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Abstract: In this study, to explore the effect of Co contents on the electroplated Fe–Co–Ni samples,
three different Fe–Co33–Ni62, Fe–Co43–Ni53, and Fe–Co61–Ni36 samples were electrochemically
grown from Plating Solutions (PSs) containing different amounts of Co ions on indium tin oxide
substrates. Compositional analysis showed that an increase in the Co ion concentration in the PS
gives rise to an increment in the weight fraction of Co in the sample. In all samples, the co–deposition
characteristic was described as anomalous. The samples exhibited a predominant reflection from the
(111) plane of the face–centered cubic structure. However, the Fe–Co61–Ni36 sample also had a weak
reflection from the (100) plane of the hexagonal close–packed structure of Co. An enhancement in
the Co contents caused a strong decrement in the crystallinity, resulting in a decrease in the size of
the crystallites. The Fe–Co33–Ni62 sample exhibited a more compact surface structure comprising
only cauliflower–like agglomerates, while the Fe–Co43–Ni53 and Fe–Co61–Ni36 samples had a surface
structure consisting of both pyramidal particles and cauliflower–like agglomerates. The results also
revealed that different Co contents play an important role in the surface roughness parameters. From
the magnetic analysis of the samples, it was understood that the Fe–Co61–Ni36 sample has a higher
coercive field and magnetic squareness ratio than the Fe–Co43–Ni53 and Fe–Co33–Ni62 samples. The
differences observed in the magnetic characteristics of the samples were attributed to the changes
revealed in their phase structure and surface roughness parameters. The obtained results are the
basis for the fabrication of future magnetic devices.

Keywords: cauliflower–like agglomerates; Co contents; crystallinity; Fe–Co–Ni thin film samples;
magnetic properties; phase structure; pyramidal particles; roughness parameters

1. Introduction

Nanostructured ferromagnetic materials in the form of thin films are widely used in
many technological applications and attract great attention because of their good physical
and magnetic features [1–5]. To date, many physical and chemical growth techniques have
been developed that are utilized in the production process of magnetic thin film samples.
Among the growth techniques developed, the electrochemical deposition technique has
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been successfully used in computer read/write heads and Micro–ElectroMechanical Sys-
tems (MEMS) applications due to its unique features [1,3,6–12]. It is well known that ternary
ferromagnetic alloy films are interesting soft magnetic materials due to their high saturation
magnetization and low coercive field [4,6]. The conducted studies showed that the Fe, Ni,
and Co components in binary Ni–Co, Ni–Fe and Fe–Cu and ternary Ni–Co–Cu, Ni–Fe–Cu,
Co–Fe–Cu and Fe–Co–Ni magnetic materials grew by the electrochemical deposition tech-
nique on Indium Tin Oxide (ITO) covered glass substrates which can be tuned by controlling
the Fe, Ni and Co ion concentrations in the Plating Solutions (PSs), respectively [13–21].
However, the relative compositions of Co and Fe components in the samples were found be
higher than those in the PSs for different electroplating parameters [6,13,14,16–24], which
is in good agreement with the definition defined by Brenner [25]. In recent years, scientists
have flexibly used a variety of methods to study the structural, mechanical, and magnetic
properties of nanomaterials and thin films. With the simulation method, the influence
of size, heating rate, temperature and annealing time has been successfully studied on
the structure, electronic structure, phase transition and mechanical properties of metal
Ni [26–28], Fe [29], Al [30,31], Alloy AuCu [32,33], CuNi [34–36], NiAu [37], FeC [38],
FeNi [39,40], AgAu [41], AlNi [42], and NiCu [43].

In addition, with the magnetism of nanomaterials and thin films, the influence of
nanoparticle size and shell thickness has been successfully studied on the Curie Tc phase
transition temperature of Fe nanoparticles [44], the influence of external magnetic field
and size on the temperature Neel TN phase transition of Fe2O3 thin films [45]. The
obtained results show that the Neel TN transition temperature is always smaller than the
Curie Tc phase transition temperature, the cause of this phenomenon is due to the Topo
effect. With the experimental method, the authors have successfully studied the effects
of Fe ion concentration in the PS. Furthermore, the deposition potential applied during
electroplating process on the chemical composition, some physical properties, and magnetic
characteristics of ternary ferromagnetic thin film samples were investigated [21,24]. These
experimental studies clearly demonstrated that the surface performance, magnetic and
structural characteristics were affected significantly by the deposit composition caused
by the variation of the electroplating parameters [21,24]. On the other hand, in a former
study, Fe–Co–Ni deposits were electrochemically manufactured on titanium sheets from
a chloride–sulfate–tartaric acid medium at different Co2+/Ni2+ ion ratios [46]. In another
study, Fe–Co–Ni films were electrochemically fabricated on copper substrates from an
ammonium–chloride–based PS at different Co2+/Ni2+ ion ratios [47]. In addition, in a very
recent study, nanocrystalline Ni–Co–Fe coatings were electroplated on copper plates from
a sulfate–citrate PS at different Co ion concentrations [3]. To make magnetic Fe–Co–Ni
thin films, researchers can use many methods such as evaporation and electrochemical
deposition [48]. Among these, thin films obtained by the electrochemical deposition method
have very high uniformity. However, in this work, Fe–Co–Ni samples were electroplated
on ITO substrates and the Co contents in the samples were tuned by the amount of
Co ion concentration in the sulfate-based PS. The structure, morphology, and magnetic
characteristics of the resultant samples were discussed with respect to their Co contents.
The results showed that the crystallinity, crystallite size, phase structure, particle shape,
particle size, magnetic properties, and roughness parameters of the samples are strongly
dependent on their Co contents. The obtained results will be applied in different fields of
science and technology.

2. Materials and Method

The Fe–Co–Ni thin film samples were produced from PSs composed of Ni sulfate
(0.07 M), Fe sulfate (0.0020 M), boric acid (0.1 M), and various Co sulfate concentrations
(0.016 M, 0.024 M and 0.040 M). The samples were deposited galvanostatically at the same
current density of –10 mA/cm2 from freshly prepared PSs (pH value was 5.2 ± 0.1 and
temperature was 22 ± 1 ◦C) without stirring. The electroplating processes were performed
by employing a three-electrode system. A platinum sheet was utilized as a counter electrode,
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whereas a Saturated Calomel Electrode (SCE) was served as a reference electrode. The
samples were grown on ITO coated glass substrates used as a working electrode. Before the
plating process, the substrates were first rinsed in an acetone solution and then in ethanol
solution. After that, the substrates were cleaned by an ultrasonic bath using deionized
water. The crystal structure was defined by a Rigaku SmartLab X–Ray Diffractometer (XRD)
(Rigaku Cooperation—Tokyo, Japan). The XRD measurements were carried out in the
2θ range between 40◦ and 54◦ at a scanning step of 0.01◦ using CuKα radiation source. The
compositional analysis was performed by an Energy Dispersive X–ray (EDX) spectroscopy.
The X-ray diffraction beam is shined at the sample with a very narrow angle of incidence to
increase the length of the X-ray beam that interacts with the thin film, keeping the sample
stationary and rotating the receiver. Then the resulting diffraction beam appears on a
concentric circle, recording the reflected beam intensity and first-order diffraction spectrum.
An Oxford X–max 50 detector (Oxford Instruments, High Wycombe, UK) was used for the
EDX measurements under an operating voltage of 20.00 kV. To study the surface structure, a
Tescan MAIA3 Scanning Electron Microscopy (SEM) (TESCAN, Brno, Czech Republic) was
used. The SEM measurements were done under the same operating voltage of 5.00 kV at
room temperature. The particle sizes were determined from the SEM images using a freely
available image processing and analysis software (ImageJ) (Software version for imageJ
is 1.8.0). The roughness parameters were determined using a Veeco Multimode V Atomic
Force Microscopy (AFM) (Veeco Instruments İnc., Santa Barbara, CA, USA) and evaluated
using a WSxM 5.0 develop 9.4 software package [49]. To reveal the effect of the Co contents
on the coercive field and squareness ratio, magnetic measurements were carried out by
means of a JDAW–2000D model Vibrating Sample Magnetometer (VSM) (Xiamen Dexing
Magnet Tech. Co., Ltd., City-Country: Xiamen, China) at ambient temperature and pressure
by applying the external magnetic field parallel to the sample plane.

3. Results and Discussion

This paper aimed to study the impact of the Co contents on the structure, morphology,
and magnetic characteristics of the Fe–Co–Ni deposits. To obtain the samples with various
Co contents, the samples were grown onto ITO–coated glass substrates from PSs comprising
different concentrations of Co ions using the electrochemical deposition technique. The
potential–time transient curves are given in Figure 1.
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From Figure 1, it was understood that the samples can be grown properly from PSs
containing different concentrations of Co ions owing to their stable cathode potentials. On
the other hand, the cathode potential was detected to be higher for the sample electro-
chemically deposited from the PS with 0.016 M Co ion concentration compared to those
determined for the samples deposited from PSs with 0.024 M and 0.040 M Co xml: con-
firmned with AE 1. keep email based on word 2. keep the ORCID 3. keep the format of not
English for City in affs 4. keep the hyphen in figures 5. keep the two "Figure 6 indicates the
AFM images of the samples. The samples possessed globular particles of various sizes" in
textion concentrations.

EDX analyses showed that the samples electrochemically grown from PSs with differ-
ent concentrations of Co ions have different Fe, Co, and Ni compositions. The compositional
differences are shown in Table 1.

Table 1. The EDX data, phase structure, mean crystallite size, roughness parameters, coercive field,
and squareness ratio of the samples.

Co Ion Concentration (M)

0.016 0.024 0.040

Co (wt.%) 32.9 43.2 60.9

Ni (wt.%) 62.4 52.7 35.7

Fe (wt.%) 4.7 4.1 3.4

Resultant sample Fe–Co33–Ni62 Fe–Co43–Ni53 Fe–Co61–Ni36

Phase structure fcc fcc Fcc + hcp

Mean crystallite size (nm) 21.6 20.2 15.6

RMS roughness (nm) 14.4 17.8 28.4

Average roughness (nm) 11.0 14.0 21.8

Average particle size (nm) ~150 ~14.0 ~250

Coercive field (Oe) 36 51 121

Squareness ratio (%) 9.2 17.6 23.6

The sample grown from the PS with the lowest Co ion concentration of 0.016 M con-
tained the lowest Co contents (32.9 wt.%), but the highest Ni (62.4 wt.%) and Fe (4.7 wt.%)
compositions. In contrast to that, the sample electrochemically deposited from the PS with
the highest Co ion concentration of 0.040 M included the highest Co contents (60.9 wt.%),
but the lowest Ni (35.7 wt.%) and Fe (3.4 wt.%) compositions. The Co, Ni, and Fe composi-
tions of the sample fabricated from the PS with an intermediate Co ion concentration of
0.024 M were 43.2, 52.7 and 4.1 wt.%, respectively. In summary, as the Co ion concentration
in the PS was increased, the weight proportions of Ni and Fe components decreased, while
the weight proportion of the Co component in the Fe–Co–Ni samples increased. Thus, three
different ternary Fe–Co33–Ni62, Fe–Co43–Ni53 and Fe–Co61–Ni36 samples with different Co
contents were fabricated. In recent studies [3,50], it was reported that the Co contents in
electrochemically manufactured Ni–Co–Fe coatings and Co–Fe–Ni alloying micropillars
increased but the Fe and Ni compositions decreased as the Co2+ ion concentration in the PS
increased. Similar results were also found in Fe–Co–Ni deposits electroplated in a former
study [46], which was consistent with our results. On the other hand, in this work, the
presence or absence of Anomalous Co–Deposition (ACD) was also explored. In this context,
the relative Co, Ni, and Fe ion percentages in the PSs were compared to the relative Co, Ni,
and Fe compositions in the samples.

As seen in Figure 2, the relative Co (Fe and Ni) composition in the sample increased
with increasing relative Co (Fe and Ni) ion percentage in the PS. However, in all cases, the
Co contents in the samples were determined to be higher than the Co ion percentage in the
PSs (Figure 2a). The same phenomenon found for the Co component was also detected for
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the Fe component (Figure 2b). This revealed the preferential electrochemical deposition for
the Co and Fe components. However, the relative Ni composition in the samples was found
to be lower than the relative Ni ion percentage in the PSs (Figure 2c). This indicated that the
reduction of Ni components was inhibited. Thus, it was understood that the ACD behavior
took place for all Co ions in the PS. The order of ACD was also revealed via composition
ratio value (CRV).
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The CRV for a Co component is described by the following expression [46].

CRV for Co =
relative composition of Co in the sample
relative ion concentration of Co in the PS

(1)

The relative concentration of Co ions in the PS is given by the following expression:

Relative concentration of Co ions =
[CoSO4]

[CoSO4 + NiSO4 + FeSO4]
× 100 (2)

The above procedure was also applied to calculate the CRVFe and CRVNi. From the
results of the analysis depicted in Figure 3, it was understood that the CRVFe and CRVCo
were higher than one, while the CRVNi was lower than one, revealing that the reduction
rate of Ni2+ was significantly lower than the reduction rates of Fe2+ and Co2+ during the
deposition process. This phenomenon confirmed the creation of ACD behavior, which is the
characteristic feature for the electrochemical deposition of iron–group alloys. Furthermore,
the reduction rate of Fe2+ was higher compared to the reduction rate of Co2+ as the CRVCo
was lower than CRVFe [3,6,19,24,46,51–53]. Therefore, the degree of ACD characteristics of
Co–Ni was lower than Fe–Ni. In addition, the CRVFe/CRVCo ratio was determined to be
lower than the CRVCo/CRVNi ratio, revealing that the order of ACD was Fe–Ni > Co–Ni >
Fe–Co for all Co ion concentrations in the PS, which is in good agreement with the findings
of conducted studies [3,6,24,46].
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The phase structure of the samples produced in this work was investigated via XRD
analysis. The resulting XRD patterns are shown in Figure 4.
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Figure 4. XRD patterns of the samples.

Obviously, in all samples, the (111) diffraction peak of the face–centered cubic (fcc)
crystal structure observed at the angular position of about 2θ = 44.4◦ was the most in-
tense irrespective of the Co contents. The single phase structure (fcc) obtained for the
Fe–Co33–Ni62 and Fe–Co43–Ni53 samples shows a good agreement with the XRD patterns
of the ternary ferromagnetic materials with similar compositions produced in previous
studies [6,21,24,54,55]. In addition to that, compared to the Fe–Co33–Ni62 and Fe–Co43–Ni53
samples, the XRD pattern of the Fe–Co61–Ni36 sample also revealed the presence of the
(100) diffraction peak with low intensity related to the hexagonal close–packed (hcp) phase
structure which occurred at about 2θ = 41.7◦. At high Co contents, a transition from single
phase structure (fcc) to dual phase structure (fcc + hcp or fcc + bcc) was also reported
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in electrochemically grown binary Ni–Co films, Co–Ni–Al2O3 composite coatings, and
ternary ferromagnetic films of Fe, Co, and Ni [12,13,17,47,56]. Alongside the phase transi-
tion, an increment in the Co contents resulted in a significant decrement in the intensities
of both (111) and (200) diffraction peaks, reflecting a strong reduction in the crystallization
(Figure 4). This also caused a change in the crystallite size of the samples. The crystallite
size (D) of the produced samples was determined by Scherrer’s equation [57]:

D = [0.9λ/Bcosθ] × [180◦/π] (3)

where λ, B and θ represent the wavelength of CuKα radiation, Full–Width at Half Maximum
(FWHM) value, and Bragg diffraction angle, respectively. To estimate the B and θ values,
XRD patterns were fitted by Lorentzian curves. It was revealed that mean crystallite size
decreases from 21.6 to 15.6 nm as the Co contents in the samples increases from 33 to
61 wt.%, indicating that the crystallite size of the Co–rich samples is smaller compared to
the Co–poor samples. The decrease in the crystallite size with the Co contents was also
reported in Fe–Co–Ni films electroplated on copper substrates from ammonium–chloride–
based PSs [47]. The cause of the increase (decrease) in the size of Fe–Co–Ni is due to the
lattice constant of Fe, Co, and Ni atoms and the interaction between electrons leads to the
appearance of size effect. The 3-D surface microtexture can be characterized for a deeper
understanding of the nano-scale patterns by stereometric [58–60] and fractal/multifractal
analyses [61–64].

The surface topography was studied by means of SEM images analysis of the samples.
The SEM device we used has a resolution of 100 KX, the crystals can be observed in Figure 5.
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Figure 5a showed that the Fe–Co33–Ni62 sample exhibits a surface topography com-
prising only cauliflower–like agglomerates.

However, as seen from Figure 5b,c, the Fe–Co43–Ni53 and Fe–Co61–Ni36 samples had
a surface topography covered with a mixture of pyramidal particles and cauliflower–like
agglomerates. The surface morphology of a material is due to the lattice constant, the
electronic interactions between different atoms caused.

In all samples, one cauliflower–like agglomerate was composed of grains. An in-
crement in the Co contents caused an enhancement in the size of the cauliflower–like
agglomerates and a decrease in their number. The average width of the cauliflower–like
agglomerates was found to be about 150 nm for the Fe–Co33–Ni62 sample. However, the
Fe–Co43–Ni53 and Fe–Co61–Ni36 samples had larger cauliflower–like agglomerates with an
average width of about 270 and 350 nm, respectively. The size of the crystal nuclei is larger
than the average size of the particles. The cause of this phenomenon is due to the difference
between the lattice constants and the interactions between the electronic structures which
leads to the formation of nuclei crystallization in the form of cauliflower.

On the other hand, the average width of the pyramidal particles was determined to
be about 190 and 220 nm for the Fe–Co43–Ni53 and Fe–Co61–Ni36 samples, respectively.
Thus, the Fe–Co61–Ni36 sample exhibited larger pyramidal particles than the Fe–Co43–Ni53
sample. Consequently, as also listed in Table 1, the Fe–Co33–Ni62, Fe–Co43–Ni53 and Fe–
Co61–Ni36 samples had particles with an average width of approximately 150, 210, and
250 nm, respectively, which was in good agreement with the findings reported in the
literature [47]. Further studies on the morphological characteristics were also carried out
using an AFM. Figure 6 indicates the AFM images of the samples. The samples possessed
globular particles of various sizes. The size of globular particles increased and their number
decreased when the Co content increased, which is consistent with the findings of the
SEM analysis. The surface morphology of the material is caused by the lattice constant,
the electronic force of interaction between the atoms of the material. On the other hand,
the influence of the Co content on the particle size can be ascribed to different cathode
potentials caused by the concentration of Co ions in the PS. Conducted studies showed that
the particle size decreased when the cathode potential was increased [24].
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Therefore, the particle size increased with the Co content since the cathode potential
decreased with increasing Co ion concentration in the PS (Figure 1). The roughness parame-
ters were determined from the AFM images. As distinctly noticed in Table 1, the Co content
had a significant effect on the surface roughness parameters. When the Co content in the
samples increases, the electronic interaction of Co with Fe and Ni increases, so the size
of crystal nuclei increases, and the number of spheres is reduced leading to the increased
surface roughness of the material.

Figure 6 indicates the AFM images of the samples. The samples possessed globular
particles of various sizes.

The obtained results revealed that the surface roughness increased the cause is due
to when Co content increased, leading to the electronic interaction of Co atoms with Fe,
Ni increases, and the size of crystal nuclei increases and the number of spheres reduces to
increased surface roughness of the material.

In this paper, the thickness and size of the considered thin films are not investigated
especially, but the thickness of the thin film has an average size equal to the size of the
crystal nuclei such as: 150 nm with Fe–Co33–Ni62, 270 nm with Fe–Co43–Ni53, and 350 nm
with Fe–Co61–Ni36.

Figure 7 exhibits the normalized in–plane magnetic hysteresis loops measured to
determine the magnetic characteristics with respect to their Co contents. The results
obtained from the magnetic analysis are collected in Table 1. Although all samples
exhibited a ferromagnetic behavior with a magnetic hardness being between soft and
hard [3,17,21,22,24,55,65], the Co contents played a significant role in the coercive field. The
coercive field increased considerably from 36 to 121 Oe as the Co contents in the samples
increased from 33 to 61 wt.%. Increasing the content of Co leads to increased crystallization,
increasing the size of the crystal nuclei (magnetic domain) leading to an increase in the
coercive field of the material, which is shown in Figure 7. The increase in the coercive field
with the Co content may also be attributed to an increment in the surface roughness.
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The variations observed in the average surface roughness and coercive field with
respect to the Co contents are shown in Figure 8.
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As clearly evidenced in Figure 8, there was a direct correlation between the surface
roughness and the coercive field as also reported in the electrochemically deposited ternary
ferromagnetic films of Fe, Co, and Ni [21,24,65,66]. In addiiton, the Fe–Co61–Ni36 sample
had a much higher coercive field than the Fe–Co33–Ni62 and Fe–Co43–Ni53 samples. This
abrupt increase in the coercive field with increasing Co contents from 43 to 61 wt.% may
also be ascribed to the appearance of the (100) diffraction peak of the hcp phase structure
of Co. In previous studies [13,17,47], it was shown that the Ni–Co and Fe–Co–Ni films
with single phase structure at low Co contents exhibit a much lower coercive field than
the Ni–Co and Fe–Co–Ni films with dual phase structure at high Co contents. On the
other hand, the produced samples were found to have very low squareness ratios ranging
from 9.2 to 23.6%. Such low squareness ratios correspond to the formation of an in–plane
hysteresis loop with a vertical magnetization component as also observed in electroplated
Ni–Co/ITO and Fe–Co–Ni/ITO thin film samples [21,65]. Furthermore, as clearly seen
from Table 1, a gradual increment in the magnetic squareness ratio was detected with the
Co contents, revealing a decrement in the vertical component of magnetization.

4. Conclusions

This work aimed to obtain the ternary Fe–Co–Ni samples with various Co contents
and reveal the differences in the morphological, magnetic, and structural properties with
respect to their Co contents. According to the compositional analysis, a change in the Co ion
concentration of the PS significantly affected the deposit composition. It was understood
that the Fe–Co–Ni sample with higher Co contents could be obtained when the sample was
electrochemically deposited from the PS including higher Co ion concentration. It was also
revealed that the co–deposition characteristic (anomalous) and its order (Fe–Ni > Co–Ni >
Fe–Co) were not affected by the amount of Co ions in the PS. The resultant samples
exhibited the predominant reflection from the (111) plane of the fcc crystal structure. Unlike
the Fe–Co33–Ni62 and Fe–Co43–Ni53 samples, the Fe–Co61–Ni36 sample with the highest
Co contents exhibited a weak reflection from the (100) plane of the hcp crystal structure
of Co. Compared to the Fe–Co61–Ni36 and Fe–Co43–Ni53 samples, the crystallinity was
found to be stronger for the Fe–Co33–Ni62 sample. The size of the crystallites decreased
from 21.6 to 15.6 nm as the Co contents in the sample increased from 33 to 61 wt.%.
A surface structure covered with a mixture of pyramidal particles and cauliflower–like
agglomerates was detected for the Fe–Co43–Ni53 and Fe–Co61–Ni36 samples, whereas the Fe–
Co33–Ni62 sample had a surface structure consisting of only cauliflower–like agglomerates.
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Moreover, compared to others, the Fe–Co33–Ni62 sample exhibited a more compact surface
morphology consisting of smaller cauliflower–like agglomerates with an average width of
150 nm. As the Co contents enhanced, the average and RMS surface roughness parameters
increased significantly from 11.0 to 21.8 nm and from 14.4 to 28.4 nm, respectively. The
samples produced were magnetically semi-hard. However, the Fe–Co61–Ni36 (121 Oe) thin
film sample exhibited a noticeably higher coercive field compared to the Fe–Co43–Ni53
(51 Oe) and Fe–Co33–Ni62 (36 Oe) thin film samples, which was attributed to the phase
transition from single phase structure (fcc) to dual phase structure (fcc + hcp) and an abrupt
enhancement in the surface roughness parameters. An increase in the Co contents from
33 to 61 wt.% also induced an enhancement in the magnetic squareness ratio from 9.2 to
23.6%, reflecting a decrement in the vertical component of magnetization.
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63. Ţălu, Ş.; Morozov, I.A.; Yadav, R.P. Multifractal analysis of sputtered indium tin oxide thin film surfaces. Appl. Surf. Sci. 2019,
484, 892–898. [CrossRef]
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