Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (244)

Search Parameters:
Keywords = Ni-Co composite coating

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5496 KiB  
Article
Optimisation of Response Surface Methodology Based on Finite Element Analysis for Laser Cladding of Highly Hardened WC(Co,Ni) Coatings
by Dezheng Wu, Canyu Ding and Mingder Jean
Materials 2025, 18(15), 3658; https://doi.org/10.3390/ma18153658 - 4 Aug 2025
Viewed by 50
Abstract
In the present work, the optimization of ceramic-based composite WC(Co,Ni) welds by laser cladding was carried out using response surface methodology based on finite element analysis. The heat distribution and temperature field of laser-melted WC(Co,Ni) ceramic coatings were simulated using ANSYS software, which [...] Read more.
In the present work, the optimization of ceramic-based composite WC(Co,Ni) welds by laser cladding was carried out using response surface methodology based on finite element analysis. The heat distribution and temperature field of laser-melted WC(Co,Ni) ceramic coatings were simulated using ANSYS software, which allowed the computation of the distribution of residual stresses. The results show that the isotherms in the simulation of the temperature field are elliptical in shape, and that the isotherms in front of the moving heat source are dense with a larger temperature gradient, while the isotherms behind the heat source are sparse with a smaller temperature gradient. In addition, the observed microstructural evolution shows that the melting zone domains of WC(Co,Ni) are mainly composed of unmelted carbides. These carbides are dendritic, rod-like, leaf-like, or net-like, and are agglomerated into smaller groups. The W content of these unmelted carbides exceeds 80%, while the C content is around 1.5–3.0%. The grey areas are composed of WC, Co and Ni compounds. Based on the regression model, a quadratic model was successfully constructed. A three-dimensional profile model of the residual stress behaviour was further explored. The estimated values of the RSM-based FEA model for residual stress are very similar to the actual results, which shows that the model is effective in reducing residual stress by laser cladding. Full article
(This article belongs to the Special Issue Advances in Plasma and Laser Engineering (Second Edition))
Show Figures

Figure 1

14 pages, 3346 KiB  
Article
DES-Mediated Mild Synthesis of Synergistically Engineered 3D FeOOH-Co2(OH)3Cl/NF for Enhanced Oxygen Evolution Reaction
by Bingxian Zhu, Yachao Liu, Yue Yan, Hui Wang, Yu Zhang, Ying Xin, Weijuan Xu and Qingshan Zhao
Catalysts 2025, 15(8), 725; https://doi.org/10.3390/catal15080725 - 30 Jul 2025
Viewed by 207
Abstract
Hydrogen energy is a pivotal carrier for achieving carbon neutrality, requiring green and efficient production via water electrolysis. However, the anodic oxygen evolution reaction (OER) involves a sluggish four-electron transfer process, resulting in high overpotentials, while the prohibitive cost and complex preparation of [...] Read more.
Hydrogen energy is a pivotal carrier for achieving carbon neutrality, requiring green and efficient production via water electrolysis. However, the anodic oxygen evolution reaction (OER) involves a sluggish four-electron transfer process, resulting in high overpotentials, while the prohibitive cost and complex preparation of precious metal catalysts impede large-scale commercialization. In this study, we develop a FeCo-based bimetallic deep eutectic solvent (FeCo-DES) as a multifunctional reaction medium for engineering a three-dimensional (3D) coral-like FeOOH-Co2(OH)3Cl/NF composite via a mild one-step impregnation approach (70 °C, ambient pressure). The FeCo-DES simultaneously serves as the solvent, metal source, and redox agent, driving the controlled in situ assembly of FeOOH-Co2(OH)3Cl hybrids on Ni(OH)2/NiOOH-coated nickel foam (NF). This hierarchical architecture induces synergistic enhancement through geometric structural effects combined with multi-component electronic interactions. Consequently, the FeOOH-Co2(OH)3Cl/NF catalyst achieves a remarkably low overpotential of 197 mV at 100 mA cm−2 and a Tafel slope of 65.9 mV dec−1, along with 98% current retention over 24 h chronopotentiometry. This study pioneers a DES-mediated strategy for designing robust composite catalysts, establishing a scalable blueprint for high-performance and low-cost OER systems. Full article
Show Figures

Graphical abstract

19 pages, 4000 KiB  
Article
Insights of a Novel HEA Database Created from a Materials Perspective, Focusing on Wear and Corrosion Applications
by Lorena Betancor-Cazorla, Genís Clavé, Camila Barreneche and Sergi Dosta
Coatings 2025, 15(8), 865; https://doi.org/10.3390/coatings15080865 - 23 Jul 2025
Viewed by 319
Abstract
In recent years, interest in HEAs has increased exponentially due to their extraordinary properties, especially for wear- and corrosion-resistant applications. However, the main problem involves correctly selecting the HEA composition required for a specific application, as most of the data are scattered throughout [...] Read more.
In recent years, interest in HEAs has increased exponentially due to their extraordinary properties, especially for wear- and corrosion-resistant applications. However, the main problem involves correctly selecting the HEA composition required for a specific application, as most of the data are scattered throughout the literature, and only a limited number of models accurately predict the properties. Therefore, a database of 415 HEA alloys (bulk) and coatings obtained using thermal spray (TS) techniques has been created, compiled from scientific studies over the past 20 years. This tool collects information on physical, mechanical, and chemical properties, with a particular emphasis on corrosion and wear resistance. This facilitates material comparison and selection according to the needs of a specific application. In particular, the database highlights how composition and deposition technique also affect performance, identifying CoCrFeNi (CGS and in bulk) as a promising candidate for simultaneous wear and corrosion resistance. Full article
(This article belongs to the Special Issue Advances in Thermal Spray Coatings: Technologies and Applications)
Show Figures

Figure 1

16 pages, 10539 KiB  
Article
Comparative Corrosion and Wear Behaviors of Cermet Coatings Obtained from Conventional and Recycled Powders
by Dino Woelk, Julian Eßler, Ion-Dragos Utu and Gabriela Marginean
Appl. Sci. 2025, 15(14), 7654; https://doi.org/10.3390/app15147654 - 8 Jul 2025
Viewed by 344
Abstract
Many components in industry are subjected to high loads during operation and therefore often do not reach their intended service life. Conventional steels frequently do not provide sufficient protection against wear and corrosion. One solution is to coat these components using methods like [...] Read more.
Many components in industry are subjected to high loads during operation and therefore often do not reach their intended service life. Conventional steels frequently do not provide sufficient protection against wear and corrosion. One solution is to coat these components using methods like thermal spraying to apply cermet coatings such as Cr3C2-NiCr or WC-Co-Cr. In light of increasingly strict environmental regulations, more eco-friendly alternatives are needed, especially ones that use little or no Cr, Ni, Co, or W. Another alternative is the recycling of powder materials, which is the focus of this research project. This study investigated whether filter dust from an HVOF system could be used to develop a new coating suitable for use in applications requiring resistance to wear and corrosion. This is challenging as the filter dusts have heterogeneous compositions and irregular particle sizes. Nevertheless, this recycled material, referred to as “Green Cermets” (GCs), offers previously untapped potential that may also be of ecological interest. An established WC-Co-Cr coating served as a reference. In addition to friction wear and corrosion resistance, the study also examined particle size distribution, hardness, microstructure, and susceptibility to crack formation at the interface and inside the coating. Even though the results revealed a diminished performance of the GC coatings relative to the conventional WC-CoCr, they may still be applicable in various industrial applications. Full article
Show Figures

Figure 1

13 pages, 11057 KiB  
Article
Microstructure, Hardness and Tribological Characteristics of High-Entropy Coating Obtained by Detonation Spraying
by Zhuldyz Sagdoldina, Laila Sulyubayeva, Dastan Buitkenov and Yedilzhan Kambarov
Crystals 2025, 15(7), 625; https://doi.org/10.3390/cryst15070625 - 4 Jul 2025
Viewed by 260
Abstract
In this study, powders based on a high-entropy AlCoCrFeNi alloy obtained by mechanical alloying were successfully applied to a 316L stainless steel substrate by detonation spraying under various conditions. Their microstructural features, phase composition, hardness, and wear resistance were studied. A comparative analysis [...] Read more.
In this study, powders based on a high-entropy AlCoCrFeNi alloy obtained by mechanical alloying were successfully applied to a 316L stainless steel substrate by detonation spraying under various conditions. Their microstructural features, phase composition, hardness, and wear resistance were studied. A comparative analysis between the initial powder and the coatings was performed, including phase transformation modeling using Thermo-Calc under non-equilibrium conditions. The results showed that the phase composition of the powder and coatings includes body-centered cubic lattice (BCC), its ordered modification (B2), and face-centered cubic lattice FCC phases, which is consistent with the predictions of the Scheil solidification model, describing the process of non-equilibrium solidification, assuming no diffusion in the solid phase and complete mixing in the liquid phase. Rapid solidification and high-speed impact deformation of the powder led to significant grain refinement in the detonation spraying coating, which ultimately improved the mechanical properties at the micro level. The data obtained demonstrate the high efficiency of the AlCoCrFeNi coating applied by detonation spraying and confirm its potential for use in conditions of increased wear and mechanical stress. AlCoCrFeNi coatings may be promising for use as structural materials in the future. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

21 pages, 4516 KiB  
Article
Exploring the Electrochemical Signatures of Heavy Metals on Synthetic Melanin Nanoparticle-Coated Electrodes: Synthesis and Characterization
by Mohamed Hefny, Rasha Gh. Orabi, Medhat M. Kamel, Haitham Kalil, Mekki Bayachou and Nasser Y. Mostafa
Appl. Nano 2025, 6(3), 11; https://doi.org/10.3390/applnano6030011 - 23 Jun 2025
Viewed by 585
Abstract
This study investigates the development and sensing profile of synthetic melanin nanoparticle-coated electrodes for the electrochemical detection of heavy metals, including lead (Pb), cadmium (Cd), cobalt (Co), zinc (Zn), nickel (Ni), and iron (Fe). Synthetic melanin films were prepared in situ by the [...] Read more.
This study investigates the development and sensing profile of synthetic melanin nanoparticle-coated electrodes for the electrochemical detection of heavy metals, including lead (Pb), cadmium (Cd), cobalt (Co), zinc (Zn), nickel (Ni), and iron (Fe). Synthetic melanin films were prepared in situ by the deacetylation of diacetoxy indole (DAI) to dihydroxy indole (DHI), followed by the deposition of DHI monomers onto indium tin oxide (ITO) and glassy carbon electrodes (GCE) using cyclic voltammetry (CV), forming a thin layer of synthetic melanin film. The deposition process was characterized by electrochemical quartz crystal microbalance (EQCM) in combination with linear sweep voltammetry (LSV) and amperometry to determine the mass and thickness of the deposited film. Surface morphology and elemental composition were examined using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). In contrast, Fourier-transform infrared (FTIR) and UV–Vis spectroscopy confirmed the melanin’s chemical structure and its polyphenolic functional groups. Differential pulse voltammetry (DPV) and amperometry were employed to evaluate the melanin films’ electrochemical activity and sensitivity for detecting heavy metal ions. Reproducibility and repeatability were rigorously assessed, showing consistent electrochemical performance across multiple electrodes and trials. A comparative analysis of ITO, GCE, and graphite electrodes was conducted to identify the most suitable substrate for melanin film preparation, focusing on stability, electrochemical response, and metal ion sensing efficiency. Finally, the applicability of melanin-coated electrodes was tested on in-house heavy metal water samples, exploring their potential for practical environmental monitoring of toxic heavy metals. The findings highlight synthetic melanin-coated electrodes as a promising platform for sensitive and reliable detection of iron with a sensitivity of 106 nA/ppm and a limit of quantification as low as 1 ppm. Full article
Show Figures

Figure 1

27 pages, 26121 KiB  
Article
Spark Plasma Sintering and Electrospark Deposition of High Entropy Alloys with Elemental Variation
by Ciprian Alexandru Manea, Laura Elena Geambazu, Ileana Mariana Mateș, Delia Pătroi, Gabriela Beatrice Sbârcea, Dorinel Tălpeanu, Jan Přikryl, Gifty B. Oppong and Augustin Semenescu
Materials 2025, 18(12), 2799; https://doi.org/10.3390/ma18122799 - 13 Jun 2025
Viewed by 430
Abstract
A novel processing route of producing CrFeNiMo, Co0.5CrFeNiMo, and Al0.5CrFeNiMo high-entropy alloy coatings was proposed in this work. Pre-alloyed HEAs were consolidated by spark plasma sintering (SPS) in order to fabricate electrodes for electrospark deposition (ESD) coatings on carbon [...] Read more.
A novel processing route of producing CrFeNiMo, Co0.5CrFeNiMo, and Al0.5CrFeNiMo high-entropy alloy coatings was proposed in this work. Pre-alloyed HEAs were consolidated by spark plasma sintering (SPS) in order to fabricate electrodes for electrospark deposition (ESD) coatings on carbon steel substrates. Investigations were performed to observe aspects such as phase composition and stability, contamination level, homogeneity, elemental distribution, and microstructural integrity. The results indicated phase stability and lower porosity when increasing the SPS temperature by 50 °C for all cases, with tetragonal distortion related to the HEAs’ severe lattice distortion core effect. The coating surface analysis indicated that a continuous and compact coating was obtained, correlated with the ESD layering count, but microfissures were present after 6 layers were applied due to the reduced ductility combined with rapid cooling under Ar atmosphere. The chemical integrity of both the sintered samples and the coatings was preserved during the processing, revealing a uniform elemental distribution with no contaminations or impurities present. The results indicated successful HEA sintering and deposition, highlighting the potential of the combined SPS-ESD process for high-performance material fabrication with possible applications in aggressive environments. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Graphical abstract

13 pages, 3130 KiB  
Article
Tribological Property of AlCoCrFeNi Coating Electrospark-Deposited on H13 Steel
by Ke Lv, Guanglin Zhu, Jie Li, Xiong Cao, Haonan Song and Cean Guo
Metals 2025, 15(6), 649; https://doi.org/10.3390/met15060649 - 10 Jun 2025
Viewed by 786
Abstract
AlCoCrFeNi coatings were electrospark-deposited (ESD) on H13 steel substrates, and their nano-mechanical and tribological properties under a load of 2 N, 4 N, 6 N, 8 N, and 10 N were investigated by utilizing a nanoindentation instrument and a reciprocating friction and wear [...] Read more.
AlCoCrFeNi coatings were electrospark-deposited (ESD) on H13 steel substrates, and their nano-mechanical and tribological properties under a load of 2 N, 4 N, 6 N, 8 N, and 10 N were investigated by utilizing a nanoindentation instrument and a reciprocating friction and wear tester, respectively. The morphologies, composition, and phase structure of the as-deposited and worn AlCoCrFeNi coating were characterized using SEM (Scanning electron Microscope), EDS (Energy dispersive spectrometer), and XRD (X-Ray Diffraction). The results showed that the as-deposited AlCoCrFeNi coating with a nanocrystalline microstructure mainly consists of a BCC and B2 phase structure, and a gradient transition of elements between the coating and the substrate ensures an excellent bond between the coating and the substrate. The hardness of the AlCoCrFeNi coating exhibits an 8% increase, while its elastic modulus is reduced by 16% compared to the H13 steel. The AlCoCrFeNi coating remarkably increased the tribological property of the H13 steel under various loads, and its wear mechanism belongs to micro-cutting abrasive wear whilst that of the H13 steel can be characterized as severe adhesive wear. The friction coefficient and weight loss of the AlCoCrFeNi coating decrease with increasing load, both following a linear relationship with respect to the applied load. As the load intensifies, the work hardening sensitivity and oxidation degree on the worn surface of the coating are significantly enhanced, which collectively contributes to the improved tribological performance of the AlCoCrFeNi coating. Full article
(This article belongs to the Special Issue Advances in the Design and Behavior Analysis of High-Strength Steels)
Show Figures

Figure 1

31 pages, 2429 KiB  
Review
A Comprehensive Review of Improving the Durability Properties of Agricultural Harrow Discs by Atmospheric Plasma Spraying (APS)
by Corneliu Munteanu, Iurie Melnic, Bogdan Istrate, Mark Hardiman, Lidia Gaiginschi, Fabian Cezar Lupu, Vlad Nicolae Arsenoaia, Daniela Lucia Chicet, Constantin Zirnescu and Vladimir Badiul
Coatings 2025, 15(6), 632; https://doi.org/10.3390/coatings15060632 - 25 May 2025
Viewed by 618
Abstract
This paper presents a comprehensive analysis of recent advancements in the application of thermal spraying techniques to enhance the durability and wear resistance of agricultural machinery components, with a particular focus on disc harrow assemblies. Given the harsh conditions under which tillage tools [...] Read more.
This paper presents a comprehensive analysis of recent advancements in the application of thermal spraying techniques to enhance the durability and wear resistance of agricultural machinery components, with a particular focus on disc harrow assemblies. Given the harsh conditions under which tillage tools operate—characterized by abrasive wear, impact stresses, and chemical exposure from various soil types—thermal sprayed coatings have emerged as a viable solution to extend the service life of these components. The study discusses various deposition methods, particularly Atmospheric Plasma Spraying (APS), and evaluates their effectiveness in creating high-performance surface layers that resist wear, corrosion, and mechanical degradation. The review also summarizes experimental and field test results for coatings based on materials such as NiCrBSi, WC-Co-Cr, TiO2, Al2O3, Cr2O3, and ceramic–metal composites, highlighting their significant improvements in hardness, friction reduction, and resistance to delamination and oxidation. The paper highlights research using thermal spraying techniques, especially APS for agricultural applications, with emphasis mostly on components intended for soil processing and requiring good resistance to abrasive wear. Full article
(This article belongs to the Special Issue Emerging Trends in the Future of Plasma Science and Technology)
Show Figures

Figure 1

30 pages, 8581 KiB  
Article
Improvement of Surface Properties of Carbon Steel Through Electrospark Coatings from Multicomponent Hard Alloys
by Todor Penyashki, Georgi Kostadinov and Mara Kandeva
Materials 2025, 18(10), 2211; https://doi.org/10.3390/ma18102211 - 10 May 2025
Cited by 1 | Viewed by 445
Abstract
This work demonstrates the possibility of creating effective composite coatings with a complex structure and phase composition on carbon steel C45 via electrospark deposition (ESD) with multicomponent electrodes with a bonding mass composition of Co-Ni-Cr-B-Si semi-self-fluxing alloys and superhard compounds WC, B4 [...] Read more.
This work demonstrates the possibility of creating effective composite coatings with a complex structure and phase composition on carbon steel C45 via electrospark deposition (ESD) with multicomponent electrodes with a bonding mass composition of Co-Ni-Cr-B-Si semi-self-fluxing alloys and superhard compounds WC, B4C and TiB2. The variation in the roughness, thickness, composition, structure, microhardness and wear at the friction of the coatings as a function of the ratios between the bonding mass and the high-hardness components in the composition of the electrode and of the pulse energy for ESD has been studied. It has been established that with a content of the bonding mass in the electrode of 25–35%, coatings with improved adhesion and simultaneously higher hardness and toughness are obtained. Suitable electrode compositions and optimal pulse energy have been defined, which provide dense and uniform coatings with an increased amount of crystalline-amorphous structures, as well as intermetallic and wear-resistant phases, with thickness, roughness and microhardness that can be changed by the ESD modes in the ranges of δ = 8–65 µm, Ra = 1.5–7 µm, and HV 8.5–15.0 GPa, respectively, and minimal wear of the coated surfaces that is up to 5 times lower than that of the substrate and up to 1.5 times lower than that obtained with conventional WC-Co electrodes. Full article
(This article belongs to the Special Issue Advances in Metal Coatings for Wear and Corrosion Applications)
Show Figures

Figure 1

13 pages, 4614 KiB  
Article
Corrosion Resistance and Wear Properties of CoCrFeNiMn/TiC High-Entropy Alloy-Based Composite Coatings Prepared by Laser Cladding
by Qiang Zhan, Fangyan Luo, Jiang Huang, Zhanshan Wang, Bin Ma and Chengpu Liu
Lubricants 2025, 13(5), 210; https://doi.org/10.3390/lubricants13050210 - 10 May 2025
Viewed by 594
Abstract
CoCrFeNiMn high-entropy alloy (HEA) composite coatings with 0, 10, and 20 wt% TiC are synthesized through laser cladding technology, and their corrosion and wear resistance are systematically investigated. The X-ray diffraction (XRD) results show that with the addition of TiC, the phases of [...] Read more.
CoCrFeNiMn high-entropy alloy (HEA) composite coatings with 0, 10, and 20 wt% TiC are synthesized through laser cladding technology, and their corrosion and wear resistance are systematically investigated. The X-ray diffraction (XRD) results show that with the addition of TiC, the phases of TiC and M23C6 are introduced, and lattice distortion occurs simultaneously (accompanied by the broadening and leftward shift of the main Face-Centered Cubic (FCC) peak). Scanning electron microscopy (SEM) reveals that the incompletely melted TiC particles in the coating (S2) are uniformly distributed in the matrix with 20 wt% TiC, while in the coating (S1) with 10 wt% TiC, due to gravitational sedimentation and decomposition during laser processing, the distribution of the reinforcing phase is insufficient. When rubbed against Si3N4, with the addition of TiC, S2 exhibits the lowest friction coefficient of 0.699 and wear volume of 0.0398 mm3. The corrosion resistance of S2 is more prominent in the simulated seawater (3.5 wt% NaCl). S2 shows the best corrosion resistance: it has the largest self-corrosion voltage (−0.425 V vs. SCE), the lowest self-corrosion current density (1.119 × 10−7 A/cm2), and exhibits stable passivation behavior with a wide passivation region. Electrochemical impedance spectroscopy (EIS) confirms that its passivation film is denser. This study shows that the addition of 20 wt% TiC optimizes the microstructural homogeneity and synergistically enhances the mechanical strengthening and electrochemical stability of the coating, providing a new strategy for the making of HEA-based layers in harsh wear-corrosion coupling environments. Full article
(This article belongs to the Special Issue Wear-Resistant Coatings and Film Materials)
Show Figures

Figure 1

19 pages, 23277 KiB  
Article
Metal Matrix Composite Coatings Deposited by Laser Cladding: On the Effectiveness of WC Reinforcement for Wear Resistance and Its Synergy with the Matrix Material (Ni Versus Co Alloys)
by Leandro João da Silva, Jeferson Trevizan Pacheco, Edja Iandeyara Freitas Moura, Douglas Bezerra de Araújo, Ruham Pablo Reis and Ana Sofia Clímaco Monteiro D’Oliveira
Coatings 2025, 15(4), 468; https://doi.org/10.3390/coatings15040468 - 15 Apr 2025
Cited by 2 | Viewed by 731
Abstract
This work investigates the effect of the addition of tungsten carbide (WC) particles as reinforcements to Ni (Inconel 625) versus Co (Stellite 6) alloys during deposition by laser cladding to form wear-resistant metal matrix composite (MMC) coatings. While the related literature often associates [...] Read more.
This work investigates the effect of the addition of tungsten carbide (WC) particles as reinforcements to Ni (Inconel 625) versus Co (Stellite 6) alloys during deposition by laser cladding to form wear-resistant metal matrix composite (MMC) coatings. While the related literature often associates the presence of WC with the enhanced wear performance of MMC coatings, this work shows that such an effect is not universal as it may critically depend on the metallic matrix employed. Thus, to demonstrate whether the reinforcement and matrix act synergically in such a scenario or not, MMC coatings formed by Inconel 625 and Stellite 6, both with WC content ranging from 10% to 40%, were deposited under the same laser cladding setup on AISI 304 stainless steel substrates, being WC-free samples produced together for comparison basis. As expected, the hardness levels increased with more WC presence in both matrices, but the wear resistance was specifically evaluated by means of the metal wheel abrasion test (ASTM B611). The results revealed that the use of WC as a reinforcement indeed affects the matrix materials differently; for Stellite 6, the wear resistance increased with up to 20% of WC (in contrast to the hardness indication), whereas for Inconel 625, the wear resistance progressively decreased with more WC content. It was observed via scanning electron microscopy (SEM) that the WC particles within the Inconel 625 alloy tended to intensive cracking, being in this way more prone to detach from the matrix and hence representing a weakening factor for the effectiveness of the coatings produced. Thus, it is concluded that the addition of WC particles, as potential reinforcements for MMC coatings, is not always effective (synergic with the matrix) in providing wear resistance, hence, opposing the prevailing consensus. This outcome and its reasons will certainly help with insights into proper design of MMC coatings, starting with the importance of matrix material selection. Full article
(This article belongs to the Section Laser Coatings)
Show Figures

Graphical abstract

13 pages, 11281 KiB  
Article
In Situ-Reinforced Phase Evolution and Mechanical Properties of CoCrFeNi High-Entropy Alloy Composite Coating on Q235B by Laser Cladding with Nb Addition
by Feimuyun Yang, Zhixuan Xiao, Zehuan Chen, Hongtao Jin, Chao Gao and Jiang Huang
Materials 2025, 18(7), 1572; https://doi.org/10.3390/ma18071572 - 31 Mar 2025
Viewed by 382
Abstract
Q235B is widely used in marine engineering materials; however, its wear resistance and corrosion resistance are poor. To improve wear and corrosion resistance, a CoCrFeNi high-entropy alloy (HEA) composite coating was cladded using laser cladding (LC) technology. Different proportions of tungsten carbide (WC) [...] Read more.
Q235B is widely used in marine engineering materials; however, its wear resistance and corrosion resistance are poor. To improve wear and corrosion resistance, a CoCrFeNi high-entropy alloy (HEA) composite coating was cladded using laser cladding (LC) technology. Different proportions of tungsten carbide (WC) and Nb elements were added to the CoCrFeNi HEA coating, and the microstructure, phase, hardness, wear, and corrosion resistance of three different composite coatings were analyzed. The results show that the in situ synthetic phase is composed of Face central cubic (FCC) (Cr3C2) and strengthening phases such as W, WC, and NbC. In the process of LC, Nb will react with WC in situ, which not only reduces the morphology of the CoCrFeNi HEA cladding coating changed by adding WC, but also generates NbC, which leads to the dissolution of WC particles and improves the uniformity of particle distribution of the coating. The hardness of the coating with Nb is increased by 1.40 times, the wear resistance is enhanced, and the peeling of the hard phase is reduced during wear. The corrosion resistance of the coating with only WC particles is the best. Nb reduces the morphology of CoCrFeNi HEA cladding coating changed by WC particles. Although the coating with Nb is not as strong as that with WC particles only, it has outstanding hardness and wear resistance. Full article
Show Figures

Figure 1

14 pages, 3644 KiB  
Article
Graphene Doped with Transition Metal Oxides: Enhancement of Anode Performance in Lithium-Ion Batteries
by Jun Du, Liwei Liao, Binbin Jin, Xinyi Shen, Zhe Mei, Qingcheng Du, Hailin Nong, Bingxin Lei and Liying Liang
Metals 2025, 15(4), 387; https://doi.org/10.3390/met15040387 - 29 Mar 2025
Cited by 1 | Viewed by 574
Abstract
In recent years, transition metal oxides (TMOs) have emerged as promising candidates for anode materials in lithium-ion batteries (LIBs) owing to their high theoretical capacities. Regrettably, most TMOs exhibit poor electronic/ionic conductivity and undergo substantial volume expansion during the lithiation/delithiation processes. In this [...] Read more.
In recent years, transition metal oxides (TMOs) have emerged as promising candidates for anode materials in lithium-ion batteries (LIBs) owing to their high theoretical capacities. Regrettably, most TMOs exhibit poor electronic/ionic conductivity and undergo substantial volume expansion during the lithiation/delithiation processes. In this study, an electrostatic spinning method using polyacrylonitrile, graphene, and iron(III) acetylacetonate as precursors was employed to synthesize the Fe3O4@G/C composite through carbon coating and graphene doping. The composition, phase structure, and morphology of the Fe3O4@G/C composite were thoroughly investigated. The electrochemical performance of the Fe3O4@G/C composite as a lithium-ion battery anode was evaluated through a continuous charge–discharge cycling test. After 100 cycles at a current density of 0.1 A/g, the specific capacity of the Fe3O4@G/C material remained at 595.8 mAh/g. Additionally, the incorporation of graphene leads to a reduction in the electron orbital energy of Fe, which was verified by comparing the density of states (DOS) before and after the doping. Simultaneously, the electrochemical performance of CoO@G/C and NiO@G/C composites further demonstrates that doping transition metal oxides with graphene can enhance their performance as anodes for lithium-ion batteries. We anticipate that this design concept will open new avenues for the development of transition metal oxides (TMOs) and propel their adoption in practical applications. Full article
Show Figures

Graphical abstract

15 pages, 4789 KiB  
Article
The Design and Preparation of New Fe(21-x)CoNiCuAlTix High-Entropy-Alloy Wear- and Corrosion-Resistant Coatings and an Investigation of Their Performance
by Chun Guo, Guangcan Huang, Ruizhang Hu, Qingcheng Lin, Xinyu Zhang, Wenqing Li and Linting Chen
Coatings 2025, 15(4), 396; https://doi.org/10.3390/coatings15040396 - 27 Mar 2025
Viewed by 381
Abstract
The purpose of this study is to prepare new Fe(21-x)CoNiCuAlTix alloy coatings and to investigate the phase composition, microstructure, wear resistance, and corrosion resistance of these high-entropy-alloy coatings with varying Ti content. High-entropy Fe(21-x)CoNiCuAlTix (x = 0; [...] Read more.
The purpose of this study is to prepare new Fe(21-x)CoNiCuAlTix alloy coatings and to investigate the phase composition, microstructure, wear resistance, and corrosion resistance of these high-entropy-alloy coatings with varying Ti content. High-entropy Fe(21-x)CoNiCuAlTix (x = 0; 2; 4; 6; 8) alloy coatings were prepared on 65Mn steel substrates via laser cladding. The results showed that the addition of Ti promoted the formation of the BCC phase, which increased the hardness of the coatings and improved their wear resistance due to the hardening of the solid solution and grain refinement. The microhardness of the coating was 689.08HV0.2 at x = 8, 2.056 times that of the base metal, and the wear resistance was 2.565 × 10−7 g/(N·m). The corrosion potential and corrosion current density were −0.199 V and 3.513 × 10−7 A/cm2, respectively, indicating excellent corrosion resistance. The addition of titanium significantly enhanced the formation of the BCC phase, improved the microstructure through solid-solution hardening and grain refinement, and caused lattice distortion. These effects, as well as the formation of solid bonds, significantly improved the wear and corrosion resistance of the coatings. Full article
(This article belongs to the Section Laser Coatings)
Show Figures

Figure 1

Back to TopTop