Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = Ni-Fe electroplating

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2568 KiB  
Article
Hydrothermal Conversion of Sn-Bearing Sludge into Fe/S Rods for Efficient Heavy Metal Removal in Wastewater
by Shengyao Ma, Wu Yang, Weilu Yang and Yu Chen
Separations 2025, 12(6), 153; https://doi.org/10.3390/separations12060153 - 6 Jun 2025
Viewed by 336
Abstract
Hydrothermal conversion is an effective strategy to transform heavy metals in electroplating sludge into catalytic materials and use them to treat electroplating wastewater. This study presents a one-step hydrothermal method for converting Sn-bearing sludge, containing 23.41% Sn, 52.12% Fe, and other impurities, into [...] Read more.
Hydrothermal conversion is an effective strategy to transform heavy metals in electroplating sludge into catalytic materials and use them to treat electroplating wastewater. This study presents a one-step hydrothermal method for converting Sn-bearing sludge, containing 23.41% Sn, 52.12% Fe, and other impurities, into Fe/S rods using a NaOH/Na2S solution. The resulting Fe/S rods, with a diameter of 50–100 nm and length of 0.5–2.5 μm, showed excellent performance in wastewater treatment. In the presence of 50 mg/L EDTA, the Fe/S rods removed 22.9% of Ni, 30.2% of Cu, and 41.5% of Zn. When activated with PMS, the removal efficiencies increased significantly to 68.9%, 90.9%, and 91.6% for Ni, Cu, and Zn, respectively. The optimal rod dosage (1 g/L) achieved removal efficiencies of 94.2%, 78.5%, and 99.7% for Cu, Ni, and Zn, while increasing PMS dosage led to nearly 100% removal within 60 min. Additionally, the process allowed for the complete recycling of the alkaline solution, with regenerated rods showing similar performance to the original ones in wastewater treatment. This method offers an efficient and sustainable approach to sludge resource utilization and heavy metal removal from wastewater. Full article
(This article belongs to the Section Environmental Separations)
Show Figures

Graphical abstract

26 pages, 39179 KiB  
Article
Corrosion Behavior of Fe-Ni Electrodeposited Coatings in Weak Ammonium Hydroxide Solution
by Joel Andrew Hudson and Henry E. Cardenas
Corros. Mater. Degrad. 2025, 6(2), 15; https://doi.org/10.3390/cmd6020015 - 17 Apr 2025
Viewed by 794
Abstract
Iron and iron-nickel alloy electrodeposits synthesized from sulfate-based electroplating baths were applied to a mild carbon steel substrate. Coated specimens were immersed in an oxygen-saturated, weak ammonium hydroxide solution (pH 9.5–10.0), and their corrosion performance was evaluated using electrochemical techniques. Galvanic and general [...] Read more.
Iron and iron-nickel alloy electrodeposits synthesized from sulfate-based electroplating baths were applied to a mild carbon steel substrate. Coated specimens were immersed in an oxygen-saturated, weak ammonium hydroxide solution (pH 9.5–10.0), and their corrosion performance was evaluated using electrochemical techniques. Galvanic and general corrosion behaviors were analyzed to assess the sacrificial protection provided by Fe and Fe-Ni coatings relative to uncoated steel. The influence of anode-to-cathode (A/C) surface area ratios (1:1, 10:1, and 100:1) on the occurrence of plating-induced surface cracks was also examined. Surface morphology and elemental composition of the deposits were characterized. Results of the study indicated that increasing the Ni2+/Fe2+ molar ratio of the electroplating bath from 0 to 0.167 led to (1) reduced surface porosity and cracking, (2) decreased galvanic corrosion rates between the electrodeposit and substrate, and (3) a progressive increase in the temperature dependence of the general corrosion rate between 20 °C and 60 °C. The development of Fe and Fe-Ni alloy electrodeposits as protective coatings is of particular interest in water-tube power boiler applications, where production of corrosion products must be controlled. Further research is needed to develop coatings that perform predictably under elevated pressures and temperatures typical of operating boiler environments. Full article
Show Figures

Figure 1

15 pages, 2562 KiB  
Article
Sludge Recycling from Non-Lime Purification of Electrolysis Wastewater: Bridge from Contaminant Removal to Waste-Derived NOX SCR Catalyst
by Ju Gao, Fucheng Sun, Pei Liu, Jizhi Zhou and Yufeng Zhang
Catalysts 2024, 14(8), 535; https://doi.org/10.3390/catal14080535 - 17 Aug 2024
Viewed by 4482
Abstract
Catalysts for the selective catalytic reduction (NOX SCR) of nitrogen oxides can be obtained from sludge in industrial waste treatment, and, due to the complex composition of sludge, NOX SCR shows various SCR efficiencies. In the current work, an SCR catalyst [...] Read more.
Catalysts for the selective catalytic reduction (NOX SCR) of nitrogen oxides can be obtained from sludge in industrial waste treatment, and, due to the complex composition of sludge, NOX SCR shows various SCR efficiencies. In the current work, an SCR catalyst developed from the sludge produced with Fe/C micro-electrolysis Fenton technology (MEF) in wastewater treatment was investigated, taking into account various sludge compositions, Fe/C ratios, and contaminant contents. It was found that, at about 300 °C, the NOX removal rate could reach 100% and there was a wide decomposition temperature zone. The effect of individual components of electroplating sludge, i.e., P, Fe and Ni, on NOX degradation performance of the obtained solids was investigated. It was found that the best effect was achieved when the Fe/P was 8/3 wt%, and variations in the Ni content had a limited effect on the NOX degradation performance. When the Fe/C was 1:2 and the Fe/C/P was 1:2:0.4, the electroplating sludge formed after treatment with Fe/C MEF provided the best NOX removal rate at 100%. Moreover, the characterization results show that the activated carbon was also involved in the catalytic reduction degradation of NOX. An excessive Fe content may cause agglomeration on the catalyst surface and thus affect the catalytic efficiency. The addition of P effectively reduces the catalytic reaction temperature, and the formation of phosphate promotes the generation of adsorbed oxygen, which in turn contributes to improvements in catalytic efficiency. Therefore, our work suggests that controlling the composition in the sludge is an efficient way to modulate SCR catalysis, providing a bridge from contaminant-bearing waste to efficient catalyst. Full article
(This article belongs to the Special Issue Homogeneous and Heterogeneous Catalytic Oxidation and Reduction)
Show Figures

Figure 1

16 pages, 9034 KiB  
Article
Combinatorial Design of an Electroplated Multi-Principal Element Alloy: A Case Study in the Co-Fe-Ni-Zn Alloy System
by Péter Nagy, László Péter, Tamás Kolonits, Attila Nagy and Jenő Gubicza
Metals 2024, 14(6), 700; https://doi.org/10.3390/met14060700 - 14 Jun 2024
Cited by 3 | Viewed by 1611
Abstract
Multi-principal element alloys (MPEAs) are at the forefront of materials science due to their large variety of compositions, which can yield unexplored properties. Mapping the structure and properties of a compositional MPEA library in a reasonable time can be performed with the help [...] Read more.
Multi-principal element alloys (MPEAs) are at the forefront of materials science due to their large variety of compositions, which can yield unexplored properties. Mapping the structure and properties of a compositional MPEA library in a reasonable time can be performed with the help of gradient samples. This type of specimens has already been produced in both bulk and layer forms. However, combinatorial MPEA coatings have not been synthesized by electroplating, although this method has a great potential to deposit a coating on components with complex shapes. In this study, a combinatorial Co-Fe-Ni-Zn coating with the thickness of 4 μm was synthesized by electrodeposition. The material exhibited a well-defined Zn gradient; therefore, the investigation of the effect of Zn concentration on the microstructure and mechanical properties was feasible without the production of an excessively large number of specimens. The Zn concentration was controlled laterally through mass transfer due to the unique geometry of the substrate, and it covered a concentration range of 18–44 at%. The chemical and phase compositions as well as the morphology of the as-processed samples were investigated in multiple locations using X-ray diffraction and scanning electron microscopy. The mechanical performance was characterized by nanoindentation. It was found that for any composition, the structure is face-centered cubic and the lattice constant scaled with the Zn concentration of the deposit. The hardness and the elastic modulus were consistent with values of about 4.5 and 130 GPa, respectively, in the Zn concentration range of 25–44 at%. Full article
(This article belongs to the Section Crystallography and Applications of Metallic Materials)
Show Figures

Figure 1

12 pages, 3215 KiB  
Article
Advanced Alkaline Water Electrolysis Stack with Non-Noble Catalysts and Hybrid Electrical Connections of the Single Cells
by Galin Borisov, Vasil Bachvarov, Rashko Rashkov and Evelina Slavcheva
Catalysts 2024, 14(3), 179; https://doi.org/10.3390/catal14030179 - 4 Mar 2024
Cited by 2 | Viewed by 4489
Abstract
In this research, a thin layer of multi-metallic non-precious catalyst is prepared by electroplating from an electrolyte bath containing Ni, Co, and Fe sulfates over pressed commercial nickel foam electrode. The composition of the deposited catalytic film and its morphology are characterized by [...] Read more.
In this research, a thin layer of multi-metallic non-precious catalyst is prepared by electroplating from an electrolyte bath containing Ni, Co, and Fe sulfates over pressed commercial nickel foam electrode. The composition of the deposited catalytic film and its morphology are characterized by scanning electron microscopy (SEM) with energy dispersion X-ray (EDX) techniques. The efficiency of the prepared binder-free electrodes for electrochemical water splitting is investigated in a self-designed short water electrolysis stack with zero-gap configuration of the integrated single cells and hybrid electrical connections. The separator used is a commercial Zirfon Perl 500 membrane, doped with 25% KOH. The performance of the catalyst, the single cells, and the developed electrolyzer stack are examined by steady state polarization curves and stationery galvanostatic stability tests in the temperature range 20 °C to 80 °C. The NiFeCoP multi-metallic alloy demonstrates superior catalytic efficiency compared to the pure nickel foam electrodes and reliable stability with time. The single cells in the stack show identical performance and the cumulative stack parameters strictly follow the theoretical considerations. The applied hybrid electrical connections enable scaling of both the stack voltage and the passing current, which in turn ensures flexibility with regard to the input power and the hydrogen production capacity. Full article
(This article belongs to the Section Electrocatalysis)
Show Figures

Figure 1

16 pages, 6107 KiB  
Article
Synthesis, Wear and Corrosion of Novel Electrospark and Electrospark–Electrochemical Hybrid Coatings Based on Carbon Steels
by Iurii Benkovsky, Natalia Tsyntsaru, Serhii Silkin, Vladimir Petrenko, Vidas Pakstas, Henrikas Cesiulis and Alexandr Dikusar
Lubricants 2023, 11(5), 205; https://doi.org/10.3390/lubricants11050205 - 5 May 2023
Cited by 4 | Viewed by 1665
Abstract
The electrospark deposition (ESD) technique is a low-heat-input process that has great potential for coating applications and the restoration of damaged high-value parts. Carbon steels are commonly used as a substrate material for ESD coatings. However, we demonstrated that carbon steels could be [...] Read more.
The electrospark deposition (ESD) technique is a low-heat-input process that has great potential for coating applications and the restoration of damaged high-value parts. Carbon steels are commonly used as a substrate material for ESD coatings. However, we demonstrated that carbon steels could be used successfully as the electrode tool for the ESD process. Furthermore, ESD coatings commonly have a high as–deposited roughness. In view of this, in order to reduce the roughness of the ESD coatings, electrodeposition as a tool to alter surface morphology was investigated. Hence, the micro-leveling power of several electrolytes for Ni, Fe-W, Fe, and Cr electrodeposition were evaluated. The maximum leveling effect was detected for Ni electroplated from the Watts electrolyte. Thus, the novel hybrid coatings based on an ESD layer and a subsequent layer of electrodeposited Ni were obtained. ESD layers were obtained by using the following electrode tools as anodes: several types of carbon steels (St20, St30, and St45), alloys T15K6 (WC + TiC + Co), CuNiZn; and NiCr. The morphology and structure of the obtained hybrid coatings with an electrodeposited Ni top-layer was analyzed and compared to ESD coatings from the point of view of their wear and corrosion behavior. The wear rate of the novel ESD coatings based on carbon steels was comparable with coatings obtained using the NiCr electrode tool. Moreover, for all the studied cases, the corrosion resistance of the hybrid coatings was higher than for their ESD counterparts and close to electrolytic chromium. Full article
(This article belongs to the Special Issue Friction and Wear of Coatings/Films)
Show Figures

Figure 1

11 pages, 4651 KiB  
Article
Magnetocaloric Effect in CoFe-Electroplated Ni50Mn33In16Cr1 Alloy
by Peerapat Lekkla, Pongsakorn Jantaratana and Thanakrit Chotibhawaris
Metals 2022, 12(12), 2137; https://doi.org/10.3390/met12122137 - 13 Dec 2022
Cited by 3 | Viewed by 1655
Abstract
A high-saturation magnetization CoFe layer was electroplated onto Ni50Mn33In16Cr1 alloy using a magnetic field assistance electroplating bath. This CoFe-coated alloy can function as an active magnetic regenerator owing to its magnetocaloric effect. The CoFe coating layer [...] Read more.
A high-saturation magnetization CoFe layer was electroplated onto Ni50Mn33In16Cr1 alloy using a magnetic field assistance electroplating bath. This CoFe-coated alloy can function as an active magnetic regenerator owing to its magnetocaloric effect. The CoFe coating layer did not affect the entropy change calculated from the isothermal magnetization of the alloy, but it significantly affected the temperature variation of the alloy by changing the externally applied magnetic field. The temperature change of the CoFe-coated alloy increases with increasing CoFe coating times. By comparing with the as-sintered alloy, a maximum increase of 150% in temperature change can be observed in the alloy coated with CoFe for 2 h. Full article
(This article belongs to the Section Metal Failure Analysis)
Show Figures

Figure 1

10 pages, 7557 KiB  
Article
Fabrication of a Potential Electrodeposited Nanocomposite for Dental Applications
by Chun-Wei Chang, Chen-Han Tsou, Bai-Hung Huang, Kuo-Sheng Hung, Yung-Chieh Cho, Takashi Saito, Chi-Hsun Tsai, Chia-Chien Hsieh, Chung-Ming Liu and Wen-Chien Lan
Inorganics 2022, 10(10), 165; https://doi.org/10.3390/inorganics10100165 - 3 Oct 2022
Cited by 1 | Viewed by 2013
Abstract
In the present study, a nanocrystalline Ni-Fe matrix with reinforced TiO2 nanoparticles as a functional nanocomposite material was fabricated by pulsed current electroforming in UV-LIGA (lithography, electroplating, and molding). The influences of TiO2 nanoparticles on the Ni-Fe nanocomposite deposition were also [...] Read more.
In the present study, a nanocrystalline Ni-Fe matrix with reinforced TiO2 nanoparticles as a functional nanocomposite material was fabricated by pulsed current electroforming in UV-LIGA (lithography, electroplating, and molding). The influences of TiO2 nanoparticles on the Ni-Fe nanocomposite deposition were also investigated using scanning electron microscopy, transmission electron microscopy, and in vitro cytotoxicity assay. It was found that the Ni-Fe nanocomposite with 5 wt.% TiO2 nanoparticles showed a smooth surface and better dispersion property. When the Ni-Fe nanocomposite is combined with 20 wt.% TiO2, it resulted in congeries of TiO2 nanoparticles. In addition, TiO2 nanoparticles possessed better dispersion properties as performed in pulse current electrodeposition. The microstructure of the electrodeposited Ni-Fe-TiO2 nanocomposite was a FeNi3 phase containing anatase nano-TiO2. Moreover, the electrodeposited Ni-Fe-5 wt.% TiO2 nanocomposite exhibited a smooth surface and structural integrity. Cytotoxicity assay results also proved that the Ni-Fe nanocomposite with different concentrations of TiO2 nanoparticles had good biocompatibility. Therefore, the optimization of pulse current electroforming parameters was successfully applied to fabricate the Ni-Fe-TiO2 nanocomposite, and thus could be used as an endodontic file material for dental applications. Full article
(This article belongs to the Special Issue New Advances into Nanostructured Oxides)
Show Figures

Figure 1

9 pages, 3750 KiB  
Article
Magnetic Properties of GaAs/NiFe Coaxial Core-Shell Structures
by Eduard V. Monaico, Vadim Morari, Maksim Kutuzau, Veaceslav V. Ursaki, Kornelius Nielsch and Ion M. Tiginyanu
Materials 2022, 15(18), 6262; https://doi.org/10.3390/ma15186262 - 9 Sep 2022
Cited by 5 | Viewed by 1826
Abstract
Uniform nanogranular NiFe layers with Ni contents of 65%, 80%, and 100% have been electroplated in the potentiostatic deposition mode on both planar substrates and arrays of nanowires prepared by the anodization of GaAs substrates. The fabricated planar and coaxial core-shell ferromagnetic structures [...] Read more.
Uniform nanogranular NiFe layers with Ni contents of 65%, 80%, and 100% have been electroplated in the potentiostatic deposition mode on both planar substrates and arrays of nanowires prepared by the anodization of GaAs substrates. The fabricated planar and coaxial core-shell ferromagnetic structures have been investigated by means of scanning electron microscopy (SEM) and vibrating sample magnetometry (VSM). To determine the perspectives for applications, a comparative analysis of magnetic properties, in terms of the saturation and remanence moment, the squareness ratio, and the coercivity, was performed for structures with different Ni contents. Full article
(This article belongs to the Special Issue Magnetic and Structural Properties of Ferromagnetic Thin Films)
Show Figures

Figure 1

18 pages, 1172 KiB  
Article
Metals Bioaccumulation in 15 Commonly Consumed Fishes from the Lower Meghna River and Adjacent Areas of Bangladesh and Associated Human Health Hazards
by Mohammad Belal Hossain, Fatema Tanjin, M. Safiur Rahman, Jimmy Yu, Shirin Akhter, Md Abu Noman and Jun Sun
Toxics 2022, 10(3), 139; https://doi.org/10.3390/toxics10030139 - 12 Mar 2022
Cited by 72 | Viewed by 11049
Abstract
The lower Meghna River, the easternmost part of the Ganges Delta, faces severe anthropogenic perturbations as it receives a huge discharge and industrial effluents. To measure the metal concentrations and human health hazards, edible tissues of 15 commercially important fish species were collected [...] Read more.
The lower Meghna River, the easternmost part of the Ganges Delta, faces severe anthropogenic perturbations as it receives a huge discharge and industrial effluents. To measure the metal concentrations and human health hazards, edible tissues of 15 commercially important fish species were collected from the local fish markets and the lower Meghna River, Bangladesh. Trace and heavy metals such as Pb, Cr, Cu, Zn, Mn, Fe, Hg, Ni, Ca, Co, Se, Rb, Sr, and As were detected using the Energy Dispersive X-ray Fluorescence (EDXRF) method. The hierarchy of mean metal concentrations obtained was: Fe (162.198 mg/kg) > Zn (113.326 mg/kg) > Ca (87.828 mg/kg) > Sr (75.139 mg/kg) > Cu (36.438 mg/kg) > Se (9.087 mg/kg) > Cr (7.336 mg/kg) > Mn (6.637 mg/kg) > Co (3.474 mg/kg) > Rb (1.912 mg/kg) > Hg (1.657 mg/kg) > Ni (1.467 mg/kg) > Pb (0.521 mg/kg) > As (BDL). Based on the metal concentration obtained, the carnivorous species contained more metals than omnivores and herbivores. Similarly, the euryhaline and benthic feeder fishes had more metals than the stenohalines and demersal fishes. The metal pollution index (MPI) suggested that the highly consumed fish species Tilapia (Oreochromis mossambicus) and Rui (Labeo rohita) accumulated higher metals than other fishes. Both the Targeted Hazard Quotient (THQ) and Hazard Index (HI) values for adult and child consumers were <1, indicating that consumers would not experience the non-carcinogenic health effects. Although children were more susceptible than adults, carcinogenic risk (CR) exposure of Cr for all the consumers was found in the acceptable range (10−6 to 10−4), but the CR exposure of Pb was negligible for all the consumers. The correlation, principal component analysis (PCA), and cluster analysis were conducted to identify the sources of metals identified from the fish tissue. The results indicated that the probable sources of the pollutants were anthropogenic, arising from agricultural activities, electroplating materials, and lubricants used near the study area. However, the present study showed a different metal concentration in the samples at different levels but within the threshold levels non-carcinogenic and carcinogenic health risks; hence, the fishes of the area, in general, are safe for human consumption. Full article
Show Figures

Figure 1

13 pages, 3176 KiB  
Article
Electrochemical Deposition of Fe–Co–Ni Samples with Different Co Contents and Characterization of Their Microstructural and Magnetic Properties
by Van Cao Long, Umut Saraç, Mevlana Celalettin Baykul, Luong Duong Trong, Ştefan Ţălu and Dung Nguyen Trong
Coatings 2022, 12(3), 346; https://doi.org/10.3390/coatings12030346 - 6 Mar 2022
Cited by 21 | Viewed by 4109
Abstract
In this study, to explore the effect of Co contents on the electroplated Fe–Co–Ni samples, three different Fe–Co33–Ni62, Fe–Co43–Ni53, and Fe–Co61–Ni36 samples were electrochemically grown from Plating Solutions (PSs) containing different amounts [...] Read more.
In this study, to explore the effect of Co contents on the electroplated Fe–Co–Ni samples, three different Fe–Co33–Ni62, Fe–Co43–Ni53, and Fe–Co61–Ni36 samples were electrochemically grown from Plating Solutions (PSs) containing different amounts of Co ions on indium tin oxide substrates. Compositional analysis showed that an increase in the Co ion concentration in the PS gives rise to an increment in the weight fraction of Co in the sample. In all samples, the co–deposition characteristic was described as anomalous. The samples exhibited a predominant reflection from the (111) plane of the face–centered cubic structure. However, the Fe–Co61–Ni36 sample also had a weak reflection from the (100) plane of the hexagonal close–packed structure of Co. An enhancement in the Co contents caused a strong decrement in the crystallinity, resulting in a decrease in the size of the crystallites. The Fe–Co33–Ni62 sample exhibited a more compact surface structure comprising only cauliflower–like agglomerates, while the Fe–Co43–Ni53 and Fe–Co61–Ni36 samples had a surface structure consisting of both pyramidal particles and cauliflower–like agglomerates. The results also revealed that different Co contents play an important role in the surface roughness parameters. From the magnetic analysis of the samples, it was understood that the Fe–Co61–Ni36 sample has a higher coercive field and magnetic squareness ratio than the Fe–Co43–Ni53 and Fe–Co33–Ni62 samples. The differences observed in the magnetic characteristics of the samples were attributed to the changes revealed in their phase structure and surface roughness parameters. The obtained results are the basis for the fabrication of future magnetic devices. Full article
Show Figures

Figure 1

10 pages, 4254 KiB  
Article
Design and Fabrication of a MEMS Electromagnetic Swing-Type Actuator for Optical Switch
by Shuhai Jia, Jun Peng, Jiaming Bian, Shuo Zhang, Shunjian Xu and Bao Zhang
Micromachines 2021, 12(2), 221; https://doi.org/10.3390/mi12020221 - 22 Feb 2021
Cited by 13 | Viewed by 4129
Abstract
A microelectromechanical systems system (MEMS) electromagnetic swing-type actuator is proposed for an optical fiber switch in this paper. The actuator has a compact size of 5.1 × 5.1 × 5.3 mm3, consisting of two stators, a swing disc (rotator), a rotating [...] Read more.
A microelectromechanical systems system (MEMS) electromagnetic swing-type actuator is proposed for an optical fiber switch in this paper. The actuator has a compact size of 5.1 × 5.1 × 5.3 mm3, consisting of two stators, a swing disc (rotator), a rotating shaft, and protective covers. Multi-winding stators and a multipole rotator were adopted to increase the output torque of the actuator. The actuator’s working principle and magnetic circuit were analyzed. The calculation results show that the actuator’s output torque is decisive to the air gap’s magnetic flux density between the stators and the swing disc. NiFe alloy magnetic cores were embedded into each winding center to increase the magnetic flux density. A special manufacturing process was developed for fabricating the stator windings on the ferrite substrate. Six copper windings and NiFe magnetic cores were electroplated onto the ferrite substrates. The corresponding six magnetic poles were configured to the SmCo permanent magnet on the swing disc. A magnetizing device with a particular size was designed and fabricated to magnetize the permanent magnet of the swing disc. The actuator prototype was fabricated, and the performance was tested. The results show that the actuator has a large output torque (40 μNm), fast response (5 ms), and a large swing angle (22°). Full article
(This article belongs to the Special Issue MEMS Devices for Nanomanufacturing)
Show Figures

Figure 1

16 pages, 3808 KiB  
Article
Upcycling of Electroplating Sludge to Prepare Erdite-Bearing Nanorods for the Adsorption of Heavy Metals from Electroplating Wastewater Effluent
by Yanwen Liu, Asghar Khan, Zhihua Wang, Yu Chen, Suiyi Zhu, Tong Sun, Dongxu Liang and Hongbin Yu
Water 2020, 12(4), 1027; https://doi.org/10.3390/w12041027 - 3 Apr 2020
Cited by 39 | Viewed by 5287
Abstract
Electroplating sludge is a hazardous waste produced in plating and metallurgical processes which is commonly disposed of in safety landfills. In this work, electroplating sludge containing 25.6% Fe and 5.5% Co (named S1) and another containing 36.8% Fe and 7.8% Cr (S2) were [...] Read more.
Electroplating sludge is a hazardous waste produced in plating and metallurgical processes which is commonly disposed of in safety landfills. In this work, electroplating sludge containing 25.6% Fe and 5.5% Co (named S1) and another containing 36.8% Fe and 7.8% Cr (S2) were recycled for the preparation of erdite-bearing particles via a facile hydrothermal route with only the addition of Na2S·9H2O. In the sludges, Fe-containing compounds were weakly crystallized and spontaneously converted to short rod-like erdite particles (SP1) in the presence of Co or long nanorod (SP2) particles with a diameter of 100 nm and length of 0.5–1.5 μm in the presence of Cr. The two products, SP1 and SP2, were applied in electroplating wastewater treatment, in which a small portion of Co in SP1 was released in wastewater, whereas Cr in SP2 was not. Adding 0.3 g/L SP2 resulted in the removal of 99.7% of Zn, 99.4% of Cu, 37.9% of Ni and 53.3% of Co in the electroplating wastewater, with residues at concentrations of 0.007, 0.003, 0.33, 0.09 and 0.002 mg/L, respectively. Thus, the treated electroplating wastewater met the discharge standard for electroplating wastewater in China. These removal efficiencies were higher than those achieved using powdered activated carbon, polyaluminum chloride, polyferric sulfate or pure Na2S·9H2O reagent. With the method, waste electroplating sludge was recycled as nanorod erdite-bearing particles which showed superior efficiency in electroplating wastewater treatment. Full article
(This article belongs to the Special Issue Adsorbents for Water and Wastewater Treatment and Resource Recovery)
Show Figures

Graphical abstract

9 pages, 5646 KiB  
Article
Micro-Brazing of Stainless Steel Using Ni-P Alloy Plating
by Shubin Liu, Ikuo Shohji, Makoto Iioka, Anna Hashimoto, Junichiro Hirohashi, Tsunehito Wake and Susumu Arai
Appl. Sci. 2019, 9(6), 1094; https://doi.org/10.3390/app9061094 - 15 Mar 2019
Cited by 10 | Viewed by 3995
Abstract
A Ni-P plated layer of 20 μm thickness containing 11 wt.% P was formed on the surface of a stainless steel (SUS304) plate by electroplating. The microstructure and joint strength of the brazed joint with the electroplated Ni-11P layer were investigated. The results [...] Read more.
A Ni-P plated layer of 20 μm thickness containing 11 wt.% P was formed on the surface of a stainless steel (SUS304) plate by electroplating. The microstructure and joint strength of the brazed joint with the electroplated Ni-11P layer were investigated. The results indicated that the filler metal was homogeneously distributed between the SUS304 plates and no voids or flaws formed in the brazed filler zone. Fe-Ni-Cr solid solutions were formed at the brazed interface. Moreover, P was mainly concentrated in such brazed filler zone to form P-containing phases. The average shear strength of the brazed joints was determined to be 47.3 MPa. The results demonstrated that the brazing of SUS304 plates using the electroplated Ni-11P layer as the filler metal was successfully realized. Full article
(This article belongs to the Section Nanotechnology and Applied Nanosciences)
Show Figures

Figure 1

10 pages, 2818 KiB  
Article
Ion Irradiation-Induced Microstructural Evolution of Ni–Mo–Cr Low Alloy Steels
by Hongying Sun, Penghui Lei, Guang Ran, Hui Wang, Jiyun Zheng, Yiyong Zhang, Zhigang Wang and Shui Qiu
Materials 2018, 11(11), 2268; https://doi.org/10.3390/ma11112268 - 13 Nov 2018
Cited by 1 | Viewed by 2913
Abstract
As leading candidates of sheet steels for advanced nuclear reactors, three types of Ni–Mo–Cr high-strength low alloy (HSLA) steels named as CNST1, CNST2 and CNSS3 were irradiated by 400 keV Fe+ with peak fluence to 1.4 × 1014, 3.5 × [...] Read more.
As leading candidates of sheet steels for advanced nuclear reactors, three types of Ni–Mo–Cr high-strength low alloy (HSLA) steels named as CNST1, CNST2 and CNSS3 were irradiated by 400 keV Fe+ with peak fluence to 1.4 × 1014, 3.5 × 1014 and 7.0 × 1014 ions/cm2, respectively. The distribution and morphology of the defects induced by the sample preparation method and Fe+ irradiation dose were investigated by transmission electron microscopy (TEM) and positron-annihilation spectroscopy (PAS). TEM samples were prepared with two methods, i.e., a focused ion beam (FIB) technique and the electroplating and twin-jet electropolishing (ETE) method. Point defects and dislocation loops were observed in CNST1, CNST2 and CNSS3 samples prepared via FIB. On the other hand, samples prepared via the ETE method revealed that a smaller number of defects was observed in CNST1, CNST2 and almost no defects were observed in CNST3. It is indicated that artifact defects could be introduced by FIB preparation. The PAS S-W plots showed that the existence of two types of defects after ion implantation included small-scale defects such as vacancies, vacancy clusters, dislocation loops and large-sized defects. The S parameter of irradiated steels showed a clear saturation in PAS response with increasing Fe+ dose. At the same irradiation dose, higher values of the S-parameter were achieved in CNST1 and CNST2 samples when compared to that in CNSS3 samples. The mechanism and evolution behavior of irradiation-induced defects were analyzed and discussed. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

Back to TopTop