Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = NiO-Ga2O2 heterojunction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3831 KB  
Article
Simulation Analysis of Cu2O Solar Cells
by Sinuo Chen, Lichun Wang, Chunlan Zhou, Jinli Yang and Xiaojie Jia
Energies 2025, 18(21), 5623; https://doi.org/10.3390/en18215623 - 26 Oct 2025
Viewed by 274
Abstract
Cu2O solar cells are regarded as a promising emerging inorganic photovoltaic technology due to their power conversion efficiency (PCE) potential and material sustainability. While previous studies primarily focused on the band offset between n-type buffer layers and Cu2O optical [...] Read more.
Cu2O solar cells are regarded as a promising emerging inorganic photovoltaic technology due to their power conversion efficiency (PCE) potential and material sustainability. While previous studies primarily focused on the band offset between n-type buffer layers and Cu2O optical absorption, this work systematically investigated an ETL/buffer/p-Cu2O/HTL heterojunction structure using SCAPS-1D simulations. Key design parameters, including bandgap (Eg) and electron affinity (χ) matching across layers, were optimized to minimize carrier transport barriers. Furthermore, the doping concentration and thickness of each functional layer (ETL: transparent conductive oxide; HTL: hole transport layer) were tailored to balance electron conductivity, parasitic absorption, and Auger recombination. Through this approach, a maximum PCE of 14.12% was achieved (Voc = 1.51V, Jsc = 10.52 mA/cm2, FF = 88.9%). The study also identified candidate materials for ETL (e.g., GaN, ZnO:Mg) and HTL (e.g., ZnTe, NiOx), along with optimal thicknesses and doping ranges for the Cu2O absorber. These findings provide critical guidance for advancing high-performance Cu2O solar cells. Full article
(This article belongs to the Special Issue Functional Materials for Advanced Energy Applications)
Show Figures

Figure 1

14 pages, 3478 KB  
Article
Fabrication of Low-Temperature ppb-Level Ethanol Gas Sensor Based on Hierarchical NiO-SnO2 Nanoflowers Under Hydrothermal Conditions
by Liming Song, Xiaoxin Dou, Jianmei Shao, Yuanzheng Luo, Fumiao Liu, Chengyong Li, Lijuan Yan, Chuhong Wang, Yuting Li, Yuqing Cai, Jinsheng He, Zhenqing Dai, Ruikun Sun and Qin Xie
Nanomaterials 2025, 15(19), 1471; https://doi.org/10.3390/nano15191471 - 25 Sep 2025
Viewed by 354
Abstract
Hierarchical NiO-SnO2 nanoflowers were prepared via a one-step hydrothermal method. The morphology, structure and components of the hierarchical NiO-SnO2 nanoflowers were examined via scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), respectively. [...] Read more.
Hierarchical NiO-SnO2 nanoflowers were prepared via a one-step hydrothermal method. The morphology, structure and components of the hierarchical NiO-SnO2 nanoflowers were examined via scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), respectively. The ethanol gas-sensing performance was systematically analyzed between pure hierarchical SnO2 nanoflowers and the hierarchical NiO-SnO2 nanoflowers. The results indicated that the hierarchical NiO-SnO2 nanoflowers showed better gas-sensing properties than the pure hierarchical SnO2 nanoflowers at 164 °C. The enhanced gas-sensing performance was ascribed to the formation of p-n heterojunctions between p-type NiO and n-type SnO2. Additionally, NiO has a catalytic role. Therefore, hierarchical NiO-SnO2 nanoflowers could be a potential gas-sensing material for the fabrication of high-quality ethanol gas sensors. Full article
(This article belongs to the Special Issue Nanomaterials for Micro/Nano Sensing and Detecting Applications)
Show Figures

Figure 1

15 pages, 5432 KB  
Article
Nano-Heterojunction NO2 Gas Sensor Based on n-ZnO Nanorods/p-NiO Nanoparticles Under UV Illumination at Room Temperature
by Yoon-Seo Park, Sohyeon Kim, Junyoung Lee, Jae-Hoon Jeong, Sung-Yun Byun, Jiyoon Shin, Il-Kyu Park and Kyoung-Kook Kim
Nanomaterials 2025, 15(18), 1426; https://doi.org/10.3390/nano15181426 - 16 Sep 2025
Viewed by 623
Abstract
Room-temperature (RT) gas sensors for nitrogen dioxide (NO2) detection face persistent challenges, including reliance on high operating temperatures and inefficient charge carrier utilization under UV activation. To address these limitations, we engineered a p-n nano-heterojunction (NHJ) gas sensor by [...] Read more.
Room-temperature (RT) gas sensors for nitrogen dioxide (NO2) detection face persistent challenges, including reliance on high operating temperatures and inefficient charge carrier utilization under UV activation. To address these limitations, we engineered a p-n nano-heterojunction (NHJ) gas sensor by integrating p-type nickel oxide (NiO) nanoparticles onto n-type zinc oxide (ZnO) nanorods. This architecture leverages UV-driven carrier generation and interfacial electric fields at the NHJ to suppress recombination, enabling unprecedented RT performance. By optimizing thermal annealing conditions, we achieved a well-defined heterojunction with uniform NiO distribution on the top of the ZnO nanorods, validated through electron microscopy and X-ray photoelectron spectroscopy. The resulting sensor exhibits a 5.4-fold higher normalized response to 50 ppm NO2 under 365 nm UV illumination compared to pristine ZnO, alongside rapid recovery and stable cyclability. The synergistic combination of UV-assisted carrier generation and heterojunction-driven interfacial modulation offers a promising direction for next-generation RT gas sensors aimed at environmental monitoring. Full article
(This article belongs to the Special Issue Advanced Nanocomposites for Sensing Applications)
Show Figures

Graphical abstract

12 pages, 2274 KB  
Article
Simulation Study on Electrical Characteristics of NiO/β-Ga2O3 Heterojunction Enhancement Mode HJ-FinFET
by Jiangang Yu, Ziwei Li, Fengchao Li, Haibing Qiu, Tengteng Li, Cheng Lei and Ting Liang
Crystals 2025, 15(9), 771; https://doi.org/10.3390/cryst15090771 - 29 Aug 2025
Viewed by 688
Abstract
In this paper, a novel enhancement-mode β-Ga2O3-based FinFET structure with a gate formed by the NiO/β-Ga2O3 heterojunction named HJ-FinFET has been proposed, and the excellent performance of the device has also been demonstrated. The primary operational [...] Read more.
In this paper, a novel enhancement-mode β-Ga2O3-based FinFET structure with a gate formed by the NiO/β-Ga2O3 heterojunction named HJ-FinFET has been proposed, and the excellent performance of the device has also been demonstrated. The primary operational mechanism of this structure involves integrating p-type NiO on both sides of the fin-shaped channel, which forms p-n junctions with β-Ga2O3. The depletion regions thus generated are utilized to establish electron channels, enabling enhancement-mode operation. The reverse p-NiO/n-Ga2O3 heterojunction diode is integrated to reduce the reverse free-wheeling loss. Compared with the conventional devices, the threshold voltage of the HJ-FinFET is greatly improved, and normally off operation is realized, showing a positive threshold voltage of 2.14 V. Meanwhile, the simulated breakdown voltage of the HJ-FinFET reaches 2.65 kV with specific on-resistance (Ron,sp) of 2.48 mΩ·cm2 and the power figure of merit (PFOM = BV2/Ron,sp) reaches 2840 MW/cm2, respectively. In addition, the influence of the doping concentration of the heterojunction layer constituting the gate, the doping concentration of the drift layer, and the channel width on the electrical characteristics of the devices were focused on. This structure provides a feasible idea for high-performance β-Ga2O3-based FinFET. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

18 pages, 2994 KB  
Article
Band-Engineered α-Fe2O3@NiO P-N Heterojunction for Room-Temperature NH3 Detection and Real-Time Meat Spoilage Monitoring
by Mingjia Li, Gaoshan Zeng, Haoyue You, Ding Xi, Hui Huang, Xin Kou, Amjad Farid and Yongpeng Zhao
Nanomaterials 2025, 15(13), 987; https://doi.org/10.3390/nano15130987 - 25 Jun 2025
Viewed by 711
Abstract
Recent advancements in biomarker technology have revolutionized diagnostic and monitoring applications, yet their potential in food quality assessment remains largely untapped. Herein, we report a breakthrough in gas-sensitive nanocomposite engineering through the design of α-Fe2O3-NiO heterostructures synthesized via a [...] Read more.
Recent advancements in biomarker technology have revolutionized diagnostic and monitoring applications, yet their potential in food quality assessment remains largely untapped. Herein, we report a breakthrough in gas-sensitive nanocomposite engineering through the design of α-Fe2O3-NiO heterostructures synthesized via a single-step hydrothermal protocol. The introduction of NiO led to increased oxygen vacancies and active sites, thereby reducing the sensor’s operating temperature. Additionally, the P-N heterojunction structure promoted the redistribution of electrons and hole, thus enhancing its conductivity. The optimized sensor exhibited high sensitivity (75.5% at 100 ppm), fast response/recovery (20 s/92 s), and perfect selectivity for NH3 at room temperature. In the end, based on this sensor and combined with a Programmable Logic Controller (PLC), a rapid and nondestructive meat spoilage detection system was constructed to reflect the degree of spoilage of meat with the help of NH3 concentration, providing a valuable strategy for the application of biomarker detection in the food industry. Full article
(This article belongs to the Special Issue Gas-Sensing Properties of Nanomaterials)
Show Figures

Figure 1

13 pages, 3451 KB  
Article
Performance Degradation of Ga2O3-Based X-Ray Detector Under Gamma-Ray Irradiation
by Xiao Ouyang, Silong Zhang, Tao Bai, Zhuo Chen, Yuxin Deng, Leidang Zhou, Xiaojing Song, Hao Chen, Yuru Lai, Xing Lu, Liang Chen, Liangliang Miao and Xiaoping Ouyang
Micromachines 2025, 16(3), 339; https://doi.org/10.3390/mi16030339 - 14 Mar 2025
Cited by 5 | Viewed by 1041
Abstract
X-ray response performances of a p-NiO/β-Ga2O3 hetero-junction diode (HJD) X-ray detector were studied before and after γ-ray irradiation at −200 V, with a total dose of 13.5 kGy(Si). The response performances of the HJD X-ray detector were influenced [...] Read more.
X-ray response performances of a p-NiO/β-Ga2O3 hetero-junction diode (HJD) X-ray detector were studied before and after γ-ray irradiation at −200 V, with a total dose of 13.5 kGy(Si). The response performances of the HJD X-ray detector were influenced by the trap-assistant conductive process of the HJD under reverse bias, which exhibited an increasing net (response) current, nonlinearity, and a long response time. After irradiation, the Poole–Frenkel emission (PFE) dominated the leakage current of HJDs due to the higher electric field caused by the increased net carrier concentration of β-Ga2O3. This conductive process weakened the performance of the HJD X-ray detector in terms of sensitivity, output linearity, and response speed. This study provided valuable insights into the radiation damage and performance degradation mechanisms of Ga2O3-based radiation detectors and offered guidance on improving the reliability and stability of these radiation detectors. Full article
Show Figures

Figure 1

15 pages, 3775 KB  
Article
An Environmental Engineering Study Case: Constructing Cataluminescence Sensors Based on Octahedral Nanocomposites for Isovaleraldehyde Detection
by Bai Sun, Mao Cai, Guoji Shi, Yun Wang, Lining Bao, Qiang Zhao, Mingjian Yi and Shuguang Zhu
Molecules 2025, 30(3), 646; https://doi.org/10.3390/molecules30030646 - 1 Feb 2025
Cited by 1 | Viewed by 963
Abstract
Isovaleraldehyde is an important chemical raw material for the production of flavors, which is volatile and flammable and poses a health risk to humans. It is, therefore, essential to develop a rapid assay for the identification of isovaleraldehyde. In this study, octahedral NiCo [...] Read more.
Isovaleraldehyde is an important chemical raw material for the production of flavors, which is volatile and flammable and poses a health risk to humans. It is, therefore, essential to develop a rapid assay for the identification of isovaleraldehyde. In this study, octahedral NiCo2O4/MIL-Fe53 nanocomposites were successfully fabricated for the rapid detection of isovaleraldehyde. The prepared NiCo2O4/MIL-Fe53 nanocomposites were characterized by SEM, XRD, FTIR, and XPS to analyze the material properties. The effects of temperature, carrier gas flow rate, selectivity, and stability on the cataluminescence performance of this sensor were investigated. The results showed that NiCo2O4/MIL-Fe53 nanocomposites have excellent selectivity to isovaleraldehyde with response and recovery times of 6 and 8 s, respectively. A linear relationship was found between the CTL signal and isovaleraldehyde concentration Y = 9.56X − 23.3 (R2 = 0.99) over the concentration range of 13.66 to 437.22 ppm with a detection limit of 2.44 ppm. The relative deviation RSD = 4.18% for multiple tests of the sensor indicates good stability and longevity. Mechanistic studies have shown that the heterojunction formed by NiCo2O4/MIL-Fe53 nanocomposites has the advantage of improving CTL sensing performance. This study may advance the application of cataluminescence sensors in the detection of isovaleraldehyde. Full article
(This article belongs to the Special Issue Nano-Functional Materials for Sensor Applications—2nd Edition)
Show Figures

Figure 1

13 pages, 7956 KB  
Article
Construction of Electrospun ZnO-NiO Nanofibers for Enhanced Ethanol Gas Sensing
by Maryam Bonyani, Seyed Mojtaba Zebarjad, Tae-Un Kim, Hyoun Woo Kim and Sang Sub Kim
Sensors 2024, 24(23), 7450; https://doi.org/10.3390/s24237450 - 22 Nov 2024
Cited by 4 | Viewed by 1453
Abstract
Semiconducting metal oxides with nanofiber (NF) morphologies are among the most promising materials for the realization of gas sensors. In this study, we have prepared electrospun ZnO-NiO composite NFs with different amounts of NiO (0, 20, 40, 60 and 80% wt%) for the [...] Read more.
Semiconducting metal oxides with nanofiber (NF) morphologies are among the most promising materials for the realization of gas sensors. In this study, we have prepared electrospun ZnO-NiO composite NFs with different amounts of NiO (0, 20, 40, 60 and 80% wt%) for the systematic study of ethanol gas sensing. The fabricated composite NFs were annealed at 600 °C for crystallization. Based on characterization studies, NFs were produced with desired morphologies, phases, and chemical compositions. Ethanol gas sensing studies revealed that the sensor with 40 wt% NiO had the highest response (3.6 to 10 ppm ethanol) at 300 °C among all gas sensors. The enhanced gas response was ascribed to the formation of sufficient amounts of p-n NiO-ZnO heterojunctions, NFs’ high surface areas due to their one-dimensional morphologies, and acid–base interactions between ZnO and ethanol. This research highlights the need for the optimization of ZnO-NiO composite NFs so that they achieve the highest sensing response, which can be extended to other similar metal oxides. Full article
Show Figures

Figure 1

13 pages, 3314 KB  
Article
Nonaqueous Synthesis of Pd/PdO-Functionalized NiFe2O4 Nanoparticles Enabled Enhancing n-Butanol Detection
by Hongyang Wu and Chen Chen
Nanomaterials 2024, 14(14), 1188; https://doi.org/10.3390/nano14141188 - 12 Jul 2024
Cited by 4 | Viewed by 1360
Abstract
The efficient detection of n-butanol, which is in demand for highly sensitive materials, is essential for multiple applications. A nonaqueous method was applied to prepare NiFe2O4 nanoparticles (NPs) using benzyl alcohol as a solvent, which shows a size of 7.9 [...] Read more.
The efficient detection of n-butanol, which is in demand for highly sensitive materials, is essential for multiple applications. A nonaqueous method was applied to prepare NiFe2O4 nanoparticles (NPs) using benzyl alcohol as a solvent, which shows a size of 7.9 ± 1.6 nm and a large surface area of 82.23 m2/g. To further improve the sensing performance for n-butanol, Pd/PdO functionalization was sensitized with NiFe2O4 NPs. Gas sensing results demonstrate that the Pd/PdO-NiFe2O4 exhibits an enhanced response of 36.9 to 300 ppm n-butanol and a fast response and recovery time (18.2/17.6 s) at 260 °C. Furthermore, the Pd/PdO-NiFe2O4-based sensor possesses a good linear relationship between responses and the n-butanol concentration from 1 to 1000 ppm, and great selectivity against other volatile organic compounds (VOCs). The excellent sensing enhancement is attributed to the catalytic effects of Pd/PdO, the increase of oxygen vacancies, and the formation of heterojunction between PdO and NiFe2O4. Thus, this study offers an effective route for the synthesis of Pd/PdO-functionalized NiFe2O4 NPs to achieve n-butanol detection with excellent sensing performance. Full article
Show Figures

Figure 1

12 pages, 6562 KB  
Article
Synthesis of Fe2O3 Nanorod and NiFe2O4 Nanoparticle Composites on Expired Cotton Fiber Cloth for Enhanced Hydrogen Evolution Reaction
by Sun Hua, Sayyar Ali Shah, Noor Ullah, Nabi Ullah and Aihua Yuan
Molecules 2024, 29(13), 3082; https://doi.org/10.3390/molecules29133082 - 28 Jun 2024
Cited by 6 | Viewed by 1894
Abstract
The design of cheap, noble-metal-free, and efficient electrocatalysts for an enhanced hydrogen evolution reaction (HER) to produce hydrogen gas as an energy source from water splitting is an ideal approach. Herein, we report the synthesis of Fe2O3 nanorods–NiFe2O [...] Read more.
The design of cheap, noble-metal-free, and efficient electrocatalysts for an enhanced hydrogen evolution reaction (HER) to produce hydrogen gas as an energy source from water splitting is an ideal approach. Herein, we report the synthesis of Fe2O3 nanorods–NiFe2O4 nanoparticles on cotton fiber cloth (Fe2O3-NiFe2O4/CF) at a low temperature as an efficient electrocatalyst for HERs. Among the as-prepared samples, the optimal Fe2O3-NiFe2O4/CF-3 electrocatalyst exhibits good HER performance with an overpotential of 127 mV at a current density of 10 mA cm−2, small Tafel slope of 44.9 mV dec−1, and good stability in 1 M KOH alkaline solution. The synergistic effect between Fe2O3 nanorods and NiFe2O4 nanoparticles of the heterojunction composite at the heterointerface is mainly responsible for improved HER performance. The CF is an effective substrate for the growth of the Fe2O3-NiFe2O4 nanocomposite and provides conductive channels for the active materials’ HER process. Full article
Show Figures

Figure 1

12 pages, 4555 KB  
Article
Synergistic Effect of ZIF-8 and Pt-Functionalized NiO/In2O3 Hollow Nanofibers for Highly Sensitive Detection of Formaldehyde
by Lei Zhu, Ze Wang, Jianan Wang, Jianwei Liu, Wei Zhao, Jiaxin Zhang and Wei Yan
Nanomaterials 2024, 14(10), 841; https://doi.org/10.3390/nano14100841 - 10 May 2024
Cited by 3 | Viewed by 1907
Abstract
A rapid and accurate monitoring of hazardous formaldehyde (HCHO) gas is extremely essential for health protection. However, the high-power consumption and humidity interference still hinder the application of HCHO gas sensors. Hence, zeolitic imidazolate framework-8 (ZIF-8)-loaded Pt-NiO/In2O3 hollow nanofibers (ZPNiIn [...] Read more.
A rapid and accurate monitoring of hazardous formaldehyde (HCHO) gas is extremely essential for health protection. However, the high-power consumption and humidity interference still hinder the application of HCHO gas sensors. Hence, zeolitic imidazolate framework-8 (ZIF-8)-loaded Pt-NiO/In2O3 hollow nanofibers (ZPNiIn HNFs) were designed via the electrospinning technique followed by hydrothermal treatment, aiming to enable a synergistic advantage of the surface modification and the construction of a p-n heterostructure to improve the sensing performance of the HCHO gas sensor. The ZPNiIn HNF sensor has a response value of 52.8 to 100 ppm HCHO, a nearly 4-fold enhancement over a pristine In2O3 sensor, at a moderately low temperature of 180 °C, along with rapid response/recovery speed (8/17 s) and excellent humidity tolerance. These enhanced sensing properties can be attributed to the Pt catalysts boosting the catalytic activity, the p-n heterojunctions facilitating the chemical reaction, and the appropriate ZIF-8 loading providing a hydrophobic surface. Our research presents an effective sensing material design strategy for inspiring the development of cost-effective sensors for the accurate detection of indoor HCHO hazardous gas. Full article
(This article belongs to the Special Issue Nanoscale Material-Based Gas Sensors)
Show Figures

Figure 1

28 pages, 14874 KB  
Review
β-Ga2O3-Based Heterostructures and Heterojunctions for Power Electronics: A Review of the Recent Advances
by Dinusha Herath Mudiyanselage, Bingcheng Da, Jayashree Adivarahan, Dawei Wang, Ziyi He, Kai Fu, Yuji Zhao and Houqiang Fu
Electronics 2024, 13(7), 1234; https://doi.org/10.3390/electronics13071234 - 27 Mar 2024
Cited by 22 | Viewed by 6464
Abstract
During the past decade, Gallium Oxide (Ga2O3) has attracted intensive research interest as an ultra-wide-bandgap (UWBG) semiconductor due to its unique characteristics, such as a large bandgap of 4.5–4.9 eV, a high critical electric field of ~8 MV/cm, and [...] Read more.
During the past decade, Gallium Oxide (Ga2O3) has attracted intensive research interest as an ultra-wide-bandgap (UWBG) semiconductor due to its unique characteristics, such as a large bandgap of 4.5–4.9 eV, a high critical electric field of ~8 MV/cm, and a high Baliga’s figure of merit (BFOM). Unipolar β-Ga2O3 devices such as Schottky barrier diodes (SBDs) and field-effect transistors (FETs) have been demonstrated. Recently, there has been growing attention toward developing β-Ga2O3-based heterostructures and heterojunctions, which is mainly driven by the lack of p-type doping and the exploration of multidimensional device architectures to enhance power electronics’ performance. This paper will review the most recent advances in β-Ga2O3 heterostructures and heterojunctions for power electronics, including NiOx/β-Ga2O3, β-(AlxGa1−x)2O3/β-Ga2O3, and β-Ga2O3 heterojunctions/heterostructures with other wide- and ultra-wide-bandgap materials and the integration of two-dimensional (2D) materials with β-Ga2O3. Discussions of the deposition, fabrication, and operating principles of these heterostructures and heterojunctions and the associated device performance will be provided. This comprehensive review will serve as a critical reference for researchers engaged in materials science, wide- and ultra-wide-bandgap semiconductors, and power electronics and benefits the future study and development of β-Ga2O3-based heterostructures and heterojunctions and associated power electronics. Full article
(This article belongs to the Special Issue Young Investigators in Electronics)
Show Figures

Figure 1

17 pages, 8020 KB  
Article
Heterojunction Devices Fabricated from Sprayed n-Type Ga2O3, Combined with Sputtered p-Type NiO and Cu2O
by Theodoros Dimopoulos, Rachmat Adhi Wibowo, Stefan Edinger, Maximilian Wolf and Thomas Fix
Nanomaterials 2024, 14(3), 300; https://doi.org/10.3390/nano14030300 - 1 Feb 2024
Cited by 4 | Viewed by 2621
Abstract
This work reports on the properties of heterojunctions consisting of n-type Ga2O3 layers, deposited using ultrasonic spray pyrolysis at high temperature from water-based solution, combined with p-type NiO and Cu2O counterparts, deposited by radio frequency and [...] Read more.
This work reports on the properties of heterojunctions consisting of n-type Ga2O3 layers, deposited using ultrasonic spray pyrolysis at high temperature from water-based solution, combined with p-type NiO and Cu2O counterparts, deposited by radio frequency and reactive, direct-current magnetron sputtering, respectively. After a comprehensive investigation of the properties of the single layers, the fabricated junctions on indium tin oxide (ITO)-coated glass showed high rectification, with an open circuit voltage of 940 mV for Ga2O3/Cu2O and 220 mV for Ga2O3/NiO under simulated solar illumination. This demonstrates in praxis the favorable band alignment between the sprayed Ga2O3 and Cu2O, with small conduction band offset, and the large offsets anticipated for both energy bands in the case of Ga2O3/NiO. Large differences in the ideality factors between the two types of heterojunctions were observed, suggestive of distinctive properties of the heterointerface. Further, it is shown that the interface between the high-temperature-deposited Ga2O3 and the ITO contact does not impede electron transport, opening new possibilities for the design of solar cell and optoelectronic device architectures. Full article
(This article belongs to the Topic Advances in Functional Thin Films)
Show Figures

Figure 1

18 pages, 14269 KB  
Article
H2S/Butane Dual Gas Sensing Based on a Hydrothermally Synthesized MXene Ti3C2Tx/NiCo2O4 Nanocomposite
by Shama Sadaf, Hongpeng Zhang and Ali Akhtar
Molecules 2024, 29(1), 202; https://doi.org/10.3390/molecules29010202 - 29 Dec 2023
Cited by 2 | Viewed by 1790
Abstract
Real-time sensing of hydrogen sulfide (H2S) at room temperature is important to ensure the safety of humans and the environment. Four kinds of different nanocomposites, such as MXene Ti3C2Tx, Ti3AlC2, WS [...] Read more.
Real-time sensing of hydrogen sulfide (H2S) at room temperature is important to ensure the safety of humans and the environment. Four kinds of different nanocomposites, such as MXene Ti3C2Tx, Ti3AlC2, WS2, and MoSe2/NiCo2O4, were synthesized using the hydrothermal method in this paper. Initially, the intrinsic properties of the synthesized nanocomposites were studied using different techniques. P-type butane and H2S-sensing behaviors of nanocomposites were performed and analyzed deeply. Four sensor sheets were fabricated using a spin-coating method. The gas sensor was distinctly part of the chemiresistor class. The MXene Ti3C2Tx/NiCo2O4-based gas sensor detected the highest response (16) toward 10 ppm H2S at room temperature. In comparison, the sensor detected the highest response (9.8) toward 4000 ppm butane at 90 °C compared with the other three fabricated sensors (Ti3AlC2, WS2, and MoSe2/NiCo2O4). The MXene Ti3C2Tx/NiCo2O4 sensor showed excellent responses, minimum limits of detection (0.1 ppm H2S and 5 ppm butane), long-term stability, and good reproducibility compared with the other fabricated sensors. The highest sensing properties toward H2S and butane were accredited to p–p heterojunctions, higher BET surface areas, increased oxygen species, etc. These simply synthesized nanocomposites and fabricated sensors present a novel method for tracing H2S and butane at the lowest concentration to prevent different gas-exposure-related diseases. Full article
Show Figures

Graphical abstract

11 pages, 1688 KB  
Article
Impact of Solid-State Charge Injection on Spectral Photoresponse of NiO/Ga2O3 p–n Heterojunction
by Alfons Schulte, Sushrut Modak, Yander Landa, Atman Atman, Jian-Sian Li, Chao-Ching Chiang, Fan Ren, Stephen J. Pearton and Leonid Chernyak
Condens. Matter 2023, 8(4), 106; https://doi.org/10.3390/condmat8040106 - 2 Dec 2023
Cited by 1 | Viewed by 2606
Abstract
Forward bias hole injection from 10-nm-thick p-type nickel oxide layers into 10-μm-thick n-type gallium oxide in a vertical NiO/Ga2O3 p–n heterojunction leads to enhancement of photoresponse of more than a factor of 2 when measured from this junction. While it [...] Read more.
Forward bias hole injection from 10-nm-thick p-type nickel oxide layers into 10-μm-thick n-type gallium oxide in a vertical NiO/Ga2O3 p–n heterojunction leads to enhancement of photoresponse of more than a factor of 2 when measured from this junction. While it takes only 600 s to obtain such a pronounced increase in photoresponse, it persists for hours, indicating the feasibility of photovoltaic device performance control. The effect is ascribed to a charge injection-induced increase in minority carrier (hole) diffusion length (resulting in improved collection of photogenerated non-equilibrium carriers) in n-type β-Ga2O3 epitaxial layers due to trapping of injected charge (holes) on deep meta-stable levels in the material and the subsequent blocking of non-equilibrium carrier recombination through these levels. Suppressed recombination leads to increased non-equilibrium carrier lifetime, in turn determining a longer diffusion length and being the root-cause of the effect of charge injection. Full article
(This article belongs to the Special Issue Wide-Band-Gap Semiconductors for Energy and Electronics)
Show Figures

Figure 1

Back to TopTop