Nonaqueous Synthesis of Pd/PdO-Functionalized NiFe2O4 Nanoparticles Enabled Enhancing n-Butanol Detection
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials Synthesis
2.2. Material Characterization
2.3. Fabrication and Measurement of Gas Sensor
3. Results and Discussion
3.1. Structural and Morphological Characterization
3.2. Gas Sensing Performance
3.3. Gas Sensing Mechanism
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rosario, W.; Singh, P.; Tiwari, A.; Jain, U.; Avashi, D.; Chanhan, N. Nanomaterial-based VOC sensing applications and a deep dive into their developmental trends. J. Mater. Chem. A 2024, 12, 9979–10011. [Google Scholar] [CrossRef]
- Mirzaei, A.; Leonardi, S.; Neri, G. Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: A review. Ceram. Int. 2016, 42, 15119–15141. [Google Scholar] [CrossRef]
- Wang, G.; Chen, T.; Guo, L.; Wang, H.; Wang, X.; Zeng, H.; Feng, Y.; Zhao, W.; Wang, Y.; Liu, X.; et al. Chemiresistive n-butanol gas sensors based on Co3O4@ZnO hollow-sphere-array thin films prepared by template-assisted magnetron sputtering. Sens. Actuators B Chem. 2024, 413, 135862. [Google Scholar] [CrossRef]
- Liu, Y.; Xiao, S.; Du, K. Chemiresistive Gas sensors based on hollow heterojunction: A review. Adv. Mater. 2021, 8, 2002122. [Google Scholar] [CrossRef]
- Wang, X.; Ma, W.; Jiang, F.; Cao, E.; Sun, K.; Cheng, L.; Song, X. Prussian blue analogue derived porous NiFe2O4 nanocubes for low-concentration acetone sensing at low working temperature. Chem. Eng. J. 2018, 338, 504–512. [Google Scholar] [CrossRef]
- Zhang, L.; Jiao, W. The effect of microstructure on the gas properties of NiFe2O4 sensors: Nanotube and NPs. Sens. Actuators B Chem. 2015, 216, 293–297. [Google Scholar] [CrossRef]
- Zhang, Y.; Jia, C.; Wang, Q.; Kong, Q.; Chen, G.; Guan, H.; Dong, C. MOFs-Derived porous NiFe2O4 nano-octahedrons with hollow interiors for an excellent toluene gas sensor. Nanomaterials 2019, 9, 1059. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Wang, X.; Zhang, G.; Liang, H.; Li, T.; Zhao, Y.; Zhang, T.; Tan, Z.; Song, X. Metal-organic framework-derived porous NiFe2O4 nanoboxes for ethyl acetate gas sensors. ACS Appl. Nano Mater. 2022, 5, 14320–14327. [Google Scholar] [CrossRef]
- Njoroge, M.; Kirimi, N.; Kuria, K. Spinel ferrites gas sensors: A review of sensing parameters, mechanism and the effects of ion substitution. Crit. Rev. Solid State 2022, 47, 807–836. [Google Scholar] [CrossRef]
- Niederberger, M. Nonaqueous sol-gel routes to metal oxide NPs. Acc. Chem. Res. 2007, 40, 793–800. [Google Scholar] [CrossRef]
- Pinna, N.; Niederberger, M. Surfactant-free nonaqueous synthesis of metal oxide nanostructures. Angew. Chem. Int. Ed. 2008, 47, 5292–5304. [Google Scholar] [CrossRef] [PubMed]
- Eynden, D.; Pokratath, R.; Roo, J. Nonaqueous chemistry of group 4 oxo clusters and colloidal metal oxide nanocrystals. Chem. Rev. 2022, 122, 10538–10572. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Liu, X.; Xiao, X.; Du, S.; Wang, Y. Monodisperse ZnFe2O4 nanospheres synthesized by a nonaqueous route for a highly selective low-ppm-level toluene gas sensor. Sens. Actuators B Chem. 2017, 239, 1231–1236. [Google Scholar] [CrossRef]
- Sun, C.; Liu, H.; Shao, J.; Pan, G.; Yang, X. PdO-modified ZnSnO3 hollow rounded cubes for high-performance TEA gas sensors at low temperature. Sens. Actuators B Chem. 2023, 393, 134339. [Google Scholar] [CrossRef]
- Agarwal, S.; Ahemad, M.; Kumar, S.; Dung, D.; Rai, P.; Kumar, M.; Awasthi, K.; Yu, Y. Enhanced hydrogen sensing performances of PdO nanoaprticles-decorated ZnO flower-like nanostructures. J. Alloys Compd. 2022, 900, 163545. [Google Scholar] [CrossRef]
- Wang, X.; Han, W.; Yang, J.; Cheng, P.; Wang, Y.; Feng, C.; Wang, C.; Zhang, H.; Sun, Y.; Lu, G. Conductometric ppb-level triethylamine sensor based on microporous WO3-W18O49 heterostructures functionalized with carbon layers and PdO NPs. Sens. Actuators B Chem. 2022, 361, 131707. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Y.; Sun, X.; Sun, Y.; Liu, F.; Yan, X.; Wang, C.; Sun, P.; Lu, G. Preparation of Pd/PdO loaded WO3 microspheres for H2S detection. Sens. Actuators B Chem. 2020, 321, 128629. [Google Scholar] [CrossRef]
- Guo, L.; Wang, Y.; Shang, Y.; Yang, X.; Zhang, S.; Wang, G.; Wang, Y.; Zhang, B.; Zhang, Z. Preparation of Pd/PdO@ZnO-ZnO nanorods by using metal organic framework templated catalysts for selective detection of triarylamine. Sens. Actuators B Chem. 2022, 350, 130840. [Google Scholar] [CrossRef]
- Yue, Q.; Liu, T.; Mu, Y.; Chen, X.; Yin, X. Highly responsive and swift recovery triethylamine gas sensor based on NiCo2O4-ZnO p-n heterojunction. Sens. Actuators B Chem. 2014, 410, 135666. [Google Scholar] [CrossRef]
- Baruwati, B.; Manorama, S. Monodispersed NiFe2O4 NPs: Nonaqueous synthesis and characterization. Mater. Chem. Phys. 2008, 112, 631–636. [Google Scholar] [CrossRef]
- Wu, Z.; Zou, Z.; Huang, J.; Gao, F. NiFe2O4 NPs/NiFe Layered double-hydroxide nanosheet heterostructure array for efficient overall water splitting at large current densities. ACS Appl. Mater. Interfaces 2018, 10, 26283–26292. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Eadi, S.; Noothalapati, H.; Otyepka, M.; Lee, H.; Jayaramulu, K. Porous materials as effective chemiresistive gas sensors. Chem. Soc. Rev. 2024, 5, 2530–2577. [Google Scholar] [CrossRef] [PubMed]
- Son, W.; Lee, D.; Kim, Y.; Chun, S.; Lee, J.; Choi, J.; Shim, W.; Suh, D.; Lim, S.; Choi, C. PdO-nanoparticle-embedded carbon nanotube yarns for wearable hydrogen gas sensing platforms with fast and sensitive responses. ACS Sens. 2023, 8, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Shang, Y.; Shi, R.; Cui, Y.; Che, Q.; Wang, J.; Wang, P. Urchin-like WO2.72 microspheres decorated with Au and PdO NPs for the selective detection of trimethylamine. ACS Appl. Nano Mater. 2020, 3, 5554–5564. [Google Scholar] [CrossRef]
- Zhou, T.; Zhang, R.; Wang, Y.; Zhang, T. MOF-derived 1D α-Fe2O3/NiFe2O4 heterojunction as efficient sensing materials of acetone vapors. Sens. Actuators B Chem. 2019, 281, 885–892. [Google Scholar] [CrossRef]
- Attar, F.; Yin, H.; Schumann, S.; Langley, J.; Cox, N.; Zeng, Z.; Catchpole, K.; Karuturi, S.; Yin, Z. Advanced electron paramagnetic resonance in chemical energy conversion: Current status and future potential. Energy Environ. Sci. 2024, 17, 3307–3328. [Google Scholar] [CrossRef]
- Yao, X.; He, Y.; Fu, S.; Yang, X.; Cui, S.; Cheng, L.; Pan, Y.; Jiao, Z. Bimetallic MOF-derived CeO2/Co3O4 microflowers with synergy of oxygen vacancy and p-n heterojunction for high-performance n-butanol sensors. Mater. Today Commun. 2022, 33, 104445. [Google Scholar] [CrossRef]
- Xin, J.; Wang, W.; Xie, L.; Li, X.; Yao, Y.; Zhao, X.; Zhu, Z. MOF-derived Al3+-doped Co3O4 nanocomposites for highly n-butanol gas sensing performance at low operating temperature. J. Alloys Compd. 2024, 978, 173341. [Google Scholar] [CrossRef]
- Cheng, L.; He, Y.; Gong, M.; He, X.; Ning, Z.; Yu, H.; Jiao, Z. MOF-derived synthesis of Co3O4 nanospheres with rich oxygen vacancies for long-term stable and highly selective n-butanol sensing performance. J. Alloys Compd. 2021, 857, 158205. [Google Scholar] [CrossRef]
- Dong, C.; Wang, L.; Chen, G.; Xiao, X.; Djerdj, I.; Wang, Y. Facile synthesis of CuO micro-sheets over Cu foil in oxalic acid solution and their sensing properties towards n-butanol. J. Mater. 2016, 5, 985–990. [Google Scholar] [CrossRef]
- Qian, X.; Chen, Y.; Tao, Y.; Zhang, J.; Zhang, G.; Xu, H. Facile synthesis of NiFe2O4-based nanoblocks for low-temperature detection of trace n-butanol. RSC Adv. 2024, 4, 2214–2225. [Google Scholar] [CrossRef] [PubMed]
- Cheng, P.; Dang, F.; Wang, Y.; Gao, J.; Xu, L.; Wang, C.; Lv, L.; Li, X.; Zhang, B.; Liu, B. Gas sensor towards n-butanol at low temperature detection: Hierarchical flower-like Ni-doped Co3O4 based on solvent-dependent synthesis. Sens. Actuators B Chem. 2021, 328, 129028. [Google Scholar] [CrossRef]
- Wang, M.; Shao, J.; Liu, H.; Qi, Y.; He, P.; Yue, S.; Sun, C.; Dong, J.; Pan, G.; Yang, X. High-performance n-butanol gas sensor based on iron-doped metal–organic framework-derived nickel oxide and DFT study. ACS Appl. Mater. 2023, 15, 9862–9872. [Google Scholar] [CrossRef] [PubMed]
- Shao, J.; Sun, C.; Liu, H.; He, P.; Liu, Q.; Sun, J.; Li, J.; Pan, G.; Yang, X. Insight into Au functionalization on core-shell LaFeO3 spheres for high-response and selectivity n-butanol gas sensors with DFT study. Sens. Actuators B Chem. 2023, 382, 133506. [Google Scholar] [CrossRef]
- Yang, B.; Liu, J.; Qin, H.; Liu, Q.; Jing, X.; Zhang, H.; Li, R.; Huang, G.; Wang, J. PtO2-NPs functionalized CuO polyhedrons for n-butanol gas sensor application. Ceram. Int. 2018, 44, 10426–10432. [Google Scholar] [CrossRef]
- Zhou, T.; Liu, X.; Zhang, R.; Wang, Y.; Zhang, T. NiO/NiCo2O4 truncated nanocages with PdO catalyst functionalization as sensing layers for acetone detection. ACS Appl. Mater. Interfaces 2018, 10, 37242–37250. [Google Scholar] [CrossRef] [PubMed]
- Xun, C.; Liu, H.; Shao, J.; Pan, G.; Yang, X. Pd/PdO doped WO3 with enhanced selectivity and sensitivity for ppb level acetone and ethanol detection. Sens. Actuators B Chem. 2024, 401, 135003. [Google Scholar]
- Chowdhury, N.; Bhowmik, B. Micro/nanostructured gas sensors: The physics behind the nanostructure growth, sensing and selectivity mechanisms. Nanoscale Adv. 2021, 3, 73–93. [Google Scholar] [CrossRef]
- Souri, M.; Amoli, H.; Yamini, Y. Three-dimensionally ordered porous In-doped SmFeO3 perovskite gas sensor for highly sensitive and selective detection of formaldehyde. Sens. Actuators B Chem. 2024, 404, 135213. [Google Scholar] [CrossRef]
- Dong, C.; Tian, R.; Qu, H.; Tan, H.; Chen, G.; Guan, H.; Yin, Z. Anchoring Pt particles onto mesoporousized ZnO holey cubes for triethylamine detection with multifaceted superiorities. Small 2023, 19, 2300756. [Google Scholar] [CrossRef]
- Xu, Y.; Tian, X.; Fan, Y.; Sun, Y. A formaldehyde gas sensor with improved gas response and sub-ppm level detection limit based on NiO/NiFe2O4 composite nanotetrahedrons. Sens. Actuators B Chem. 2020, 309, 127719. [Google Scholar] [CrossRef]
- Ma, S.; Xu, J. Nanostructured metal oxide heterojunctions for chemiresistive gas sensors. J. Mater. Chem. A 2023, 11, 23742–23771. [Google Scholar] [CrossRef]
- Xing, X.; Li, Z.; Zhao, X.; Tian, Y.; Chen, X.; Lang, X.; Yang, D. Two-dimensional aluminum oxide nanosheets decorated with palladium oxide nanodots for highly stable and selective hydrogen sensing. Small 2023, 19, 2208026. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.; Akbar, S.; Morris, P. Nanoscale metal oxide-based heterojunctions for gas sensing: A review. Sens. Actuators B Chem. 2014, 204, 250–272. [Google Scholar] [CrossRef]
Materials | Microstructure | C (ppm) | T (°C) | Response | τres/τrec (s) | LOD (ppm) | Ref. |
---|---|---|---|---|---|---|---|
CeO2/Co3O4 | Micro-flower | 100 | 350 | 87.96 | 63/11 | 2 | [27] |
Co3O4@ZnO | Hollow sphere | 100 | 275 | 260 | 1/92 | 0.1 | [3] |
Co3O4 | Nanosphere | 5 | 100 | 86.1 | 0.4 | [28] | |
Co3O4 | Nanosphere | 100 | 140 | 53.78 | 99/50 | 0.15 | [29] |
CuO | Micro-sheet | 1000 | 160 | 69.73 | 10 | [30] | |
NiFe2O4 | Nanoblock | 10 | 130 | 29.747 | 16/955 | [31] | |
Co3O4 | Micro-flower | 100 | 165 | 8.43 | 59/63 | [32] | |
Fe-doped NiO | Flower-like | 100 | 275 | 114 | 63/21 | 0.05 | [33] |
Au-LaFeO3 | Core-shell spheres | 100 | 225 | 115 | 0.5 | [34] | |
PtO2/CuO | Polyhedron | 100 | 180 | 11.55 | 2.4/5.1 | [35] | |
Pd/PdO-NiFe2O4 | NPs | 300 | 260 | 36.9 | 18.2/17.6 | 1 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.; Chen, C. Nonaqueous Synthesis of Pd/PdO-Functionalized NiFe2O4 Nanoparticles Enabled Enhancing n-Butanol Detection. Nanomaterials 2024, 14, 1188. https://doi.org/10.3390/nano14141188
Wu H, Chen C. Nonaqueous Synthesis of Pd/PdO-Functionalized NiFe2O4 Nanoparticles Enabled Enhancing n-Butanol Detection. Nanomaterials. 2024; 14(14):1188. https://doi.org/10.3390/nano14141188
Chicago/Turabian StyleWu, Hongyang, and Chen Chen. 2024. "Nonaqueous Synthesis of Pd/PdO-Functionalized NiFe2O4 Nanoparticles Enabled Enhancing n-Butanol Detection" Nanomaterials 14, no. 14: 1188. https://doi.org/10.3390/nano14141188
APA StyleWu, H., & Chen, C. (2024). Nonaqueous Synthesis of Pd/PdO-Functionalized NiFe2O4 Nanoparticles Enabled Enhancing n-Butanol Detection. Nanomaterials, 14(14), 1188. https://doi.org/10.3390/nano14141188