Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (584)

Search Parameters:
Keywords = Niño 3.4 region

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 11346 KiB  
Article
Seasonal and Interannual Variations in Hydrological Dynamics of the Amazon Basin: Insights from Geodetic Observations
by Meilin He, Tao Chen, Yuanjin Pan, Lv Zhou, Yifei Lv and Lewen Zhao
Remote Sens. 2025, 17(15), 2739; https://doi.org/10.3390/rs17152739 (registering DOI) - 7 Aug 2025
Abstract
The Amazon Basin plays a crucial role in the global hydrological cycle, where seasonal and interannual variations in terrestrial water storage (TWS) are essential for understanding climate–hydrology coupling mechanisms. This study utilizes data from the Gravity Recovery and Climate Experiment (GRACE) satellite mission [...] Read more.
The Amazon Basin plays a crucial role in the global hydrological cycle, where seasonal and interannual variations in terrestrial water storage (TWS) are essential for understanding climate–hydrology coupling mechanisms. This study utilizes data from the Gravity Recovery and Climate Experiment (GRACE) satellite mission and its follow-on mission (GRACE-FO, collectively referred to as GRACE) to investigate the spatiotemporal dynamics of hydrological mass changes in the Amazon Basin from 2002 to 2021. Results reveal pronounced spatial heterogeneity in the annual amplitude of TWS, exceeding 65 cm near the Amazon River and decreasing to less than 25 cm in peripheral mountainous regions. This distribution likely reflects the interplay between precipitation and topography. Vertical displacement measurements from the Global Navigation Satellite System (GNSS) show strong correlations with GRACE-derived hydrological load deformation (mean Pearson correlation coefficient = 0.72) and reduce its root mean square (RMS) by 35%. Furthermore, the study demonstrates that existing hydrological models, which neglect groundwater dynamics, underestimate hydrological load deformation. Principal component analysis (PCA) of the Amazon GNSS network demonstrates that the first principal component (PC) of GNSS vertical displacement aligns with abrupt interannual TWS fluctuations identified by GRACE during 2010–2011, 2011–2012, 2013–2014, 2015–2016, and 2020–2021. These fluctuations coincide with extreme precipitation events associated with the El Niño–Southern Oscillation (ENSO), confirming that ENSO modulates basin-scale interannual hydrological variability primarily through precipitation anomalies. This study provides new insights for predicting extreme hydrological events under climate warming and offers a methodological framework applicable to other critical global hydrological regions. Full article
Show Figures

Figure 1

11 pages, 985 KiB  
Article
Strengthening Western North Pacific High in a Warmer Environment
by Sanghyeon Yun and Namyoung Kang
Climate 2025, 13(8), 162; https://doi.org/10.3390/cli13080162 - 1 Aug 2025
Viewed by 161
Abstract
The geographical response of western North Pacific subtropical high (SH) to environmental conditions such as the El Niño-Southern Oscillation (ENSO) and global warming has been one of the main concerns with respect to extreme events induced by tropical convections. By considering observed outgoing [...] Read more.
The geographical response of western North Pacific subtropical high (SH) to environmental conditions such as the El Niño-Southern Oscillation (ENSO) and global warming has been one of the main concerns with respect to extreme events induced by tropical convections. By considering observed outgoing longwave radiation (OLR) as the strength of subtropical high, this study attempts to further understand the geographical response of SH strength to ENSO and global warming. Here, “SH strength” is defined as the inhibition of regional convections under SH environment. A meridional seesaw pattern among SH strength anomalies is found at 130°–175° E. In addition, the La Niña environment with weaker convections at lower latitudes is characterized by farther westward expansion of SH but with a weaker strength. Conversely, the El Niño environment with stronger convections at lower latitudes leads to shrunken SH but with a greater strength. The influence of the seesaw mechanism appears to be modulated by global warming. The western North Pacific subtropical high strengthens overall under warming in both the La Niña and El Niño environments. This suggests that the weakening effect by drier tropics is largely offset by anomalous highs induced by a warming atmosphere. It is most remarkable that the highest SH strengths appear in a warmer El Niño environment. The finding implies that every new El Niño environment may experience the driest atmosphere ever in the subtropics under global warming. The value of this study lies in the fact that OLR effectively illustrates how the ENSO variation and global warming bring the zonally undulating strength of boreal-summer SH. Full article
Show Figures

Figure 1

14 pages, 1855 KiB  
Article
Response of Tree-Ring Oxygen Isotopes to Climate Variations in the Banarud Area in the West Part of the Alborz Mountains
by Yajun Wang, Shengqian Chen, Haichao Xie, Yanan Su, Shuai Ma and Tingting Xie
Forests 2025, 16(8), 1238; https://doi.org/10.3390/f16081238 - 28 Jul 2025
Viewed by 224
Abstract
Stable oxygen isotopes in tree rings (δ18O) serve as important proxies for climate change and offer unique advantages for climate reconstruction in arid and semi-arid regions. We established an annual δ18O chronology spanning 1964–2023 using Juniperus excelsa tree-ring samples [...] Read more.
Stable oxygen isotopes in tree rings (δ18O) serve as important proxies for climate change and offer unique advantages for climate reconstruction in arid and semi-arid regions. We established an annual δ18O chronology spanning 1964–2023 using Juniperus excelsa tree-ring samples collected from the Alborz Mountains in Iran. We analyzed relationships between δ18O and key climate variables: precipitation, temperature, Palmer Drought Severity Index (PDSI), vapor pressure (VP), and potential evapotranspiration (PET). Correlation analysis reveals that tree-ring δ18O is highly sensitive to hydroclimatic variations. Tree-ring cellulose δ18O shows significant negative correlations with annual total precipitation and spring PDSI, and significant positive correlations with spring temperature (particularly maximum temperature), April VP, and spring PET. The strongest correlation occurs with spring PET. These results indicate that δ18O responds strongly to the balance between springtime moisture supply (precipitation and soil moisture) and atmospheric evaporative demand (temperature, VP, and PET), reflecting an integrated signal of both regional moisture availability and energy input. The pronounced response of δ18O to spring evaporative conditions highlights its potential for capturing high-resolution changes in spring climatic conditions. Our δ18O series remained stable from the 1960s to the 1990s, but showed greater interannual variability after 2000, likely linked to regional warming and climate instability. A comparison with the δ18O variations from the eastern Alborz Mountains indicates that, despite some differences in magnitude, δ18O records from the western and eastern Alborz Mountains show broadly similar variability patterns. On a larger climatic scale, δ18O correlates significantly and positively with the Niño 3.4 index but shows no significant correlation with the Arctic Oscillation (AO) or the North Atlantic Oscillation (NAO). This suggests that ENSO-driven interannual variability in the tropical Pacific plays a key role in regulating regional hydroclimatic processes. This study confirms the strong potential of tree-ring oxygen isotopes from the Alborz Mountains for reconstructing hydroclimatic conditions and high-frequency climate variability. Full article
(This article belongs to the Section Forest Meteorology and Climate Change)
Show Figures

Figure 1

37 pages, 3799 KiB  
Systematic Review
Improvement of Expansive Soils: A Review Focused on Applying Innovative and Sustainable Techniques in the Ecuadorian Coastal Soils
by Mariela Macías-Párraga, Francisco J. Torrijo Echarri, Olegario Alonso-Pandavenes and Julio Garzón-Roca
Appl. Sci. 2025, 15(15), 8184; https://doi.org/10.3390/app15158184 - 23 Jul 2025
Viewed by 244
Abstract
Traditional stabilization techniques, such as lime and cement, widely used for their effectiveness, albeit with economic and environmental limitations, are leading to the search for sustainable approaches that utilize agricultural and industrial waste, such as rice husk ash, bagasse, and natural fibers. These [...] Read more.
Traditional stabilization techniques, such as lime and cement, widely used for their effectiveness, albeit with economic and environmental limitations, are leading to the search for sustainable approaches that utilize agricultural and industrial waste, such as rice husk ash, bagasse, and natural fibers. These have been shown to improve key geotechnical properties, even under saturated conditions, significantly. In particular, the combination of rice husk ash and recycled ceramics has shown notable results in Ecuadorian coastal soils. The article emphasizes the importance of selecting techniques that balance effectiveness, cost, and sustainability and identifies existing limitations, such as the lack of long-term data (ten years) and predictive models adapted to the Ecuadorian climate. From a bibliographic perspective, this article analyzes the challenges posed by expansive soils in the western coastal region of Ecuador, whose high plasticity and instability to moisture negatively affect civil works such as roads and buildings. The Ecuadorian clay contained 30% kaolinite and only 1.73% CaO, limiting its chemical reactivity compared to soils such as Saudi Arabia, which contained 34.7% montmorillonite and 9.31% CaO. Natural fibers such as jute, with 85% cellulose, improved the soil’s mechanical strength, increasing the UCS by up to 130%. Rice husk ash (97.69% SiO2) and sugarcane bagasse improved the CBR by 90%, highlighting their potential as sustainable stabilizers. All of this is contextualized within Ecuador’s geoenvironmental conditions, which are influenced by climatic phenomena such as El Niño and La Niña, as well as global warming. Finally, it is proposed to promote multidisciplinary research that fosters more efficient and environmentally responsible solutions for stabilizing expansive soils. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

17 pages, 4550 KiB  
Article
Spatiotemporal Characteristics and Associated Circulation Features of Summer Extreme Precipitation in the Yellow River Basin
by Degui Yao, Xiaohui Wang and Jinyu Wang
Atmosphere 2025, 16(7), 892; https://doi.org/10.3390/atmos16070892 - 21 Jul 2025
Viewed by 180
Abstract
By utilizing daily precipitation data from 400 meteorological stations in the Yellow River Basin (YRB) of China, atmospheric and oceanic reanalysis data, this study investigates the climatological characteristics, leading modes, and relationships with atmospheric circulation and sea surface temperature (SST) of summer extreme [...] Read more.
By utilizing daily precipitation data from 400 meteorological stations in the Yellow River Basin (YRB) of China, atmospheric and oceanic reanalysis data, this study investigates the climatological characteristics, leading modes, and relationships with atmospheric circulation and sea surface temperature (SST) of summer extreme precipitation in the YRB from 1981 to 2020 through the extreme precipitation metrics and Empirical Orthogonal Function (EOF) analysis. The results indicate that both the frequency and intensity of extreme precipitation exhibit an eastward and southward increasing pattern in terms of climate state, with regions of higher precipitation showing greater interannual variability. When precipitation in the YRB exhibits a spatially coherent enhancement pattern, high latitudes exhibits an Eurasian teleconnection wave train that facilitates the southward movement of cold air. Concurrently, the northward extension of the Western Pacific subtropical high (WPSH) enhances moisture transport from low latitudes to the YRB, against the backdrop of a transitioning SST pattern from El Niño to La Niña. When precipitation in the YRB shows a “south-increase, north-decrease” dipole pattern, the southward-shifted Ural high and westward-extended WPSH converge cold air and moist in the southern YRB region, with no dominant SST drivers identified. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

30 pages, 7472 KiB  
Article
Two Decades of Groundwater Variability in Peru Using Satellite Gravimetry Data
by Edgard Gonzales, Victor Alvarez and Kenny Gonzales
Appl. Sci. 2025, 15(14), 8071; https://doi.org/10.3390/app15148071 - 20 Jul 2025
Viewed by 525
Abstract
Groundwater is a critical yet understudied resource in Peru, where surface water has traditionally dominated national assessments. This study provides the first country-scale analysis of groundwater storage (GWS) variability in Peru from 2003 to 2023 using satellite gravimetry data from the Gravity Recovery [...] Read more.
Groundwater is a critical yet understudied resource in Peru, where surface water has traditionally dominated national assessments. This study provides the first country-scale analysis of groundwater storage (GWS) variability in Peru from 2003 to 2023 using satellite gravimetry data from the Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On (GRACE-FO) missions. We used the GRACE Data Assimilation-Data Mass Modeling (GRACE-DA-DM GLV3.0) dataset at 0.25° resolution to estimate annual GWS trends and evaluated the influence of El Niño–Southern Oscillation (ENSO) events and anthropogenic extraction, supported by in situ well data from six major aquifers. Results show a sustained GWS decline of 30–40% in coastal and Andean regions, especially in Lima, Ica, Arequipa, and Tacna, while the Amazon basin remained stable. Strong correlation (r = 0.95) between GRACE data and well records validate the findings. Annual precipitation analysis from 2003 to 2023, disaggregated by climatic zone, revealed nearly stable trends. Coastal El Niño events (2017 and 2023) triggered episodic recharge in the northern and central coastal regions, yet these were insufficient to reverse the sustained groundwater depletion. This research provides significant contributions to understanding the spatiotemporal dynamics of groundwater in Peru through the use of satellite gravimetry data with unprecedented spatial resolution. The findings reveal a sustained decline in GWS across key regions and underscore the urgent need to implement integrated water management strategies—such as artificial recharge, optimized irrigation, and satellite-based early warning systems—aimed at preserving the sustainability of the country’s groundwater resources. Full article
Show Figures

Figure 1

15 pages, 2489 KiB  
Article
Interannual Variability in Barotropic Sea Level Differences Across the Korea/Tsushima Strait and Its Relationship to Upper-Ocean Current Variability in the Western North Pacific
by Jihwan Kim, Hanna Na and SeungYong Lee
Climate 2025, 13(7), 144; https://doi.org/10.3390/cli13070144 - 9 Jul 2025
Viewed by 385
Abstract
The barotropic sea level difference (SLD) across the Korea/Tsushima Strait (KTS) is considered an index of the volume transport into the East/Japan Sea. This study investigates the interannual variability of the barotropic SLD (the KTS inflow) from 1985 to 2017 and its relationship [...] Read more.
The barotropic sea level difference (SLD) across the Korea/Tsushima Strait (KTS) is considered an index of the volume transport into the East/Japan Sea. This study investigates the interannual variability of the barotropic SLD (the KTS inflow) from 1985 to 2017 and its relationship to upper-ocean (<300 m) current variability in the western North Pacific. An increase in the KTS inflow is associated with a weakening of the Kuroshio current through the Tokara Strait and upper-ocean cooling in the North Pacific Subtropical Gyre, characteristic of a La Niña-like state. Diagnostic analysis reveals that the KTS inflow variability is linked to at least two statistically distinct and concurrent modes of oceanic variability. The first mode is tied to the El Niño–Southern Oscillation through large-scale changes in the Kuroshio system. The second mode, which is linearly uncorrelated with the first, is associated with regional eddy kinetic energy variability in the western North Pacific. The identification of these parallel pathways suggests a complex regulatory system for the KTS inflow. This study provides a new framework for understanding the multi-faceted connection between the KTS and upstream oceanic processes, with implications for the predictability of the ocean environmental conditions in the East/Japan Sea. Full article
Show Figures

Figure 1

26 pages, 9032 KiB  
Article
Relative Humidity and Air Temperature Characteristics and Their Drivers in Africa Tropics
by Isaac Kwesi Nooni, Faustin Katchele Ogou, Abdoul Aziz Saidou Chaibou, Samuel Koranteng Fianko, Thomas Atta-Darkwa and Nana Agyemang Prempeh
Atmosphere 2025, 16(7), 828; https://doi.org/10.3390/atmos16070828 - 8 Jul 2025
Viewed by 523
Abstract
In a warming climate, rising temperature are expected to influence atmospheric humidity. This study examined the spatio-temporal dynamics of temperature (TEMP) and relative humidity (RH) across Equatorial Africa from 1980 to 2020. The analysis used RH data from European Centre of Medium-range Weather [...] Read more.
In a warming climate, rising temperature are expected to influence atmospheric humidity. This study examined the spatio-temporal dynamics of temperature (TEMP) and relative humidity (RH) across Equatorial Africa from 1980 to 2020. The analysis used RH data from European Centre of Medium-range Weather Forecasts Reanalysis v.5 (ERA5) reanalysis, TEMP and precipitation (PRE) from Climate Research Unit (CRU), and soil moisture (SM) and evapotranspiration (ET) from the Global Land Evaporation Amsterdam Model (GLEAM). In addition, four teleconnection indices were considered: El Niño-Southern Oscillation (ENSO), Indian Ocean Dipole (IOD), North Atlantic Oscillation (NAO), and Pacific Decadal Oscillation (PDO). This study used the Mann–Kendall test and Sen’s slope estimator to analyze trends, alongside multiple linear regression to investigate the relationships between TEMP, RH, and key climatic variables—namely evapotranspiration (ET), soil moisture (SM), and precipitation (PRE)—as well as large-scale teleconnection indices (e.g., IOD, ENSO, PDO, and NAO) on annual and seasonal scales. The key findings are as follows: (1) mean annual TEMP exceeding 30 °C and RH less than 30% were concentrated in arid regions of the Sahelian–Sudano belt in West Africa (WAF), Central Africa (CAF) and North East Africa (NEAF). Semi-arid regions in the Sahelian–Guinean belt recorded moderate TEMP (25–30 °C) and RH (30–60%), while the Guinean coastal belt and Congo Basin experienced cooler, more humid conditions (TEMP < 20 °C, RH (60–90%). (2) Trend analysis using Mann–Kendal and Sen slope estimator analysis revealed spatial heterogeneity, with increasing TEMP and deceasing RH trends varying by region and season. (3) The warming rate was higher in arid and semi-arid areas, with seasonal rates exceeding annual averages (0.18 °C decade−1). Winter (0.27 °C decade−1) and spring (0.20 °C decade−1) exhibited the strongest warming, followed by autumn (0.18 °C decade−1) and summer (0.10 °C decade−1). (4) RH trends showed stronger seasonal decline compared to annual changes, with reduction ranging from 5 to 10% per decade in certain seasons, and about 2% per decade annually. (5) Pearson correlation analysis demonstrated a strong negative relationship between TEMP and RH with a correlation coefficient of r = − 0.60. (6) Significant associations were also observed between TEMP/RH and both climatic variables (ET, SM, PRE) and large scale-teleconnection indices (ENSO, IOD, PDO, NAO), indicating that surface conditions may reflect a combination of local response and remote climate influences. However, further analysis is needed to distinguish the extent to which local variability is independently driven versus being a response to large-scale forcing. Overall, this research highlights the physical mechanism linking TEMP and RH trends and their climatic drivers, offering insights into how these changes may impact different ecological and socio-economic sectors. Full article
(This article belongs to the Special Issue Precipitation in Africa (2nd Edition))
Show Figures

Figure 1

22 pages, 8634 KiB  
Article
Spatiotemporal Analysis of Sea-Surface pH in the Pacific Ocean Based on Interpretable Machine Learning
by Minlong Huang, Jin Qi, Can Zhang, Yuanyuan Wang, Yijun Chen, Jian Shao and Sensen Wu
J. Mar. Sci. Eng. 2025, 13(7), 1220; https://doi.org/10.3390/jmse13071220 - 25 Jun 2025
Viewed by 383
Abstract
Increasingly severe ocean acidification (OA) disrupts the balance of marine ecosystems. Seawater pH is a key indicator of OA but remains challenging to characterize due to sparse and limited in situ observations. In this study, we propose a spatiotemporal inversion method for surface [...] Read more.
Increasingly severe ocean acidification (OA) disrupts the balance of marine ecosystems. Seawater pH is a key indicator of OA but remains challenging to characterize due to sparse and limited in situ observations. In this study, we propose a spatiotemporal inversion method for surface pH based on interpretable machine learning. By applying carbonate system calculations, we construct an expanded pH observational dataset and obtain spatiotemporal distributions of pH and its influencing factors across the Pacific Ocean from 2003 to 2021. The interpretability analysis reveals that physical, biological, and optical factors contribute 53.9%, 23.9%, and 22.2%, respectively, to pH variability. Sea-surface temperature is the dominant driver, contributing 15.9% of all factors by regulating CO2 solubility and biological activity. Particulate inorganic carbon (PIC) and particulate organic carbon (POC) show relative contributions of 12.6% and 9.4%, respectively, quantitatively reflecting the important roles of biogenic calcification and the biological carbon pump. Furthermore, the analysis focusing on the Niño 3.4 region reveals a potential pathway through which the ENSO disturbances may affect pH by influencing PIC and POC. Therefore, this study provides a data-driven approach to gain deeper insights into the spatiotemporal patterns of pH and its influencing factors. Full article
(This article belongs to the Section Chemical Oceanography)
Show Figures

Figure 1

21 pages, 8446 KiB  
Article
Regional Wave Analysis in the East China Sea Based on the SWAN Model
by Songnan Ma, Fuwu Ji, Qunhui Yang, Zhinan Mi and Wenhui Cao
J. Mar. Sci. Eng. 2025, 13(6), 1196; https://doi.org/10.3390/jmse13061196 - 19 Jun 2025
Viewed by 597
Abstract
High-precision wave data serve as a foundation for investigating the wave characteristics of the East China Sea (ECS) and wave energy development. Based on the simulating waves nearshore (SWAN) model, this study uses the ERA5 (ECMWF Reanalysis v5) reanalysis wind field data and [...] Read more.
High-precision wave data serve as a foundation for investigating the wave characteristics of the East China Sea (ECS) and wave energy development. Based on the simulating waves nearshore (SWAN) model, this study uses the ERA5 (ECMWF Reanalysis v5) reanalysis wind field data and ETOPO1 bathymetric data to perform high-precision simulations at a resolution of 0.05° × 0.05° for the waves in the area of 25–35° N and 120–130° E in the ECS from 2009 to 2023. The simulation results indicate that the application of the whitecapping dissipation parameter Komen and the bottom friction parameter Collins yields an average RMSE of 0.374 m and 0.369 m when compared to satellite-measured data, demonstrating its superior suitability for wave simulation in shallow waters such as the ESC over the other whitecapping dissipation parameter, Westhuysen, and the other two bottom friction parameters, Jonswap and Madsen, in the SWAN model. The monthly average significant wave height (SWH) ranges from 0 to 3 m, exhibiting a trend that it is more important in autumn and winter than in spring and summer and gradually increases from the northwest to the southeast. Due to the influence of the Kuroshio current, topography, and events such as typhoons, areas with significant wave heights are found in the northwest of the Ryukyu Islands and north of the Taiwan Strait. The wave energy flux density in most areas of the ECS is >2 kW/m, particularly in the north of the Ryukyu Islands, where the annual average value remains above 8 kW/m. Because of the influence of climate events such as El Niño and extreme heatwaves, the wave energy flux density decreased significantly in some years (a 21% decrease in 2015). The coefficient of variation of wave energy in the East China Sea exhibits pronounced regional heterogeneity, which can be categorized into four distinct patterns: high mean wave energy with high variation coefficient, high mean wave energy with low variation coefficient, low mean wave energy with high variation coefficient, and low mean wave energy with low variation coefficient. This classification fundamentally reflects the intrinsic differences in dynamic environments across various maritime regions. These high-precision numerical simulation results provide methodological and theoretical support for exploring the spatiotemporal variation laws of waves in the ECS region, the development and utilization of wave resources, and marine engineering construction. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

17 pages, 6114 KiB  
Review
Impact of El Niño–Southern Oscillation on Global Vegetation
by Jie Jin, Dongnan Jian, Xin Zhou, Quanliang Chen and Yang Li
Atmosphere 2025, 16(6), 701; https://doi.org/10.3390/atmos16060701 - 10 Jun 2025
Viewed by 1213
Abstract
El Niño–Southern Oscillation (ENSO), as the strongest source of interannual variability in the tropics, has far-reaching impacts on global climate through teleconnections. As a key factor modulating the vegetation changes, the impact of ENSO has been studied over the past two decades using [...] Read more.
El Niño–Southern Oscillation (ENSO), as the strongest source of interannual variability in the tropics, has far-reaching impacts on global climate through teleconnections. As a key factor modulating the vegetation changes, the impact of ENSO has been studied over the past two decades using satellite observations. The paper aims to review results from the past 10–20 years and put together into a consistent picture of ENSO global impacts on vegetation. While ENSO affects vegetation worldwide, its impact varies regionally. Different ENSO flavors, Central Pacific and Eastern Pacific events, can have distinct impacts in the same regions. The underlying mechanisms involve ENSO-driven changes in precipitation and temperature, modulated by the background climate states, with varying response from vegetations of different types. However, the interactions between vegetation and ENSO remain largely unexplored, highlighting a critical gap for future research. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

26 pages, 3355 KiB  
Article
Dendrochronology and Isotope Chronology of Juglans neotropica and Its Response to El Niño-Related Rainfall Events in Tropical Highlands of Piura, Northern Peru
by Tone Marie Ektvedt, Michael N. Evans, Donald A. Falk and Paul R. Sheppard
Plants 2025, 14(11), 1704; https://doi.org/10.3390/plants14111704 - 3 Jun 2025
Cited by 1 | Viewed by 884
Abstract
Tropical trees represent an important potential archive of climate and ecological information, but their dendrochronology based on conventional techniques has been challenging. We conducted a pilot study of the wood anatomy and dendroclimatological potential of Juglans neotropica Diels (Juglandaceae), an IUCN Red List [...] Read more.
Tropical trees represent an important potential archive of climate and ecological information, but their dendrochronology based on conventional techniques has been challenging. We conducted a pilot study of the wood anatomy and dendroclimatological potential of Juglans neotropica Diels (Juglandaceae), an IUCN Red List species, using 225 radii sampled from 57 trees in Piura (4°55′ S, 79° 56′ W), northern Peru. A total of 112 radii from 40 trees passed quality control and are included in the tree-ring width chronology for this species. J. neotropica has demonstrably annual rings, and results are consistent with reports that the species has a dormant period during the dry season, which locally is approximately June–November. Local precipitation is correlated (p = 0.10, 1-tailed test) with tree-ring growth, lagged by one year, consistent with other studies of tropical tree species. The age distribution of the sample collection of J. neotropica is young and invariant, probably because of selective cutting by local villagers. To supplement ring-width analysis, we conducted the first oxygen isotopic (δ18O) and radiocarbon (∆14C) analysis for this species on radii from two individuals; results are preliminary given sample size limitations, but consistent with dendrochronological dating, within uncertainties, in all three chronometric analyses. A two-sample composite annually-averaged δ18O anomaly data series is correlated significantly with gridded regional growing season (December–May) precipitation (1973/74–2005/06). Qualitatively consistent with simulation of ring width and δ18O, responses to El Niño events are manifested in positive ring-growth anomalies and negative isotopic anomalies following known event years. The combination of tree-ring, radiocarbon, stable isotopic analyses, and the application of sensor and chronological modeling provides a degree of confidence in the results that would not have been possible by relying on any single approach and indicates the potential for further investigation of this and other tropical tree species with uncertain ring boundaries. Full article
(This article belongs to the Special Issue New Perspectives on New World Tropical Forests)
Show Figures

Figure 1

12 pages, 2196 KiB  
Article
Post-El Niño Influence on Summer Monsoon Rainfall in Sri Lanka
by Pathmarasa Kajakokulan and Vinay Kumar
Water 2025, 17(11), 1664; https://doi.org/10.3390/w17111664 - 30 May 2025
Viewed by 830
Abstract
Sri Lanka typically experiences anomalously wet conditions during the summer following El Niño events, but this response varies due to El Niño complexity. This study investigates the impact of post-El Niño conditions on Sri Lanka’s Monsoon rainfall, contrasting summers after fast- and slow-decaying [...] Read more.
Sri Lanka typically experiences anomalously wet conditions during the summer following El Niño events, but this response varies due to El Niño complexity. This study investigates the impact of post-El Niño conditions on Sri Lanka’s Monsoon rainfall, contrasting summers after fast- and slow-decaying El Niño events. Results indicate that fast-decaying El Niño events lead to wet and cool summers while slow-decaying events result in dry and warm summers. These contrasting responses are linked to sea surface temperature (SST) changes in the central to eastern Pacific. During the fast-decaying El Niño, the transition to La Niña generates strong easterlies in the central and eastern Pacific, enhancing moisture convergence, upward motion, and cloud cover, resulting in wetter conditions over Sri Lanka. During the fast-decaying El Niño, enhanced precipitation over the Maritime Continent acts as a diabatic heating source, inducing Gill-type easterly wind anomalies over the tropical Pacific. These winds promote coupled feedbacks that accelerate the transition to La Niña, strengthening moisture convergence and upward motion over Sri Lanka. Conversely, slow-decaying El Niño events are associated with cooling in the western North Pacific and warming in the Indian Ocean, which promotes the development of the western North Pacific anticyclone, suppressing upward motion and reducing cloud cover, leading to conditions over Sri Lanka. Changes in the Walker circulation further contribute to these distinct rainfall patterns, highlighting its influence on regional climate dynamics. These findings enhance our understanding of the seasonal predictability of rainfall in Sri Lanka during post-El Niño Summers. Full article
Show Figures

Figure 1

22 pages, 7317 KiB  
Article
The Spatial–Temporal Characteristics of Wave Energy Resource Availability in the China Seas
by Rui-Zhe Shen, Cheng-Tao Yi, Yu-Nuo Liu, Lei Wang, Kai Wu, Mu-Yu Chen and Chong-Wei Zheng
J. Mar. Sci. Eng. 2025, 13(6), 1042; https://doi.org/10.3390/jmse13061042 - 26 May 2025
Viewed by 404
Abstract
For coastal nations and regions, wave energy provides a localized energy solution, decreasing dependency on external energy sources and fostering the sustainable development of local economies. Effective wave height occurrence (EWHO) represents the availability of wave energy and is a crucial parameter for [...] Read more.
For coastal nations and regions, wave energy provides a localized energy solution, decreasing dependency on external energy sources and fostering the sustainable development of local economies. Effective wave height occurrence (EWHO) represents the availability of wave energy and is a crucial parameter for site selection for optimal wave energy. This paper systematically analyzes the distribution of EWHO in China seas areas using significant wave height (SWH) data in the fifth generation of ECMWF atmospheric reanalysis (ERA5) and key climate indices. Employing methods such as climate statistical analysis, linear regression, significance testing, and trend analysis, the study highlights the temporal and spatial distribution characteristics, variation trends, and correlations with climate indices of EWHO. This research aims to provide technical assistance and decision support for the development of wave energy at sea. The results indicate the following conclusions: (1) The high EWHO in the China seas is predominantly located in northern Nanhai, southern Donghai, and the eastern waters of the Philippine Islands. The EWHO is highest in winter. (2) The growth trend of EWHO is most notable in the sea area east of the line connecting the Ryukyu Islands, Taiwan, and the northeastern Philippines, peaking in spring and being relatively weak in winter. (3) The correlation between NINO3 and EWHO is most significant in Nanhai and the northeastern waters of the Philippines, peaking in February with correlation coefficients ranging from −0.30 to −0.50. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

21 pages, 54207 KiB  
Article
Spatial Variation in Coral Diversity and Reef Complexity in the Galápagos: Insights from Underwater Photogrammetry and New Data Extraction Methods
by Matan Yuval, Franklin Terán, Wilson Iñiguez, William Bensted-Smith and Inti Keith
Remote Sens. 2025, 17(11), 1831; https://doi.org/10.3390/rs17111831 - 23 May 2025
Viewed by 789
Abstract
Corals in the Galápagos present diverse reef configurations from biogenic coral reefs to coral communities growing on rocks and sand. These corals have experienced decades of disturbances including recurring El Niño and mass bleaching events. However, traditional methods in ecology have limited capacity [...] Read more.
Corals in the Galápagos present diverse reef configurations from biogenic coral reefs to coral communities growing on rocks and sand. These corals have experienced decades of disturbances including recurring El Niño and mass bleaching events. However, traditional methods in ecology have limited capacity in describing coral demographic trends across large spatial scales. Photogrammetry—a form of 3D imaging, has emerged over the past decade as a popular method for benthic surveys. However, the majority of protocols in the field utilize the 2D products of photogrammetry, ignoring overhangs and leaving significant information unexploited. We surveyed seven reef sites across the archipelago using underwater photogrammetry and developed new methods for 3D annotation and fractal dimension calculation. Our findings reveal variation in coral cover, diversity, and structural complexity across the archipelago. Our results align with previous studies in the region and add important information on reef structural complexity which was not measured here before. We release a unique dataset: Galápagos_3D, including seven 3D models and over 17,000 annotated images. This study establishes an important baseline for long-term monitoring, research, and conservation in the Galápagos, potentially informing evidence-based policies and advancing our understanding of coral resilience and recovery. Full article
Show Figures

Figure 1

Back to TopTop