Band-Engineered α-Fe2O3@NiO P-N Heterojunction for Room-Temperature NH3 Detection and Real-Time Meat Spoilage Monitoring
Abstract
1. Introduction
2. Experimental Methods
2.1. Materials
2.2. Synthesis Process
2.3. Characterization
2.4. Gas Sensing Testing
3. Results and Discussion
3.1. Morphology and Structural Characterizations
3.2. Gas Sensing Performance
3.3. Sensing Mechanism
3.4. The Meat Spoilage Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhou, Y.; Zhang, Y.; Zhou, Y.; Zhao, L.; Liu, F.; Yan, X.; Sun, P.; Lu, G. Waterproof breathable multifunctional flexible sensor for underwater tactile sensing and ammonia gas monitoring. Nano Energy 2023, 117, 108881. [Google Scholar] [CrossRef]
- Meng, W.; Wang, L.; Li, Y.; Dai, L.; Zhu, J.; Zhou, H.; He, Z. Enhanced sensing performance of mixed potential ammonia gas sensor based on Bi0.95Ni0.05VO3.975 by silver. Sens. Actuators B Chem. 2018, 259, 668–676. [Google Scholar] [CrossRef]
- Li, J.; Yang, M.; Guo, J.; Zhang, X.; Xu, Y.; Cheng, X.; Huo, L. Construction of highly efficient In2O3/SnO2 sensor for real-time NO2 monitoring at near room temperature. Chem. Eng. J. 2024, 498, 155286. [Google Scholar] [CrossRef]
- Xu, J.-Y.; Xu, K.-C.; He, X.-X.; Liao, H.-L.; Debliquy, M.; Liu, Q.-Q.; Zhang, C. Interface engineering of ZnSnO3-based heterojunctions for room-temperature methanol monitoring. Rare Met. 2023, 42, 4153–4166. [Google Scholar] [CrossRef]
- Lin, Y.; Ma, J.; Sun, D.-W.; Cheng, J.-H.; Zhou, C. Fast real-time monitoring of meat freshness based on fluorescent sensing array and deep learning: From development to deployment. Food Chem. 2024, 448, 139078. [Google Scholar] [CrossRef]
- Karim, F.; Hijaz, F.; Kastner, C.L.; Smith, J.S. Ammonia gas permeability of meat packaging materials. J. Food Sci. 2011, 76, T59–T64. [Google Scholar] [CrossRef]
- Sun, L.; Li, Z.; Gao, S.; Li, Y.J.A.A.M.; Interfaces. Microstructure Evolution of Vacuum Diffusion-Bonded 304 Stainless Steel/20 Carbon Steel Bimetallic Interface after Solution Treatment. ACS Appl. Mater. Interfaces 2024, 16, 51649–51659. [Google Scholar] [CrossRef]
- Xing, X.; Zhao, X.; Li, Z.; Du, L.; Wang, C.; Feng, D.; Geng, D.; Bogdanowicz, R.; Yang, D. Oxygen vacancy-enriched V2O5 nH2O nanofibers ink for universal substrates-tolerant and multi means-integratable NH3 sensing. Chem. Eng. J. 2023, 478, 147233. [Google Scholar] [CrossRef]
- Jung, G.; Kim, J.; Hong, S.; Shin, H.; Jeong, Y.; Shin, W.; Kwon, D.; Choi, W.Y.; Lee, J.H. Energy efficient artificial olfactory system with integrated sensing and computing capabilities for food spoilage detection. Adv. Sci. 2023, 10, 2302506. [Google Scholar] [CrossRef]
- Li, H.; Ma, Q.; Guo, J.; Zhang, Q.; Wang, X.; Wang, Y. Enhanced surface electron migration of porous and hollow SnO2/Zn2SnO4 heterostructures for efficient triethylamine-sensing performance. Appl. Surf. Sci. 2022, 597, 153752. [Google Scholar] [CrossRef]
- Matindoust, S.; Farzi, G.; Nejad, M.B.; Shahrokhabadi, M.H. Polymer-based gas sensors to detect meat spoilage: A review. React. Funct. Polym. 2021, 165, 104962. [Google Scholar] [CrossRef]
- Yu, H.; Kou, X.; Zuo, X.; Xi, D.; Guan, H.; Yin, P.; Xu, L.; Zhao, Y. Optimization of multiple attenuation mechanisms by cation substitution in imidazolic MOFs-derived porous composites for superior broadband electromagnetic wave absorption. J. Mater. Sci. Technol. 2024, 176, 176–187. [Google Scholar] [CrossRef]
- Usman, M.; Pan, L.; Farid, A.; Riaz, S.; Khan, A.S.; Peng, Z.Y.; Khan, M.A. Ultra-fast and highly sensitive enzyme-free glucose sensor based on 3D vertically aligned silver nanoplates on nickel foam-graphene substrate. J. Electroanal. Chem. 2019, 848, 113342. [Google Scholar] [CrossRef]
- Sang, J.; Zhou, S.; Zhang, L.; He, T.; Li, J. Impact of H2O on atmospheric CH4 measurement in near-infrared absorption spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 237, 118383. [Google Scholar] [CrossRef]
- Zaffaroni, R.; Ripepi, D.; Middelkoop, J.; Mulder, F.M. Gas chromatographic method for in situ ammonia quantification at parts per billion levels. CS Energy Lett. 2020, 5, 3773–3777. [Google Scholar] [CrossRef]
- Fan, S.X.; Tang, W. Synthesis, characterization and mechanism of electrospun carbon nanofibers decorated with ZnO nanoparticles for flexible ammonia gas sensors at room temperature. Sens. Actuators B Chem. 2022, 362, 131789. [Google Scholar] [CrossRef]
- Shapaval, V.; Schmitt, J.; Møretrø, T.; Suso, H.; Skaar, I.; Åsli, A.; Lillehaug, D.; Kohler, A. Characterization of food spoilage fungi by FTIR spectroscopy. J. Appl. Microbiol. 2013, 114, 788–796. [Google Scholar] [CrossRef]
- Waimin, J.; Gopalakrishnan, S.; Heredia-Rivera, U.; Kerr, N.A.; Nejati, S.; Gallina, N.L.; Bhunia, A.K.; Rahimi, R. Low-cost nonreversible electronic-free wireless pH sensor for spoilage detection in packaged meat products. ACS Appl. Mater. Interfaces 2022, 14, 45752–45764. [Google Scholar] [CrossRef]
- Watanabe, G.; Ishida, S.; Komai, S.; Motoyama, M.; Duconseille, A.; Nakajima, I.; Tajima, A.; Sasaki, K. A novel quantitative method for evaluating food sensory complexity using the temporal dominance of sensations method. Food Qual. Prefer. 2023, 112, 105005. [Google Scholar] [CrossRef]
- Sun, L.; Rotaru, A.; Garcia, Y. A non-porous Fe (II) complex for the colorimetric detection of hazardous gases and the monitoring of meat freshness. J. Hazard. Mater. 2022, 437, 129364. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, J.; Huang, H.; Zhang, H.; Cong, T.; Zhang, D.; Wen, N.; Zhang, Y.; Fan, Z.; Pan, L. Catalytic anisotropy induced by multi-particles for growth of carbon nanocoils. Carbon 2020, 166, 101–112. [Google Scholar] [CrossRef]
- Khan, A.S.; Pan, L.; Farid, A.; Javid, M.; Huang, H.; Zhao, Y. Carbon nanocoils decorated with a porous NiCo2O4 nanosheet array as a highly efficient electrode for supercapacitors. Nanoscale 2021, 13, 11943–11952. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Yang, F.; Liu, S.; Wang, R.; Guo, J.; Ma, X. Liquid metal-based epidermal flexible sensor for wireless breath monitoring and diagnosis enabled by highly sensitive SnS2 nanosheets. Research 2021, 2021, 9847285. [Google Scholar] [CrossRef]
- Xia, Y.; Kashtanov, S.; Yu, P.; Chang, L.-Y.; Feng, K.; Zhong, J.; Guo, J.; Sun, X. Identification of dual-active sites in cobalt phthalocyanine for electrochemical carbon dioxide reduction. Nano Energy 2020, 67, 104163. [Google Scholar] [CrossRef]
- Wang, H.; Luo, Y.; Li, K.; Liu, B.; Gao, L.; Duan, G. Porous α-Fe2O3 gas sensor with instantaneous attenuated response toward triethylamine and its reaction kinetics. Chem. Eng. J. 2022, 427, 131631. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, M.; Mujumdar, A.S.; Wang, D. Deep Learning Used with a Colorimetric Sensor Array to Detect Indole for Nondestructive Monitoring of Shrimp Freshness. ACS Appl. Mater. Interfaces 2024, 16, 37445–37455. [Google Scholar] [CrossRef]
- Qu, C.; Zhao, P.; Wu, C.; Zhuang, Y.; Liu, J.; Li, W.; Liu, Z.; Liu, J. Electrospun PAN/PANI fiber film with abundant active sites for ultrasensitive trimethylamine detection. Sens. Actuators B Chem. 2021, 338, 129822. [Google Scholar] [CrossRef]
- Gui, Y.; Wu, J.; Zhao, D.; Tian, K.; Zhao, S.; Guo, H.; Qin, X.; Qin, X.; Guo, D.; Wang, Y. In Situ Synthesis of Hierarchical Co(CO3) 0.5(OH) 0.11H2O@ ZIF-67/WO3 With High Humidity Immunity and Response to H2S Sensing. Adv. Sci. 2024, 11, 2402352. [Google Scholar] [CrossRef]
- Shi, Z.; Qiao, L.; Jia, Z.; Zhang, P.; Liu, B.; Gao, L. N-doped clay-like Ti3C2Tx MXene/TiO2 spherical composites for methanol sensing in exhaled breath: A theoretical feasibility. Mater. Res. Bull. 2024, 179, 112915. [Google Scholar] [CrossRef]
- Zhu, L.-Y.; Ou, L.-X.; Mao, L.-W.; Wu, X.-Y.; Liu, Y.-P.; Lu, H.-L. Advances in noble metal-decorated metal oxide nanomaterials for chemiresistive gas sensors: Overview. Nano-Micro Lett. 2023, 15, 89. [Google Scholar] [CrossRef]
- Fu, Y.; Wang, T.; Wang, X.; Li, X.; Zhao, Y.; Li, F.; Zhao, G.; Xu, X. Investigation of pn sensing transition and related highly sensitive NH3 gas sensing behavior of SnPx/rGO composites. Chem. Eng. J. 2023, 471, 144499. [Google Scholar] [CrossRef]
- Yan, L.; Xiong, T.; Zhang, Z.; Yang, H.; Zhang, X.; He, Y.; Bian, J.; Lin, H.; Chen, D. Facile preparation of TPU conductive nanocomposites containing polypyrrole-coated multi-walled carbon nanotubes for a rapid and selective response in volatile organic compounds applications. Compos. Part A Appl. Sci. Manuf. 2022, 157, 106913. [Google Scholar] [CrossRef]
- Zhang, H.; Wei, W.; Tao, T.; Li, X.; Xia, X.; Bao, Y.; Lourenço, M.; Homewood, K.; Huang, Z.; Gao, Y. Hierarchical NiO/TiO2 heterojuntion-based conductometric hydrogen sensor with anti-CO-interference. Sens. Actuators B Chem. 2023, 380, 133321. [Google Scholar] [CrossRef]
- Hung, C.M.; Hoa, N.D.; Van Duy, N.; Van Toan, N.; Le, D.T.T.; Van Hieu, N. Synthesis and gas-sensing characteristics of α-Fe2O3 hollow balls. J. Sci. Adv. Mater. Devices 2016, 1, 45–50. [Google Scholar] [CrossRef]
- Tomić, M.; Gràcia, I.; Figueras, E.; Cané, C.; Vallejos, S. Aerosol assisted chemical vapor deposition routes for the selective formation of gas sensitive iron oxide structures. Ceram. Int. 2024, 50, 17988–18001. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Jiang, Y.; Duan, Z.; Yuan, Z.; Liu, B.; Huang, Q.; Zhao, Q.; Yang, Y.; Tai, H. Synergistic effect of charge transfer and interlayer swelling in V2CTx/SnS2 driving ultrafast and highly sensitive NO2 detection at room temperature. Sens. Actuators B Chem. 2024, 411, 135788. [Google Scholar] [CrossRef]
- Wei, W.; Luo, N.; Wang, X.; Xue, Z.; Shah, L.A.; Hu, Q.; Xu, J. Amorphous RhOx decorated black indium oxide for rapid and flexible NO2 detection at room temperature. Sens. Actuators B Chem. 2024, 414, 135944. [Google Scholar] [CrossRef]
- Yang, H.; Yang, Y.; Ma, C.; Wu, Q.; Tang, J.; Zhu, C.; Wang, X.; Zeng, D. Vacancy–assisted exposed Sn atoms enhancing NO2 room temperature sensing of SnSe2 nanoflowers. Talanta 2024, 276, 126208. [Google Scholar] [CrossRef]
- Zhang, M.; He, Z.; Cheng, W.; Li, X.; Zan, X.; Bao, Y.; Gu, H.; Homewood, K.; Gao, Y.; Zhang, S. A room-temperature MEMS hydrogen sensor for lithium ion battery gas detecting based on Pt-modified Nb doped TiO2 nanosheets. Int. J. Hydrogen Energy 2024, 74, 307–315. [Google Scholar] [CrossRef]
- Geng, X.; Li, S.; Mawella-Vithanage, L.; Ma, T.; Kilani, M.; Wang, B.; Ma, L.; Hewa-Rahinduwage, C.C.; Shafikova, A.; Nikolla, E.; et al. Atomically dispersed Pb ionic sites in PbCdSe quantum dot gels enhance room-temperature NO2 sensing. Nat. Commun. 2021, 12, 4895. [Google Scholar] [CrossRef]
- Zheng, C.; Wang, J.; Du, D. Wireless plant stresses monitoring with a wearable chemiresistor gas sensor at room temperature. Sens. Actuators B Chem. 2023, 381, 133408. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Yan, Q. Cyanine Polymersomes Inbreathe Gas Signaling Molecule: SO2-Driven Bilayer Tubular Deformation for Transmembrane Traffic Regulation. Angew. Chem. Int. Ed. 2023, 62, e202305290. [Google Scholar]
- Zhu, X.; Ola, O.; Li, C.; Gao, W.; Wang, Z.; Dai, C.; Jiang, Y.; Sun, S.; Chang, X. Highly sensitive and selective detection of ppb-level acetone sensor using WO3/Au/SnO2 ternary composite gas sensor. Ceram. Int. 2025, 51, 20094–20102. [Google Scholar] [CrossRef]
- Wang, P.; Wang, S.Z.; Han, Q.; Zou, D.Q.; Zhao, W.K.; Wang, X.D.; Luo, C.; Yang, X.; Wu, X.; Xie, W.F. Construction of hierarchical α-Fe2O3/SnO2 nanoball arrays with superior acetone sensing performance. Adv. Mater. Interfaces 2021, 8, 2001831. [Google Scholar] [CrossRef]
- Enferadi, S.M.H.B.; Mirzaei, A. Fe2O3-Co3O4 nanocomposite gas sensor for ethanol sensing studies. Ceram. Int. 2024, 50, 52861–52870. [Google Scholar] [CrossRef]
- Zhang, S.; Song, P.; Liu, M.; Zheng, Y.; Wang, Q. Metal-organic framework-derived In-doped Fe2O3 spindles with enhanced acetone gas sensing performance. Inorg. Chem. Commun. 2022, 142, 109658. [Google Scholar] [CrossRef]
- Guo, Z.; Yuan, Z.; Guo, Y.; Li, J.; Zhu, H.; Mu, Z.; Meng, F. Thickness-controllable gas sensitive thin films based on NiO/In2O3 heterogeneous microspheres: Ultrafast response to butanone. Sens. Actuators B Chem. 2025, 439, 137781. [Google Scholar] [CrossRef]
- Yang, M.; Hao, S.; Liu, L.; Li, B.; Mu, Y.; Sun, J.; Chen, J.; Gao, S.; Xu, Y.; Huo, L. Synthesis of PANI/NiO porous nanowalls composites for highly NH3 sensing performance at room temperature. Ceram. Int. 2025. [Google Scholar] [CrossRef]
- Puja; Verma, A.; Yadav, P.; Nalwa, K.S.; Kumar, M. Interface Engineering and Band Alignment Studies of Cu Doped NiO as a Hole Transport Layer for Triple Cationic Perovskite Solar Cells. Small 2025, 2504237. [Google Scholar]
- Feng, H.; Zhang, M.; Liu, P.; Liu, Y.; Zhang, X. Evaluation of IoT-enabled monitoring and electronic nose spoilage detection for salmon freshness during cold storage. Foods 2020, 9, 1579. [Google Scholar] [CrossRef]
- Anwar, H.; Anwar, T. Quality assessment of chicken using machine learning and electronic nose. Sens. Bio-Sens. Res. 2025, 47, 100739. [Google Scholar] [CrossRef]
- Kim, K.-H.; Pal, R.; Ahn, J.-W.; Kim, Y.-H. Food decay and offensive odorants: A comparative analysis among three types of food. Waste Manag. 2009, 29, 1265–1273. [Google Scholar] [CrossRef]
- Zhang, D.; Yu, S.; Wang, X.; Huang, J.; Pan, W.; Zhang, J.; Meteku, B.E.; Zeng, J. UV illumination-enhanced ultrasensitive ammonia gas sensor based on (001)TiO2/MXene heterostructure for food spoilage detection. J. Hazard. Mater. 2022, 423, 127160. [Google Scholar] [CrossRef]
- Cruz, M.L.D.; Yakubov, V.; Li, X.; Ferry, M. Microstructure evolution in laser powder bed fusion-built Fe-Mn-Si shape memory alloy. Micro Struct. 2023, 3, 2023012. [Google Scholar]
- Shestovskaya, M.V.; Luss, A.L.; Bezborodova, O.A.; Venidiktova, Y.B.; Vorontsova, M.S.; Vlaskina, E.R.; Kushnerev, K.K.; Kulikov, P.P.; Makarov, V.V.; Yudin, V.S.; et al. Iron Oxide Nanoparticles as Enhancers for Radiotherapy of Tumors. ACS Appl. Bio Mater. 2025, 8, 2535–2547. [Google Scholar] [CrossRef]
- Sivasankaraiah, P.; Nagaraju, P.; Satya Narayana Murthy, V. Spray-deposited iron oxide thin films for the detection of ammonia at room temperature. J. Mater. Sci. Mater. Electron. 2022, 33, 17064–17078. [Google Scholar] [CrossRef]
- Wang, S.; Jia, Y.; Wang, Y.; Zhang, Y.; Ma, L.; Cheng, F.; Zeng, Y.; Shen, X.; Du, Y.; Ge, B. New vision of convection induced freckle formation theory in Nickel-based superalloys by electron microscopy. arXiv 2023, arXiv:2306.08308. [Google Scholar] [CrossRef]
- Barreca, D.; Scattolin, E.; Maccato, C.; Gasparotto, A.; Signorin, L.; El Habra, N.; Šuligoj, A.; Štangar, U.L.; Rizzi, G.A. Controllable properties of NiO nanostructures fabricated by plasma assisted-chemical vapor deposition. Chem. Commun. 2025, 61, 2945–2948. [Google Scholar] [CrossRef]
- Nayman, E.; Gozukizil, M.F.; Armutci, B.; Temel, S.; Gokmen, F.O. Structural and gas sensing properties of NiO thin films deposited by a novel spin coating technique. J. Sol-Gel Sci. Technol. 2025, 114, 386–398. [Google Scholar] [CrossRef]
- Zhao, Y.; He, Q.; Liu, M.; Cheng, J.; Huang, H.; Zhao, Y.; Wang, Y.; Huang, G.; Xu, L.; Su, G.; et al. Combustion-Assisted construction of Defect-Enriched hierarchical carbon composites towards efficient Low-Frequency electromagnetic wave absorption. Chem. Eng. J. 2024, 488, 150893. [Google Scholar] [CrossRef]
- Wu, Z.; Cheng, H.; Xu, L.; He, Q.; Kou, X.; Wang, Y.; Huang, H.; Zhao, Y. Modulating NFO@ N-MWCNTs/CC Interfaces to Construct Multilevel Synergistic Sites (Ni/Fe-O-N-C) for Multi-Heavy Metal Ions Sensing. Adv. Funct. Mater. 2025, 35, 2412314. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, N.; Wang, H.; Yuan, S.; Liu, M.; Huang, H.; Zhao, Y.; Wang, Y.; Wu, Z.; Guo, X.; et al. Chiral structure induces spatial spiral arrangement of Fe3O4 nanoparticles to optimize electromagnetic wave dissipation. Appl. Phys. Lett. 2024, 124, 161901. [Google Scholar] [CrossRef]
- Xu, S.; Wang, M.; Chen, C.-P.; Feng, S. Sea urchin-like SnO2/α-Fe2O3 heterostructural microspheres for enhanced acetone gas sensing: Materials preparation, performance evaluation, and mechanism investigation. Sens. Actuators B Chem. 2023, 379, 133288. [Google Scholar] [CrossRef]
- Feng, C.; Kou, X.; Chen, B.; Qian, G.; Sun, Y.; Lu, G. One-pot synthesis of In doped NiO nanofibers and their gas sensing properties. Sens. Actuators B Chem. 2017, 253, 584–591. [Google Scholar] [CrossRef]
- Li, C.; Choi, P.G.; Masuda, Y. Highly sensitive and selective gas sensors based on NiO/MnO2@ NiO nanosheets to detect allyl mercaptan gas released by humans under psychological stress. Adv. Sci. 2022, 9, 2202442. [Google Scholar] [CrossRef]
- Hou, M.; Jiang, G.; Guo, S.; Gao, J.; Shen, Z.; Wang, Z.; Ye, X.; Yang, L.; Du, Q.; Yi, J.; et al. Mxene Ti3C2Tx derived lamellar Ti3C2Tx-TiO2-CuO heterojunction: Significantly improved ammonia sensor performance. Arab. J. Chem. 2023, 16, 104808. [Google Scholar] [CrossRef]
- Zhu, C.; Xu, Y.; Zhou, T.; Liu, L.; Chen, Q.; Gao, B.; Zhang, T. Self-assembly polyaniline films for the high-performance ammonia gas sensor. Sens. Actuators B Chem. 2022, 365, 131928. [Google Scholar] [CrossRef]
- Xu, M.-X.; Tang, P.; Wang, Y.-X.; Liang, J.-G.; Jiang, Y.-F.; Yu, P.-P.; Qiang, T. Microfabricated interdigital capacitive sensor and resonant sensor based on PPy/MoO3 hybrids for sensitivity-enhanced ammonia detection at room temperature. Sens. Actuators B Chem. 2024, 404, 135248. [Google Scholar] [CrossRef]
- Zhang, C.; Yu, L.; Li, S.; Cao, L.; He, X.; Zhang, Y.; Shi, C.; Liu, K.; Du, H.; Fan, X. High conductivity of 2D hydrogen substituted graphyne nanosheets for fast recovery NH3 gas sensors at room temperature. Carbon 2024, 225, 119090. [Google Scholar] [CrossRef]
- Boonthum, D.; Oopathump, C.; Fuengfung, S.; Phunudom, P.; Thaibunnak, A.; Juntong, N.; Rungruang, S.; Pakdee, U. Screen-Printing of Functionalized MWCNT-PEDOT: PSS Based Solutions on Bendable Substrate for Ammonia Gas Sensing. Micromachines 2022, 13, 462. [Google Scholar] [CrossRef]
- Yang, T.; Zhang, X.; Shiu, B.-C.; Lou, C.-W.; Lin, J.-H.; Li, T.-T. Wearable smart yarn sensor based on ZnO/SnO2 heterojunction for ammonia detecting. J. Mater. Sci. 2022, 57, 21946–21959. [Google Scholar] [CrossRef]
- Xu, L.; Lin, Z.; Xiong, X.; Cheng, H.; Kang, Z.; Wang, Y.; Wu, Z.; Ma, W.; Yang, N.; He, Y.; et al. Surface Enhancement Effects of Tiny SnO2 Nanoparticle Modification on α-Fe2O3 for Room-Temperature NH3 Sensing. Inorg. Chem. 2023, 62, 13649–13661. [Google Scholar] [CrossRef] [PubMed]
- GB 2707-2016; Hygienic Standard for Fresh (Frozen) Meat of Livestock. National Health and Family Planning Commission of the People’s Republic of China: Beijing, China, 2016.
- GB 5009.237-2016; National Food Safety Standard—Determination of pH Value of Food. National Health and Family Planning Commission of the People’s Republic of China: Beijing, China, 2016.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Zeng, G.; You, H.; Xi, D.; Huang, H.; Kou, X.; Farid, A.; Zhao, Y. Band-Engineered α-Fe2O3@NiO P-N Heterojunction for Room-Temperature NH3 Detection and Real-Time Meat Spoilage Monitoring. Nanomaterials 2025, 15, 987. https://doi.org/10.3390/nano15130987
Li M, Zeng G, You H, Xi D, Huang H, Kou X, Farid A, Zhao Y. Band-Engineered α-Fe2O3@NiO P-N Heterojunction for Room-Temperature NH3 Detection and Real-Time Meat Spoilage Monitoring. Nanomaterials. 2025; 15(13):987. https://doi.org/10.3390/nano15130987
Chicago/Turabian StyleLi, Mingjia, Gaoshan Zeng, Haoyue You, Ding Xi, Hui Huang, Xin Kou, Amjad Farid, and Yongpeng Zhao. 2025. "Band-Engineered α-Fe2O3@NiO P-N Heterojunction for Room-Temperature NH3 Detection and Real-Time Meat Spoilage Monitoring" Nanomaterials 15, no. 13: 987. https://doi.org/10.3390/nano15130987
APA StyleLi, M., Zeng, G., You, H., Xi, D., Huang, H., Kou, X., Farid, A., & Zhao, Y. (2025). Band-Engineered α-Fe2O3@NiO P-N Heterojunction for Room-Temperature NH3 Detection and Real-Time Meat Spoilage Monitoring. Nanomaterials, 15(13), 987. https://doi.org/10.3390/nano15130987