study
by Barbara Pala, Giulia Nardoianni, Paola Gualtieri, Giulia Frank, Marco Alfonso Perrone, Laura Di Renzo and Giuliano Tocci
Nutrients 2025, 17(6), 985; https://doi.org/10.3390/nu17060985 - 11 Mar 2025
Viewed by 1620
Abstract
Background: Hypertension is a prevalent condition, impacting a significant amount of general population and contributing prominently to global mortality. Increasing attention has been directed towards phytotherapy products as potential complementary or alternative therapies for hypertension prevention and treatment. Among these, Nigella sativa [...] Read more.
Background: Hypertension is a prevalent condition, impacting a significant amount of general population and contributing prominently to global mortality. Increasing attention has been directed towards phytotherapy products as potential complementary or alternative therapies for hypertension prevention and treatment. Among these, Nigella sativa (NS) has shown encouraging effects in improving cardiovascular parameters. This study aimed to evaluate the efficacy of NS supplementation in reducing seated office systolic blood pressure (BP) in postmenopausal women. We also explored the dose-dependent effects of this intervention on BP levels and metabolic parameters. Materials and Methods: We conducted an observational pilot study including 52 women, who were stratified into two active groups (n = 32) receiving two different dosages of NS (n = 16, age 54.2 ± 2.3 at 400 mg/day and n = 16, age 52.3 ± 2.4 at 800 mg/day) and a control group (n = 20, age 53.9 ± 3.0). Participants were evaluated at baseline (T0), at 4 (T1) and 8 weeks (T2) for office brachial and central BP, heart rate (HR), lipid profile, body weight, and menopausal symptoms. Results: NS supplementation significantly reduced office systolic and diastolic BP in a dose-dependent manner (p < 0.01), with more pronounced reductions at 800 mg/day. Improvements in climacteric symptoms and reduced HR were observed as early as T1, while metabolic parameters, including lipid profile and weight, showed significant changes at T2. Notably, the 800 mg/day dosage group also experienced significant reductions in weight and body mass index. Younger age, more recent menopausal transition, and elevated baseline HR were identified as predictors of a better response to treatment. Conclusions: NS supplementation demonstrates significant dose-dependent benefits in reducing office BP and improving metabolic parameters. These findings support the role of NS as an effective complementary therapy in hypertension management in postmenopausal women. Full article
Show Figures

Figure 1

21 pages, 1387 KiB  
Article
Investigation of the Immunomodulatory and Neuroprotective Properties of Nigella sativa Oil in Experimental Systemic and Neuroinflammation
by Anita Mihaylova, Nina Doncheva, Maria Vlasheva, Mariana Katsarova, Petya Gardjeva, Stela Dimitrova and Ilia Kostadinov
Int. J. Mol. Sci. 2025, 26(5), 2235; https://doi.org/10.3390/ijms26052235 - 2 Mar 2025
Viewed by 1665
Abstract
Nigella sativa (NS) is a promising medicinal plant with diverse therapeutic properties. This study aimed to investigate the impact of NS oil (NSO) on memory functions in rats with LPS (lipopolysaccharide)-induced neuroinflammation, as well as its effect on serum levels of inflammatory cytokines, [...] Read more.
Nigella sativa (NS) is a promising medicinal plant with diverse therapeutic properties. This study aimed to investigate the impact of NS oil (NSO) on memory functions in rats with LPS (lipopolysaccharide)-induced neuroinflammation, as well as its effect on serum levels of inflammatory cytokines, neuropeptide Y (NPY) and brain-derived neurotrophic factor (BDNF). Male rats were divided into four groups: control, LPS-control, LPS+NSO 3 and 5 mL/kg. Neuroinflammation was induced by a single intraperitoneal LPS injection (2 mg/kg). The novel object recognition test (NORT) and Y-maze were used for the evaluation of memory processes. Recognition index (RI) and % spontaneous alteration (%SA) were registered, respectively. Blood samples for TNF-α, IL-1β, IL-10, BDNF, and NPY serum levels were taken. Thymoquinone, the active compound of the oil, was detected by high-performance liquid chromatography. NSO administration resulted in an improvement in spatial and episodic memory, as evidenced by increased % SA and RI compared to LPS-control. Treatment with NSO led to a significant reduction in pro-inflammatory cytokines and NPY, along with an increase in IL-10 and BDNF levels, when compared to LPS-control. In conclusion, NSO enhances BDNF production and regulates pro- and anti-inflammatory cytokines release, which probably contributes to the observed cognitive improvement in animals with experimental neuroinflammation. Full article
Show Figures

Figure 1

18 pages, 13148 KiB  
Article
Enhancing Radiation Shielding Efficiency of Nigella sativa Eumelanin Polymer Through Heavy Metals Doping
by Mohammad Marashdeh and Nawal Madkhali
Polymers 2025, 17(5), 609; https://doi.org/10.3390/polym17050609 - 25 Feb 2025
Viewed by 781
Abstract
Gamma radiation shielding is necessary for many applications; nevertheless, lead creates environmental risks. Eumelanin, a natural polymer, is a viable alternative, although its effectiveness is limited to lower gamma-ray energy. This research looks at how doping the herbal eumelanin polymer (Nigella sativa [...] Read more.
Gamma radiation shielding is necessary for many applications; nevertheless, lead creates environmental risks. Eumelanin, a natural polymer, is a viable alternative, although its effectiveness is limited to lower gamma-ray energy. This research looks at how doping the herbal eumelanin polymer (Nigella sativa) with heavy metals including iron (Fe), copper (Cu), and zinc (Zn) affects its gamma radiation shielding characteristics. The inclusion of these metals considerably increases the linear attenuation coefficient (μ) and mass attenuation coefficient (μm) of eumelanin, especially at lower photon energies where the photoelectric effect is prominent. The μ value of pure eumelanin is 0.193 cm1 at 59.5 keV. It goes up to 0.309 cm1, 0.420 cm1, and 0.393 cm1 when Fe, Cu, and Zn are added, in that order. Similarly, the mass attenuation coefficients increase from 0.153 cm2/g for pure eumelanin to 0.230, 0.316, and 0.302 cm2/g for the Fe-, Cu-, and Zn-doped samples. At intermediate and higher energies (661.7 keV-to-1332.5 keV), where Compton scattering is the main interaction, differences in attenuation coefficients between samples are not as noticeable, which means that metal additions have less of an effect. The mean free path (MFP) and radiation protection efficiency (RPE) also show these behaviors. For example, at 59.5 keV the MFP drops from 5.172 cm for pure eumelanin to 3.244 cm for Mel-Fe, 2.385 cm for Mel-Cu, and 2.540 cm for Mel-Zn. RPE values also go up a lot at low energies. For example, at 59.5 keV Cu-doped eumelanin has the highest RPE of 34.251%, while pure eumelanin only has an RPE of 17.581%. However, at higher energies the RPE values for all samples converge, suggesting a more consistent performance. These findings suggest that doping eumelanin with Fe, Cu, and Zn is particularly effective for enhancing gamma-ray shielding at low energies, with copper (Cu) providing the most significant improvement overall, making these composites suitable for applications requiring enhanced radiation protection at lower gamma-ray energies. Full article
(This article belongs to the Special Issue Modeling of Polymer Composites and Nanocomposites)
Show Figures

Figure 1

25 pages, 19503 KiB  
Article
Thymoquinone-Loaded Chitosan Nanoparticles Combat Testicular Aging and Oxidative Stress Through SIRT1/FOXO3a Activation: An In Vivo and In Vitro Study
by Enas A. Kasem, Gehan Hamza, Nagi M. El-Shafai, Nora F. Ghanem, Shawky Mahmoud, Samy M. Sayed, Mohammed Ali Alshehri, Laila A. Al-Shuraym, Heba I. Ghamry, Magdy E. Mahfouz and Mustafa Shukry
Pharmaceutics 2025, 17(2), 210; https://doi.org/10.3390/pharmaceutics17020210 - 6 Feb 2025
Cited by 3 | Viewed by 1404
Abstract
Background: Aging is a complex biological process characterized by the accumulation of molecular and cellular damage over time, often driven by oxidative stress. This oxidative stress is particularly detrimental to the testes, where it causes degeneration, reduced testosterone levels, and compromised fertility. D-galactose [...] Read more.
Background: Aging is a complex biological process characterized by the accumulation of molecular and cellular damage over time, often driven by oxidative stress. This oxidative stress is particularly detrimental to the testes, where it causes degeneration, reduced testosterone levels, and compromised fertility. D-galactose (D-gal) is commonly used to model aging as it induces oxidative stress, mimicking age-related cellular and molecular damage. Testicular aging is of significant concern due to its implications for reproductive health and hormonal balance. This research examines the protection by thymoquinone (TQ) or thymoquinone-loaded chitosan nanoparticles (NCPs) against D-galactose (D-gal)-induced aging in rat testes, focusing on biochemical, histological, and molecular changes. Aging, which is driven largely by oxidative stress, leads to significant testicular degeneration, reducing fertility. D-gal is widely used to model aging due to its ability to induce oxidative stress and mimic age-related damage. TQ, a bioactive ingredient of Nigella sativa, has earned a reputation for its anti-inflammatory, anti-apoptotic, and antioxidant characteristics, but its therapeutic application is limited by its poor bioavailability. Methods: Thymoquinone was loaded into chitosan nanoparticles (NCPs) to enhance its efficacy, and this was hypothesized to improve its stability and bioavailability. Four groups of male Wistar rats participated in the study: one for the control, one for D-gal, one for D-gal + TQ, and the last one for D-gal + NCP. Results: The results exhibited that D-gal substantially increased oxidative injury, reduced testosterone levels, and caused testicular damage. Treatment with TQ and NCPs significantly reduced oxidative stress, improved antioxidant enzyme levels, and restored testosterone levels, with NCPs showing a stronger protective effect than TQ alone. A histological analysis confirmed that NCPs better preserved testicular structure and function. Additionally, the NCP treatment upregulated the expression of key genes of oxidative stress resistance, mitochondrial function, and reproductive health, including SIRT1, FOXO3a, and TERT. Conclusions: The findings suggest that NCPs offer enhanced protection against aging-related testicular damage compared with TQ alone, which is likely due to the improved bioavailability and stability provided by the nanoparticle delivery system. This research emphasizes the potential of NCPs as a more effective therapeutic strategy for mitigating oxidative stress and age-related reproductive dysfunction. Future research should further explore the mechanisms underlying these protective effects. Full article
Show Figures

Graphical abstract

36 pages, 1895 KiB  
Review
Comprehensive Ethnopharmacological Analysis of Medicinal Plants in the UAE: Lawsonia inermis, Nigella sativa, Ziziphus spina-christi, Allium cepa, Allium sativum, Cymbopogon schoenanthus, Matricaria aurea, Phoenix dactylifera, Portulaca oleracea, Reichardia tingitana, Salvadora persica, Solanum lycopersicum, Trigonella foenum-graecum, Withania somnifera, and Ziziphus lotus
by Razan S. Almasri, Alaa S. Bedir and Seham M. Al Raish
Nutrients 2025, 17(3), 411; https://doi.org/10.3390/nu17030411 - 23 Jan 2025
Cited by 3 | Viewed by 1847
Abstract
The United Arab Emirates (UAE) is home to diverse indigenous medicinal plants traditionally used for centuries. This study systematically evaluates the pharmacological and nutritional potential of key medicinal plants, including Lawsonia inermis, Nigella sativa, Ziziphus spina-christi, Allium cepa, Allium [...] Read more.
The United Arab Emirates (UAE) is home to diverse indigenous medicinal plants traditionally used for centuries. This study systematically evaluates the pharmacological and nutritional potential of key medicinal plants, including Lawsonia inermis, Nigella sativa, Ziziphus spina-christi, Allium cepa, Allium sativum, Cymbopogon schoenanthus, Matricaria aurea, Phoenix dactylifera, Portulaca oleracea, Reichardia tingitana, Salvadora persica, Solanum lycopersicum, Trigonella foenum-graecum, Withania somnifera, and Ziziphus lotus. Comprehensive literature searches were conducted using PubMed, Scopus, and Web of Science to identify studies relevant to their nutritional and pharmacological uses. The findings highlight the therapeutic roles of these plants in managing global health challenges such as gastrointestinal diseases, and antimicrobial resistance through bioactive compounds like flavonoids, polyphenols, and antioxidants. Additionally, their contributions to nutrition, including essential vitamins and minerals, are emphasized for disease prevention and health promotion. While this research focuses on the UAE, the implications are globally relevant, as many of these plants are also found in traditional medicine across Asia, Africa, and Europe. Integrating these findings into global nutritional and healthcare systems offers potential solutions for pressing public health concerns, reduces reliance on synthetic pharmaceuticals, and promotes sustainable healthcare practices. This work is a valuable reference for researchers, healthcare professionals, and policymakers, bridging traditional knowledge and modern scientific applications globally. Full article
Show Figures

Figure 1

21 pages, 1643 KiB  
Article
Profiling Key Phytoconstituents in Screw-Pressed Nigella Solid Residue and Their Distribution in Products and Byproducts During Oil Processing
by Parbat Raj Thani, Joel B. Johnson, Surya Bhattarai, Tieneke Trotter, Kerry Walsh, Daniel Broszczak and Mani Naiker
Appl. Sci. 2025, 15(2), 986; https://doi.org/10.3390/app15020986 - 20 Jan 2025
Viewed by 974
Abstract
Nigella sativa L. (generally known as black cumin) is a medicinal plant prized for its therapeutic and nutritional benefits. Its seed oil is used extensively in pharmaceuticals, nutraceuticals, cosmetics, and cooking. However, extracting oil to satisfy the world’s needs leaves behind plenty of [...] Read more.
Nigella sativa L. (generally known as black cumin) is a medicinal plant prized for its therapeutic and nutritional benefits. Its seed oil is used extensively in pharmaceuticals, nutraceuticals, cosmetics, and cooking. However, extracting oil to satisfy the world’s needs leaves behind plenty of solid residues. The seeds of Nigella are loaded with health-benefiting phytoconstituents, but so might their extraction residues. While much research on seeds and oil has been carried out, there is relatively little information about solid residue, particularly regarding health-benefiting phytoconstituents. Additionally, there is a knowledge gap relating to how phytoconstituents transfer from seeds to solid residue during oil extraction and any loss of key phytoconstituents that may occur during this transfer. Understanding the health-benefiting phytoconstituents in Nigella solid residue is crucial for unlocking its full potential for value-added applications in health and nutrition. Moreover, understanding the dynamics of these phytoconstituent transfers is essential for optimizing extraction processes and preserving the nutritional and therapeutic value of the derived products. Therefore, this study investigated the composition of the screw-press solid residues of different Nigella genotypes grown under similar environmental conditions. The results showed moderate variation in the levels of potential health-benefitting phytoconstituents in Nigella solid residues regarding total phenolic content (TPC) (720.5–934.8 mg GAE/100 g), ferric reducing antioxidant capacity (FRAP) (853.1–1010.5 mg TE/100 g), cupric reducing antioxidant capacity (CUPRAC) (3863.1–4801.5 mg TE/100 g), thymoquinone (TQ) (156.0–260.1 mg/100 g), saturated fatty acid (SFA) (2.0–2.2 mg/g), monounsaturated fatty acid (MUFA) (2.0–3.6 mg/g), and polyunsaturated fatty acid (PUFA) (8.2–12.1 mg/g). Notably, TPC, FRAP, and CUPRAC had high transfer rates into the solid residue (78.1–85.9%, 65.4–75.7%, and 84.5–90.4%, respectively), whereas TQ, SFA, MUFA, and PUFA showed lower transfer rates (15.9–19.3%, 7.5–8.9%, 12.0–18.3%, and 6.5–7.5%, respectively). When summing the values of individual phytoconstituents transferred into oil and solid residue from their respective seeds during processing, it was found that only 80.6–88.3% of TPC, 74.2–84.4% of FRAP, 86.3–92.3% of CUPRAC, 54.4–64.9% of TQ, 68.5–92.4% of SFA, 76.2–90.6% of MUFA, and 51.6–76.6% of PUFA were transferred from the total value present in their respective seeds. Full article
(This article belongs to the Special Issue Advanced Phytochemistry and Its Applications)
Show Figures

Figure 1

17 pages, 3144 KiB  
Article
Antifungal Potential of Biogenic Zinc Oxide Nanoparticles for Controlling Cercospora Leaf Spot in Mung Bean
by Zill-e-Huma Aftab, Faisal Shafiq Mirza, Tehmina Anjum, Humaira Rizwana, Waheed Akram, Muzamil Aftab, Muhammad Danish Ali and Guihua Li
Nanomaterials 2025, 15(2), 143; https://doi.org/10.3390/nano15020143 - 19 Jan 2025
Cited by 3 | Viewed by 1609
Abstract
Agricultural growers worldwide face significant challenges in promoting plant growth. This research introduces a green strategy utilizing nanomaterials to enhance crop production. While high concentrations of nanomaterials are known to be hazardous to plants, this study demonstrates that low doses of biologically synthesized [...] Read more.
Agricultural growers worldwide face significant challenges in promoting plant growth. This research introduces a green strategy utilizing nanomaterials to enhance crop production. While high concentrations of nanomaterials are known to be hazardous to plants, this study demonstrates that low doses of biologically synthesized zinc oxide nanoparticles (ZnO NPs) can serve as an effective regulatory tool to boost plant growth. These nanoparticles were produced using Nigella sativa seed extract and characterized through UV-Vis spectroscopy, FT-IR, X-ray diffraction, and scanning electron microscopy (SEM). The antifungal properties of ZnO NPs were evaluated against Cercospora canescens, the causative agent of Cercospora leaf spot in mung bean. Application of ZnO NPs significantly improved plant metrics, including shoot, root, pod, leaf, and root nodule counts, as well as plant length, fresh weight, and dry weight—all indicators of healthy growth. Moreover, low-dose ZnO NPs positively influenced enzymatic activity, physicochemical properties, and photosynthetic parameters. These findings suggest that biologically synthesized ZnO NPs offer a promising approach for enhancing crop yield and accelerating plant growth. Full article
(This article belongs to the Special Issue Interplay between Nanomaterials and Plants)
Show Figures

Figure 1

15 pages, 2373 KiB  
Article
Evaluating the Thymoquinone Content and Antioxidant Properties of Black Cumin (Nigella sativa L.) Seed Oil During Storage at Different Thermal Treatments
by Grażyna Neunert, Wiktoria Kamińska and Joanna Nowak-Karnowska
Appl. Sci. 2025, 15(1), 377; https://doi.org/10.3390/app15010377 - 3 Jan 2025
Cited by 1 | Viewed by 3682
Abstract
Black cumin seeds (Nigella sativa) and black cumin seed oil (BCSO) exhibit various pharmacological activities, most of which are attributed to the presence of thymoquinone (TQ). TQ, however, is characterized by low stability at elevated temperatures and instability in aqueous environments. [...] Read more.
Black cumin seeds (Nigella sativa) and black cumin seed oil (BCSO) exhibit various pharmacological activities, most of which are attributed to the presence of thymoquinone (TQ). TQ, however, is characterized by low stability at elevated temperatures and instability in aqueous environments. In this study, the spectroscopic properties of TQ were used to monitor changes in TQ content in BCSO subjected to thermal exposure. Simultaneously, the influence of the presence of TQ on the antioxidant properties of this oil was determined. The used spectrofluorimetric and chromatographic method quantified the presence of TQ. The antiradical properties of the oil in different stages of thermal oxidation degradation were determined by the DPPH method. The measured antiradical activity of the oil, depending on the exposure conditions used, revealed the difference correlated with the content of the TQ. However, the presence in BCSO of other bioactive components, like phenols, had a more significant influence on its total antioxidant capacity. Furthermore, our study, for the first time, focused on the rise in TQ content in the oil during thermal storage, indicating a new method to enhance the TQ content in BCSO. Full article
Show Figures

Figure 1

19 pages, 18047 KiB  
Article
Characterization of Composites from Post-Consumer Polypropylene and Oilseed Pomace Fillers
by Karolina Lipska, Izabela Betlej, Katarzyna Rybak, Małgorzata Nowacka and Piotr Boruszewski
Polymers 2024, 16(24), 3557; https://doi.org/10.3390/polym16243557 - 20 Dec 2024
Viewed by 756
Abstract
This study investigates the properties of composites produced using post-consumer polypropylene (PP) reinforced with lignocellulosic fillers from Nigella sativa (black cumin) and rapeseed pomace. Using agri-food by-products like pomace supports waste management efforts and reduces the demand for wood in wood–plastic composites. The [...] Read more.
This study investigates the properties of composites produced using post-consumer polypropylene (PP) reinforced with lignocellulosic fillers from Nigella sativa (black cumin) and rapeseed pomace. Using agri-food by-products like pomace supports waste management efforts and reduces the demand for wood in wood–plastic composites. The composite production method combined extrusion and hot flat pressing. Mechanical tests showed a decrease in the tested parameters. Compared to the control variant, the MOE decreased by 26.4% (PP_R variant) and 46.9% (PP_N variant), and the MOR value decreased by 78.7% (PP_N) and 55.1% (PP_R). No significant differences in surface roughness parameters were observed. The composite with nigella particles demonstrated increased wettability. TGA tests showed reduced thermal stability compared to PP and differences between composite variants. The composites exhibited susceptibility to fungal overgrowth, which suggests potential biodegradability. The composites demonstrated complete overgrowth by inoculated fungi, reaching 100% coverage, while samples from PP known to be resistant to biological factors remained unaffected. Although the mechanical properties of the composites were degraded, the use of lignocellulosic fillers offers undeniable advantages, such as waste management of lignocellulosic and polypropylene byproducts, reduced wood demand, and the potential biodegradability of the obtained composites. However, there is a need for further optimization of manufacturing processes and material composition to enhance the material performance. Full article
Show Figures

Figure 1

25 pages, 5413 KiB  
Article
Whole-Genome Profiling of Endophytic Strain B.L.Ns.14 from Nigella sativa Reveals Potential for Agricultural Bioenhancement
by Dimitra Douka, Tasos-Nektarios Spantidos, Polina C. Tsalgatidou, Panagiotis Katinakis and Anastasia Venieraki
Microorganisms 2024, 12(12), 2604; https://doi.org/10.3390/microorganisms12122604 - 16 Dec 2024
Cited by 1 | Viewed by 1544
Abstract
Endophytic microbes in medicinal plants often possess beneficial traits for plant health. This study focuses on the bacterial endophyte strain B.L.Ns.14, isolated from Nigella sativa leaves, which demonstrated multiple plant growth-promoting properties. In vitro tests showed that B.L.Ns.14 supports plant growth, colonization, and [...] Read more.
Endophytic microbes in medicinal plants often possess beneficial traits for plant health. This study focuses on the bacterial endophyte strain B.L.Ns.14, isolated from Nigella sativa leaves, which demonstrated multiple plant growth-promoting properties. In vitro tests showed that B.L.Ns.14 supports plant growth, colonization, and tolerance to abiotic stress. The strain also exhibited antifungal activity against phytopathogens such as Rhizoctonia solani, Colletotrichum acutatum, Verticillium dahliae, and Fusarium oxysporum f. sp. radicis-lycopersici. Whole-genome analysis, supported by ANI and dDDH values, identified B.L.Ns.14 as Bacillus halotolerans. Genome mining revealed 128 active carbohydrate enzymes (Cazymes) related to endophytism and biocontrol functions, along with genes involved in phosphate solubilization, siderophore and IAA production, biofilm formation, and motility. Furthermore, genes for osmolyte metabolism, Na+/H+ antiporters, and stress response proteins were also identified. The genome harbors 12 secondary metabolite biosynthetic gene clusters, including those for surfactin, plipastatin mojavensin, rhizocticin A, and bacilysin, known for their antagonistic effects against fungi. Additionally, B.L.Ns.14 promoted Arabidopsis thaliana growth under both normal and saline conditions, and enhanced Solanum lycopersicum growth via seed biopriming and root irrigation. These findings suggest that Bacillus halotolerans B.L.Ns.14 holds potential as a biocontrol and plant productivity agent, warranting further field testing. Full article
Show Figures

Figure 1

Back to TopTop