H2S/Butane Dual Gas Sensing Based on a Hydrothermally Synthesized MXene Ti3C2Tx/NiCo2O4 Nanocomposite
Abstract
:1. Introduction
2. Experimental Results and Discussion
2.1. Morphology and Structure of Products
2.2. Gas-Sensing Properties
2.3. Gas-Sensing Mechanism
Synthesis Materials | Operating Temp. (°C) | H2S/Propane ppm | Response | LOD | Res./Rec. Times | Ref. |
---|---|---|---|---|---|---|
NFO nanoparticles | 150 (°C) | 200 ppm/H2S | 1.75 | NA | NA | [49] |
NiO@ZnO nanotubes | 215 (°C) | 50 ppm/H2S | 474 | 1 ppm | 50/124 s | [50] |
Fe2O3/NiO nanoplate | 300 (°C) | 200 ppm/H2S | 1.9 | 5 ppm | NA | [51] |
NiO thin films | 300 (°C) | 8 ppm/H2S | 1.46 | NA | 48/24 min | [52] |
NiFe2O4-MWCNT | 300 (°C) | 100 ppm/H2S | 2.5 | NA | 110/NA | [53] |
Fe2O3/NiO | 200 (°C) | 10 ppm/H2S | 8 | NA | 100/20 s | [54] |
α-Fe2O3/MoSe2 | room temp. | 30 ppm/H2S | 57.7 | 1 ppm | 50/53 s | [55] |
MgFe2O4 pellets | 425 (°C) | 2000 ppm/butane | 3.45 | NA | 63/178 s | [56] |
Pt-Zn2SnO4-ZnO nanorods | 250 (°C) | 9000 ppm/LPG | NA | 1000 ppm | NA | [57] |
ZnO thin film | 380 (°C) | 1660 ppm/butane | 2.33 | NA | ~340/~230 s | [58] |
MXene/NiCo2O4 | room temp. 90 (°C) | 10 ppm/H2S 4000 ppm/butane | 16 9.8 | 0.1 ppm 5 ppm | 10/40 s ~200/~180 s | This work |
3. Experimental Section
3.1. Materials
3.2. Synthesis of Layered Ti3C2Tx
3.3. Synthesis of Materials
3.4. Fabrication of Sensor Sheets
3.5. Physical Characterization of Materials
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kaur, M.; Dadhich, B.K.; Singh, R.; Bagwaiya, T.; Bhattacharya, S.; Debnath, A.; Muthe, K.P.; Gadkari, S.C. RF sputtered SnO2: NiO thin films as sub-ppm H2S sensor operable at room temperature. Sens. Actuators B Chem. 2017, 242, 389–403. [Google Scholar] [CrossRef]
- Sui, L.; Yu, T.; Zhao, D.; Cheng, X.; Zhang, X.; Wang, P.; Xu, Y.; Gao, S.; Zhao, H.; Gao, Y.; et al. In situ deposited hierarchical CuO/NiO nanowall arrays film sensor with enhanced gas sensing performance to H2S. J. Hazard. Mater. 2020, 385, 121570. [Google Scholar] [CrossRef]
- Lee, K.Y.; Hsieh, J.C.; Chen, C.A.; Chen, W.L.; Meng, H.F.; Lu, C.J.; Horng, S.F.; Zan, H.W. Ultrasensitive detection of hydrogen sulfide gas based on perovskite vertical channel chemo-sensor. Sens. Actuators B Chem. 2021, 326, 128988. [Google Scholar] [CrossRef]
- Rubright, S.L.M.; Pearce, L.; Peterson, J. Environmental toxicology of hydrogen sulfide. Nitric Oxide 2017, 71, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.T.; Zeng, Y.; Xu, X.J.; Lv, N.; Zhang, T. Hydrothermal synthesis of hollow ZnSnO3 microspheres and sensing properties toward butane. Sens. Actuators B Chem. 2011, 153, 170–175. [Google Scholar] [CrossRef]
- Wu, D.; Akhtar, A. Ppb-Level Hydrogen Sulfide Gas Sensor Based on the Nanocomposite of MoS2 Octahedron/ZnO-Zn2SnO4 nanoparticles. Molecules 2023, 28, 3230. [Google Scholar] [CrossRef] [PubMed]
- Ayesha, A.I.; Alghamdi, S.A.; Salah, B.; Bennett, S.H.; Crean, C.; Sellin, P.J. High sensitivity H2S gas sensors using lead halide perovskite nanoparticles. Res. Phys. 2022, 35, 105333. [Google Scholar] [CrossRef]
- Wang, Q.; Bai, J.L.; Huang, B.; Hu, Q.; Cheng, X.; Li, J.; Xie, E.; Wang, Y.; Pan, X. Design of NiCo2O4@SnO2 heterostructure nanofiber and their low temperature ethanol sensing properties. J. Alloys Compd. 2019, 791, 1025–1032. [Google Scholar] [CrossRef]
- Akhtar, A.; Di, W.; Liu, J.; Fu, C.; Wang, J.; Chu, X. The detection of ethanol vapors based on a p-type gas sensor fabricated from heterojunction MoS2–NiCo2O4. Mater. Chem. Phys. 2022, 282, 125964. [Google Scholar] [CrossRef]
- Rajasekhar, D.; Naresh, B.; Madhavi, V.; Gopi, K.; Krishna; Kuchi, C.; Kumar, K.S.; Reddy, P.S. Hierarchical NiCo2O4/NiO mixed nanofibers for enhanced supercapacitor and ammonia gas sensor applications. Inorg. Chem. Commun. 2023, 157, 111405. [Google Scholar] [CrossRef]
- Xiao, H.; Ma, G.; Tan, J.; Ru, S.; Ai, Z.; Wang, C. Three-dimensional hierarchical ZnCo2O4@C3N4-B nanoflowers as high-performance anode materials for lithium-ion batteries. RSC Adv. 2020, 10, 32609–32615. [Google Scholar] [CrossRef] [PubMed]
- Gnanamoorthy, G.; Ramar, K.; Ali, D.; Yadav, V.K.; Sureshbabu, K.; Narayanan, V. A series of ZnCo2O4/rGO/Pt nanocubes with excellent photocatalytic activity towards visible light. Chem. Phys. Lett. 2020, 759, 137988. [Google Scholar] [CrossRef]
- Hu, Y.; Li, T.; Zhang, J.; Guo, J.; Wang, W.; Zhang, D. High-sensitive NO2 sensor based on p-NiCo2O4/n-WO3 heterojunctions. Sens. Actuators B Chem. 2022, 352, 130912. [Google Scholar] [CrossRef]
- Kumar, R. NiCo2O4 nano-/microstructures as high-performance biosensors: A review. Nanomicro Lett. 2020, 12, 122. [Google Scholar] [CrossRef]
- Du, L.Y.; Song, X.Y.; Liang, X.; Liu, Y.; Zhang, M.Z. Formation of NiCo2O4 hierarchical tubular nanostructures for enhanced xylene sensing properties. Appl. Surf. Sci. 2020, 526, 146706. [Google Scholar] [CrossRef]
- Dang, F.; Wang, Y.L.; Gao, J.N.; Xu, L.P.; Cheng, P.F.; Lv, L.; Zhang, B.; Li, X.; Wang, C. Hierarchical flower-like NiCo2O4 applied in n-butanol detection at low temperature. Sens. Actuators B Chem. 2020, 320, 128577. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, L.; Tian, H.; Qiao, L.; Zeng, Y.; Liu, C. Bimetal carbonaceous templates for multi-shelled NiCo2O4 hollow sphere with enhanced xylene detection. Sens. Actuators B Chem. 2021, 339, 129862. [Google Scholar] [CrossRef]
- Wu, J.; Yang, Y.; Yu, H.; Dong, X.T.; Wang, T.T. Ultra-efficient room temperature H2S gas sensor based on NiCo2O4/r-GO Nanocomposites. New J. Chem. 2019, 43, 10501–10508. [Google Scholar] [CrossRef]
- Gu, L.; Zheng, K.; Zhou, Y.; Li, J.; Mo, X.; Patzke, G.R.; Chen, G. Humidity sensors based on ZnO/TiO2 core/shell nanorod arrays with enhanced sensitivity. Sens. Actuators B Chem. 2011, 159, 1–7. [Google Scholar] [CrossRef]
- Stankic, S.; Suman, S.; Haque, F.; Vidic, J. Pure and multi metal oxide nanoparticles: Synthesis, antibacterial and cytotoxic properties. J. Nanobiotechnol. 2016, 14, 73. [Google Scholar] [CrossRef]
- Ali, L.; Wei, J.; Meng, F.Y.; Qureshi, M.W.; Adhikari, K.K.; Li, M.Y.; Liang, J.G.; Wang, X.L.; Ding, X.M.; Kim, N.Y.; et al. Sensitivity–Enhanced detection of acetone gas using MXene-Immobilized planar microwave sensor. Sens. Actuators B Chem. 2023, 392, 134048. [Google Scholar] [CrossRef]
- Liu, Y.; Ding, Y.; Lu, Z.; Song, P.; Wang, Q. Layered Ti3C2Tx MXene/CuO spindles composites for NH3 detection at room-temperature. J. Alloys Compd. 2023, 938, 168563. [Google Scholar] [CrossRef]
- Liu, R.; Sun, R.; Sima, Z.; Song, P.; Ding, Y.; Wang, Q. Au-decorated In2O3 nanospheres/exfoliated Ti3C2Tx MXene nanosheets for highly sensitive formaldehyde gas sensing at room temperature. Appl. Surf. Sci. 2022, 605, 154839. [Google Scholar] [CrossRef]
- Hermawan, A.; Zhang, B.; Taufik, A.; Asakura, Y.; Hasegawa, T.; Zhu, J.; Shi, P.; Yin, S. CuO Nanoparticles/Ti3C2Tx MXene Hybrid Nanocomposites for Detection of Toluene Gas. ACS Appl. Nano Mater. 2020, 3, 4755–4766. [Google Scholar] [CrossRef]
- Pasupuleti, K.S.; Thomas, A.M.; Vidyasagar, D.; Rao, V.N.; Yoon, S.G.; Kim, Y.H.; Kim, S.G.; Kim, M.D. ZnO@Ti3C2Tx MXene Hybrid Composite-Based Schottky-Barrier-Coated SAW Sensor for Effective Detection of Sub-ppb-Level NH3 at Room Temperature under UV Illumination. ACS Mater. Lett. 2023, 5, 2739–2746. [Google Scholar] [CrossRef]
- Hussain, I.; Lamiel, C.; Javed, M.S.; Ahmad, M.; Sahoo, S.; Chen, X.; Qin, N.; Iqbal, S.; Gu, S.; Li, Y. Christodoulos Chatzichristodoulou f, Kaili Zhang a, MXene-based hetero-structures: Current trend and development in electrochemical energy storage devices. Prog. Energy Combust. Sci. 2023, 97, 101097. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, J.; Lv, K.; Kong, N.; Shao, Y.; Tao, J. Carbon nanotubes boosts the toughness and conductivity of wet-spun MXene fibers for fiber-shaped super capacitors. Carbon 2022, 200, 38–46. [Google Scholar] [CrossRef]
- Han, M.; Shen, W. Nacre-inspired cellulose nanofiber/MXene flexible composite film with mechanical robustness for humidity sensing. Carbohydr. Polym. 2022, 298, 120109. [Google Scholar] [CrossRef]
- Michael, N.; Murat, K.; Volker, P.; Jun, L.; Junjie, N.; Min, H.; Lars, H.; Yury, G.; Barsoum, M.W. Two–dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253. [Google Scholar]
- Sun, S.; Wang, M.; Chang, X.; Jiang, Y.; Zhang, D.; Wang, D.; Zhang, Y.; Lei, Y. W18O49/Ti3C2Tx Mxene nanocomposites for highly sensitive acetone gas sensor with low detection limit. Sens. Actuators B Chem. 2020, 304, 127274. [Google Scholar] [CrossRef]
- Cai, Y.; Wang, Y.; Wen, X.; Xiong, J.; Song, H.; Li, Z.; Zu, D.; Shen, Y.; Li, C. Ti3C2Tx MXene/urchin-like PANI hollow nanosphere composite for high performance flexible ammonia gas sensor. Anal. Chim. Acta 2022, 1225, 340256. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Koh, H.J.; Ren, C.E.; Kwon, O.; Maleski, K.; Cho, S.Y.; Anasori, B.; Kim, C.K.; Choi, Y.K.; Kim, J.; et al. Metallic Ti3C2Tx MXene Gas Sensors with Ultrahigh Signal-to-Noise Ratio. ACS Nano 2018, 12, 986–993. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, F.; Hermawan, A.; Asakura, Y.; Hasegawa, T.; Kumagai, H.; Kato, H.; Kakihana, M.; Zhu, J.; Yin, S. SnO-SnO2 modified two-dimensional MXene Ti3C2Tx for acetone gas sensor working at room temperature. J. Mater. Sci. Technol. 2021, 73, 128–138. [Google Scholar] [CrossRef]
- Korotcenkov, G.; Cho, B.K. Porous semiconductors: Advanced material for gas sensor applications. Crit. Rev. Solid State Mater. Sci. 2010, 35, 1–37. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, X.; Wang, J.; Deng, Q.; Li, M.; Du, S.; Han, Y.-H.; Lee, J.; Huang, Q. Facile preparation of in situ coated Ti3C2Tx/Ni0.5Zn0.5Fe2O4 composites and their electromagnetic performance. RSC Adv. 2017, 7, 24698–24708. [Google Scholar] [CrossRef]
- Karthikeyan, P.; Elanchezhiyan, S.S.D.; Preethi, J.; Talukdar, K.; Meenakshi, S.; Park, C.M. Two-dimensional (2D) Ti3C2Tx MXene nanosheets with superior adsorption behavior for phosphate and nitrate ions from the aqueous environment. Ceram. Int. 2021, 47, 732–739. [Google Scholar] [CrossRef]
- Packiaraj, R.; Devendran, P.; Venkatesh, K.S.; Mahendraprabhu, K.; Nallamuthu, N. Unveiling the structural, charge density distribution and supercapacitor performance of NiCo2O4 nano flowers for asymmetric device fabrication. J. Energy Storage 2021, 34, 102029. [Google Scholar] [CrossRef]
- Yuan, H.; Li, J.; Yang, W.; Zhuang, Z.; Zhao, Y.; He, L.; Xu, L.; Liang, X.; Zhu, R.; Mai, L. Oxygen Vacancy–Determined Highly Efficient Oxygen Reduction in NiCo2O4/Hollow Carbon Spheres. ACS Appl. Mater. Interfaces 2018, 10, 16410–16417. [Google Scholar] [CrossRef]
- Huang, Y.B.; Jiang, S.H.; Liang, R.C.; Sun, P.; Hai, Y.; Zhang, L. Thermal-triggered insulating fireproof layers: A novel fire-extinguishing MXene composites coating. Chem. Eng. J. 2020, 391, 123621. [Google Scholar] [CrossRef]
- Li, S.N.; Yu, Z.R.; Guo, B.F.; Guo, K.Y.; Li, Y.; Gong, L.X.; Zhao, L.; Bae, J.; Tang, L.C. Environmentally stable, mechanically flexible, self-adhesive, and electrically conductive Ti3C2TX MXene hydrogels for wide-temperature strain sensing. Nano Energy 2021, 90, 106502. [Google Scholar] [CrossRef]
- Zhang, D.; Wu, J.; Cao, Y. Ultrasensitive H2S gas detection at room temperature based on copper oxide/molybdenum disulfide nanocomposite with synergistic effect. Sens. Actuators B Chem. 2019, 287, 346–355. [Google Scholar] [CrossRef]
- Sun, P.; Wang, C.; Liu, J.; Zhou, X.; Li, X.; Hu, X.; Lu, G. Hierarchical assembly of alpha-Fe2O3 nanosheets on SnO2 hollow nanospheres with enhanced ethanol sensing properties. ACS Appl. Mater. Interfaces 2015, 7, 19119–19125. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Yu, J.; Yao, G.; Li, Z.; Zou, W.; Li, X.; Zhu, H.; Huang, Z.; Tang, Z. Room temperature NH3 sensing properties and humidity influence of Ti3C2Tx and Ag-Ti3C2Tx in an oxygen-free environment. Sensors Actuators B Chem. 2022, 369, 132195. [Google Scholar] [CrossRef]
- Pasupuleti, K.S.; Chougule, S.S.; Vidyasagar, D.; Bak, N.; Jung, N.; Kim, Y.H.; Lee, J.H.; Kim, S.G.; Kim, M.D. UV light driven high-performance room temperature surface acoustic wave NH3 gas sensor using sulfur-doped g-C3N4 quantum dots. Nano Res. 2023, 16, 7682–7695. [Google Scholar] [CrossRef]
- Zeng, W.; Liu, Y.; Mei, J.; Tang, C.; Luo, K.; Li, S.; Zhan, H.; He, Z. Hierarchical SnO2–Sn3O4 heterostructural gas sensor with high sensitivity and selectivity to NO2. Sens. Actuator. B Chem. 2019, 301, 127010. [Google Scholar] [CrossRef]
- Pang, C.; Yan, B.; Liao, L.; Liu, B.; Zheng, Z.; Wu, T.; Sun, H.D.; Yu, T. Synthesis, characterization and opto-electrical properties of ternary Zn2SnO4 nanowires. Nanotechnology 2010, 21, 465706. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wei, L.; Lin, Z.; Liu, Q.; Chen, Y.; Lin, Y.; Huang, Z. Hierarchical flower-like NiCo2O4@TiO2 hetero-nanosheets as anodes for lithium ion batteries. RSC Adv. 2017, 7, 47602–47613. [Google Scholar] [CrossRef]
- Liu, X.; He, L.; Zhang, Y.; Li, F. Improving the electrochemical properties of Ti3C2Tx MXene for H2S electrochemical sensor by calcination. Ceram. Int. 2023, 23, 38575–38584. [Google Scholar] [CrossRef]
- Ghosh, P.; Mukherjee, A.; Fu, M.; Chattopadhyay, S.; Mitra, P. Influence of particle size on H2 and H2S sensing characteristics of nanocrystalline nickel ferrite. Phys. E Low-Dimens. Syst. Nanostruct. 2015, 74, 570–575. [Google Scholar] [CrossRef]
- Xu, L.; Zheng, R.F.; Liu, S.H.; Song, J.; Chen, J.S.; Dong, B.; Song, H.W. NiO@ZnO heterostructured nanotubes: Coelectrospinning fabrication, characterization, and highly enhanced gas sensing properties. Inorg. Chem. 2012, 51, 7733–7740. [Google Scholar] [CrossRef]
- Sun, G.J.; Kheel, H.; Lee, J.K.; Choi, S.; Lee, S.; Lee, C. H2S gas sensing properties of Fe2O3 nanoparticle-decorated NiO nanoplate sensors. Surf. Coat. Technol. 2016, 307, 1088–1095. [Google Scholar] [CrossRef]
- Bagwaiya, T.; Goyal, C.P.; Bhattacharya, S.; Ramgir, N.S.; Bhattacharya, D.; Koiry, S.P.; Aswal, D.K.; Gupta, S.K. H2S sensing properties of R.F. sputtered NiO thin films. AIP Conf. Proc. 2014, 1591, 938. [Google Scholar]
- Hajihashemi, R.; Rashidi, A.M.; Alaie, M.; Mohammadzadeh, R.; Izadi, N. The study of structural properties of carbon nanotubes decorated with NiFe2O4 nanoparticles and application of nano-composite thin film as H2S gas sensor. Mater. Sci. Eng. C 2014, 44, 417–421. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Chen, Y.; Ma, J. Fe3+ facilitating the response of NiO towards H2S. RSC Adv. 2014, 4, 14201–14205. [Google Scholar] [CrossRef]
- Pan, W.; Zhang, Y.; Yu, S.; Liu, X.; Zhang, D. Hydrogen sulfide gas sensing properties of metal organic framework-derived α-Fe2O3 hollow nanospheres decorated with MoSe2 nanoflowers. Sens. Actuators B Chem. 2021, 344, 130221. [Google Scholar] [CrossRef]
- Patil, J.Y.; Khandekar, M.S.; Mulla, I.S.; Suryavanshi, S.S. Combustion synthesis of magnesium ferrite as liquid petroleum gas (LPG) sensor: Effect of sintering temperature. Curr. Appl. Phys. 2012, 12, 319–324. [Google Scholar] [CrossRef]
- Sivapunniyam, A.; Wiromrat, N.; Myint, M.T.Z.; Dutta, J. High-performance liquefied petroleum gas sensing based on nanostructures of zinc oxide and zinc stannate. Sens. Actuators B Chem. 2011, 157, 232–239. [Google Scholar] [CrossRef]
- Pati, S.; Maity, A.; Banerji, P.; Majumder, S.B. Temperature dependent donor-acceptor transition of ZnO thin film gas sensor during butane detection. Sens. Actuators B Chem. 2013, 183, 172–178. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadaf, S.; Zhang, H.; Akhtar, A. H2S/Butane Dual Gas Sensing Based on a Hydrothermally Synthesized MXene Ti3C2Tx/NiCo2O4 Nanocomposite. Molecules 2024, 29, 202. https://doi.org/10.3390/molecules29010202
Sadaf S, Zhang H, Akhtar A. H2S/Butane Dual Gas Sensing Based on a Hydrothermally Synthesized MXene Ti3C2Tx/NiCo2O4 Nanocomposite. Molecules. 2024; 29(1):202. https://doi.org/10.3390/molecules29010202
Chicago/Turabian StyleSadaf, Shama, Hongpeng Zhang, and Ali Akhtar. 2024. "H2S/Butane Dual Gas Sensing Based on a Hydrothermally Synthesized MXene Ti3C2Tx/NiCo2O4 Nanocomposite" Molecules 29, no. 1: 202. https://doi.org/10.3390/molecules29010202
APA StyleSadaf, S., Zhang, H., & Akhtar, A. (2024). H2S/Butane Dual Gas Sensing Based on a Hydrothermally Synthesized MXene Ti3C2Tx/NiCo2O4 Nanocomposite. Molecules, 29(1), 202. https://doi.org/10.3390/molecules29010202