Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (189)

Search Parameters:
Keywords = Newcastle disease virus (NDV)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 769 KiB  
Article
Effect of Exposing Layer Chicken Embryos to Continuous Green Light During Incubation and Vaccination Method on Early Life Basal Stress and Humoral Immune Response
by Jill R. Domel and Gregory S. Archer
Poultry 2025, 4(3), 36; https://doi.org/10.3390/poultry4030036 (registering DOI) - 8 Aug 2025
Abstract
To determine if exposing embryos to light during incubation affects antibody titer and corticosterone immediately following hatch, we incubated layer eggs and exposed them to light or darkness and vaccinated a subset of each treatment against Newcastle Disease Virus (NDV) using in ovo [...] Read more.
To determine if exposing embryos to light during incubation affects antibody titer and corticosterone immediately following hatch, we incubated layer eggs and exposed them to light or darkness and vaccinated a subset of each treatment against Newcastle Disease Virus (NDV) using in ovo administration on ED 18, spray application at hatch (d 0), or not at all. There were six treatments: light incubated and non-vaccinated (LNV), light incubated and in ovo vaccinated (LIV), light incubated and post-hatch vaccinated (LPHV), dark incubated and non-vaccinated (DNV), dark incubated and in ovo-vaccinated (DIV), and dark incubated and post-hatch vaccinated (DPHV). Plasma corticosterone (CORT) and NDV antibody titers were measured on d 0, 7, and 14. Light-incubated chicks had lower (p < 0.05) plasma CORT on d 0. NDV titers did not differ (p > 0.05) between light- and dark-incubated chicks on d 0, 7, or 14. However, LIV chicks had higher antibody titers than LPHV on d 14. Exposing embryos to continuous green light during incubation may reduce stress during the early post-hatch period. Vaccination method, rather than exposure to continuous green light during incubation, may have a greater impact on humoral immune response post-hatch. Full article
Show Figures

Figure 1

18 pages, 5957 KiB  
Article
Genome-Wide Screening Reveals the Oncolytic Mechanism of Newcastle Disease Virus in a Human Colonic Carcinoma Cell Line
by Yu Zhang, Shufeng Feng, Gaohang Yi, Shujun Jin, Yongxin Zhu, Xiaoxiao Liu, Jinsong Zhou and Hai Li
Viruses 2025, 17(8), 1043; https://doi.org/10.3390/v17081043 - 25 Jul 2025
Viewed by 390
Abstract
Viral oncolysis is considered a promising cancer treatment method because of its good tolerability and durable anti-tumor effects. Compared with other oncolytic viruses, Newcastle disease virus (NDV) has some distinct advantages. As an RNA virus, NDV does not recombine with the host genome, [...] Read more.
Viral oncolysis is considered a promising cancer treatment method because of its good tolerability and durable anti-tumor effects. Compared with other oncolytic viruses, Newcastle disease virus (NDV) has some distinct advantages. As an RNA virus, NDV does not recombine with the host genome, making it safer compared with DNA viruses and retroviruses; NDV can induce syncytium formation, allowing the virus to spread among cells without exposure to host neutralizing antibodies; and its genome adheres to the hexamer genetic code rule (genome length as a multiple of six nucleotides), ensuring accurate replication, low recombination rates, and high genetic stability. Although wild-type NDV has a killing effect on various tumor cells, its oncolytic effect and working mechanism are diverse, increasing the complexity of generating engineered oncolytic viruses with NDV. This study aims to employ whole-genome CRISPR-Cas9 knockout screening and RNA sequencing to identify putative key regulatory factors involved in the interaction between NDV and human colon cancer HCT116 cells and map their global interaction networks. The results suggests that NDV infection disrupts cellular homeostasis, thereby exerting oncolytic effects by inhibiting cell metabolism and proliferation. Meanwhile, the antiviral immune response triggered by NDV infection, along with the activation of anti-apoptotic signaling pathways, may be responsible for the limited oncolytic efficacy of NDV against HCT116 cells. These findings not only enhance our understanding of the oncolytic mechanism of NDV against colonic carcinoma but also provide potential strategies and targets for the development of NDV-based engineered oncolytic viruses. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

18 pages, 3297 KiB  
Article
Evaluation of Apoptosis and Cytotoxicity Induction Using a Recombinant Newcastle Disease Virus Expressing Human IFN-γ in Human Prostate Cancer Cells In Vitro
by Aldo Rojas-Neyra, Katherine Calderón, Brigith Carbajal-Lévano, Gloria Guerrero-Fonseca, Gisela Isasi-Rivas, Ana Chumbe, Ray W. Izquierdo-Lara, Astrid Poma-Acevedo, Freddy Ygnacio, Dora Rios-Matos, Manolo Fernández-Sánchez and Manolo Fernández-Díaz
Biomedicines 2025, 13(7), 1710; https://doi.org/10.3390/biomedicines13071710 - 14 Jul 2025
Viewed by 1689
Abstract
Background/Objectives: Prostate cancer is the second most common type of cancer diagnosed in men. Various treatments for this cancer, such as radiation therapy, surgery, and systemic therapy, can cause side effects in patients; therefore, there is a need to develop new treatment [...] Read more.
Background/Objectives: Prostate cancer is the second most common type of cancer diagnosed in men. Various treatments for this cancer, such as radiation therapy, surgery, and systemic therapy, can cause side effects in patients; therefore, there is a need to develop new treatment alternatives. One promising approach is virotherapy, which involves using oncolytic viruses (OVs), such as the recombinant Newcastle disease virus (rNDV). Methods: We used the lentogenic rNDV rLS1 strain (the control virus) as our backbone to develop two highly fusogenic rNDVs: rFLCF5nt (the parental virus) and rFLCF5nt-IFN-γ (rFLCF5nt expressing human interferon-gamma (IFN-γ)). We evaluated their oncolytic properties in a prostate cancer cell line (DU145). Results: The results showed the expression and stability of the IFN-γ protein, as confirmed using Western blotting after ten passages in specific pathogen-free chicken embryo eggs using the IFN-γ-expressing virus. Additionally, we detected a significantly high oncolytic activity in DU145 cells infected with the parental virus or the IFN-γ-expressing virus using MTS (a cell viability assay) and Annexin V-PE assays compared with the control virus (p < 0.0001 for both). Conclusions: In conclusion, our data show that IFN-γ-expressing virus can decrease cell viability and induce apoptosis in human prostate cancer in vitro. Full article
(This article belongs to the Special Issue Oncolytic Viruses and Combinatorial Immunotherapy for Cancer)
Show Figures

Figure 1

15 pages, 2000 KiB  
Article
Residue 365 in Hemagglutinin–Neuraminidase Is a Key Thermostable Determinant of Genotype VI.2.1.1.2.2 Newcastle Disease Virus
by Tao Di, Ran Zhao, Qiankai Shi, Fangfang Wang, Zongxi Han, Huixin Li, Yuhao Shao, Junfeng Sun and Shengwang Liu
Viruses 2025, 17(7), 977; https://doi.org/10.3390/v17070977 - 13 Jul 2025
Viewed by 368
Abstract
Newcastle disease virus (NDV) genotype VI from pigeon origin is an important causative agent for serious disease in pigeons. Although the biological characteristics of genotype VI NDV have been extensively studied, the understanding of the thermostability of this genotype is still incomplete. In [...] Read more.
Newcastle disease virus (NDV) genotype VI from pigeon origin is an important causative agent for serious disease in pigeons. Although the biological characteristics of genotype VI NDV have been extensively studied, the understanding of the thermostability of this genotype is still incomplete. In this study, an NDV strain, designated P0506, was isolated from a diseased pigeon in China and classified as genotype VI. Phylogenetic analysis on the basis of the Fusion gene coding sequence indicated that P0506 belonged to sub-genotype VI.2.1.1.2.2 of class II. The thermostability may be a universal characteristic of genotype VI NDV. Thus, the thermostability of two strains, including P0506 identified in this study and P0713 identified previously, belonging to VI.2.1.1.2.2, and another previously isolated strain, P0813, in VI.2.1.1.2.1, was investigated. It was indicated that all three viruses presented resistance to heat treatment, but P0713 was more robust than P0813 and P0506. By constructing a series of HN protein mutants, amino acid residues at both residues 365 and 497 in HN protein were found to be involved in the heat resistance. Furthermore, the effects of residues 365 and 497 in HN protein on the thermostability of the virus were further evaluated by using recombinant viruses generated by the reverse genetic system. Our results showed that residue at position 365 in HN protein was the key thermostable determinant of sub-genotype VI.2.1.1.2.2 NDV. These findings will help us better understand the thermostable mechanism of NDV and serve as a foundation for the further development of novel thermostable vaccines. Full article
(This article belongs to the Special Issue Avian Respiratory Viruses, 4th Edition)
Show Figures

Figure 1

18 pages, 2243 KiB  
Article
Detection of a Novel Gull-like Clade of Newcastle Disease Virus and H3N8 Avian Influenza Virus in the Arctic Region of Russia (Taimyr Peninsula)
by Anastasiya Derko, Nikita Dubovitskiy, Alexander Prokudin, Junki Mine, Ryota Tsunekuni, Yuko Uchida, Takehiko Saito, Nikita Kasianov, Arina Loginova, Ivan Sobolev, Sachin Kumar, Alexander Shestopalov and Kirill Sharshov
Viruses 2025, 17(7), 955; https://doi.org/10.3390/v17070955 - 7 Jul 2025
Viewed by 628
Abstract
Wild waterbirds are circulating important RNA viruses, such as avian coronaviruses, avian astroviruses, avian influenza viruses, and avian paramyxoviruses. Waterbird migration routes cover vast territories both within and between continents. The breeding grounds of many species are in the Arctic, but research into [...] Read more.
Wild waterbirds are circulating important RNA viruses, such as avian coronaviruses, avian astroviruses, avian influenza viruses, and avian paramyxoviruses. Waterbird migration routes cover vast territories both within and between continents. The breeding grounds of many species are in the Arctic, but research into this region is rare. This study reports the first Newcastle disease virus (NDV) detection in Arctic Russia. As a result of a five-year study (from 2019 to 2023) of avian paramyxoviruses and avian influenza viruses in wild waterbirds of the Taimyr Peninsula, whole-genome sequences of NDV and H3N8 were obtained. The resulting influenza virus isolate was phylogenetically related to viruses that circulated between 2021 and 2023 in Eurasia, Siberia, and Asia. All NDV sequences were obtained from the Herring gull, and other gull sequences formed a separate gull-like clade in the sub-genotype I.1.2.1, Class II. This may indirectly indicate that different NDV variants adapt to more host species than is commonly believed. Further surveillance of other gull species may help to test the hypothesis of putative gull-specific NDV lineage and better understand their role in the evolution and global spread of NDV. Full article
(This article belongs to the Special Issue Evolution and Adaptation of Avian Viruses)
Show Figures

Figure 1

17 pages, 2130 KiB  
Article
Genotype I Newcastle Disease Virus, Isolated from Wild Duck, Can Protect Chickens Against Newcastle Disease Caused by Genotype VII
by Elizaveta Boravleva, Anastasia Treshchalina, Daria Gordeeva, Alexandra Gambaryan, Alla Belyakova, Irina Gafarova, Alexey Prilipov, Galina Sadykova, Simone Adams, Tatiana Timofeeva and Natalia Lomakina
Pathogens 2025, 14(4), 380; https://doi.org/10.3390/pathogens14040380 - 14 Apr 2025
Viewed by 1403
Abstract
Newcastle disease viruses (NDVs) circulating among wild birds and poultry may differ in virulence. Some NDVs cause devastating outbreaks in chickens. The NDV/duck/Moscow/3639/2008 (d3639) strain was isolated from a wild duck. Its genome was sequenced (PP795281, GenBank) and the biological properties, specifically for [...] Read more.
Newcastle disease viruses (NDVs) circulating among wild birds and poultry may differ in virulence. Some NDVs cause devastating outbreaks in chickens. The NDV/duck/Moscow/3639/2008 (d3639) strain was isolated from a wild duck. Its genome was sequenced (PP795281, GenBank) and the biological properties, specifically for infection in chicken and mice, were studied. Strain d3639 of genotype I.2 has an F protein cleavage site (112-GKQGRL-117) and a HN protein length (616 a.a.) of the lentogenic pathotype. It was tested, in comparison with the genotype II LaSota vaccine strain, for its immunogenicity and protective efficacy against a challenge with the velogenic NDV strain NDV/chicken/Moscow/6081/2022 (ch6081) of sub-genotype VII.1.1, the complete genome of which was also sequenced in this study (PP766718, GenBank). Both the d3639 and LaSota viruses did not induce clinical signs in chickens or mice. Single immunization was performed by inoculation through drinking water with the live virus. Inoculation protected the chickens during a subsequent challenge with velogenic ch6081 and significantly reduced shedding in feces. Double immunization was sufficient to achieve prolonged immunity and prevented the shedding of the velogenic virus after the challenge. Thus, this natural lentogenic d3639 virus possesses properties similar to the LaSota vaccine strain and can protect against sub-genotype VII.1.1 NDV. Full article
(This article belongs to the Section Viral Pathogens)
Show Figures

Figure 1

23 pages, 2606 KiB  
Article
Evaluation of Different Machine Learning Approaches to Predict Antigenic Distance Among Newcastle Disease Virus (NDV) Strains
by Giovanni Franzo, Alice Fusaro, Chantal J. Snoeck, Aleksandar Dodovski, Steven Van Borm, Mieke Steensels, Vasiliki Christodoulou, Iuliana Onita, Raluca Burlacu, Azucena Sánchez Sánchez, Ilya A. Chvala, Mia Kim Torchetti, Ismaila Shittu, Mayowa Olabode, Ambra Pastori, Alessia Schivo, Angela Salomoni, Silvia Maniero, Ilaria Zambon, Francesco Bonfante, Isabella Monne, Mattia Cecchinato and Alessio Bortolamiadd Show full author list remove Hide full author list
Viruses 2025, 17(4), 567; https://doi.org/10.3390/v17040567 - 14 Apr 2025
Viewed by 1018
Abstract
Newcastle disease virus (NDV) continues to present a significant challenge for vaccination due to its rapid evolution and the emergence of new variants. Although molecular and sequence data are now quickly and inexpensively produced, genetic distance rarely serves as a good proxy for [...] Read more.
Newcastle disease virus (NDV) continues to present a significant challenge for vaccination due to its rapid evolution and the emergence of new variants. Although molecular and sequence data are now quickly and inexpensively produced, genetic distance rarely serves as a good proxy for cross-protection, while experimental studies to assess antigenic differences are time consuming and resource intensive. In response to these challenges, this study explores and compares several machine learning (ML) methods to predict the antigenic distance between NDV strains as determined by hemagglutination-inhibition (HI) assays. By analyzing F and HN gene sequences alongside corresponding amino acid features, we developed predictive models aimed at estimating antigenic distances. Among the models evaluated, the random forest (RF) approach outperformed traditional linear models, achieving a predictive accuracy with an R2 value of 0.723 compared to only 0.051 for linear models based on genetic distance alone. This significant improvement demonstrates the usefulness of applying flexible ML approaches as a rapid and reliable tool for vaccine selection, minimizing the need for labor-intensive experimental trials. Moreover, the flexibility of this ML framework holds promise for application to other infectious diseases in both animals and humans, particularly in scenarios where rapid response and ethical constraints limit conventional experimental approaches. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

9 pages, 1192 KiB  
Opinion
Getah Virus: A New Contaminant in Veterinary Vaccines
by Pin-Pin Chu, Sheng-Nan Chen, Xia Zhou, Zu-Zhang Wei and Shao-Lun Zhai
Vet. Sci. 2025, 12(2), 82; https://doi.org/10.3390/vetsci12020082 - 23 Jan 2025
Viewed by 1312
Abstract
Mycoplasma, reticuloendotheliosis virus (REV), avian leukosis virus (ALV), chicken infectious anemia virus (CIAV), bovine polyomavirus (BPV), bovine viral diarrhea virus (BVDV), and porcine circovirus (PCV) are considered common contaminants in live veterinary vaccines against Newcastle disease virus (NDV), fowlpox virus (FPV), infectious bursal [...] Read more.
Mycoplasma, reticuloendotheliosis virus (REV), avian leukosis virus (ALV), chicken infectious anemia virus (CIAV), bovine polyomavirus (BPV), bovine viral diarrhea virus (BVDV), and porcine circovirus (PCV) are considered common contaminants in live veterinary vaccines against Newcastle disease virus (NDV), fowlpox virus (FPV), infectious bursal disease virus (IBDV), classical swine fever virus (CSFV), pseudorabies virus (PRV), and porcine reproductive and respiratory syndrome virus (PRRSV). In the past five years, Getah virus (GETV), an arbovirus affecting many farming mammals, was reported as a new contaminant in live PRRSV vaccines in two previous studies, which arouses our considerable interest. Therefore, in this paper, we aim to analyze and discuss the source, biological hazard, and genomic characteristics of these contaminating GETV strains further. Full article
Show Figures

Figure 1

18 pages, 9812 KiB  
Article
Newcastle Disease Virus Displaying an Ectodomain of Middle East Respiratory Syndrome Coronavirus Spike Protein Elicited Robust Humoral and Cellular Immunity in Mice
by Jaturawitt Prasopsiri, Kanjana Srisutthisamphan, Benjamas Liwnaree, Juggragarn Jengarn, Jarin Kramyu, Payuda Hansoongnern, Papon Muangsanit, Nathiphat Tanwattana, Challika Kaewborisuth, Suttipun Sungsuwan, Anan Jongkaewwattana and Nanchaya Wanasen
Vaccines 2025, 13(1), 2; https://doi.org/10.3390/vaccines13010002 - 24 Dec 2024
Viewed by 1204
Abstract
Background: Middle East Respiratory Syndrome Coronavirus (MERS-CoV) causes severe respiratory illness in humans and currently lacks an approved vaccine. The Newcastle disease virus (NDV) vector is a well-established, safe, and effective platform for vaccine development. With recent advancements in stabilizing coronavirus spike proteins [...] Read more.
Background: Middle East Respiratory Syndrome Coronavirus (MERS-CoV) causes severe respiratory illness in humans and currently lacks an approved vaccine. The Newcastle disease virus (NDV) vector is a well-established, safe, and effective platform for vaccine development. With recent advancements in stabilizing coronavirus spike proteins to enhance their antigenicity, this study aimed to determine whether modifications to the MERS-CoV spike protein could improve its presentation on NDV particles, allowing the resulting virus to be used as an inactivated vaccine. Methods: We codon-optimized the gene encoding the ectodomain of the MERS-CoV spike protein and incorporated modifications at the S1/S2 and S2’ cleavage sites, along with a proline substitution at residues V1060-L1061. This modified spike gene was inserted into the NDV genome to create the NDV-SMERS virus. After purification and inactivation, the vaccine’s immunogenicity was assessed in mice. Results: Mice immunized with the inactivated NDV-SMERS vaccine developed robust anti-spike IgGs, neutralizing antibodies, and cellular immune responses. The study demonstrated that modifications to the MERS-CoV spike protein were essential for its effective presentation on NDV particles. Additionally, the spike gene insert remained stable through five egg passages, confirming the vector’s stability. Conclusions: Engineering the MERS-CoV spike protein is crucial for its successful display on NDV particles. The strong immune responses elicited by the NDV-SMERS vaccine in mice highlight that NDV is a promising, safe, and effective platform for MERS-CoV vaccination. Full article
(This article belongs to the Section Vaccine Design, Development, and Delivery)
Show Figures

Figure 1

18 pages, 2629 KiB  
Article
Development and Evaluation of a Newcastle Disease Virus-like Particle Vaccine Expressing SARS-CoV-2 Spike Protein with Protease-Resistant and Stability-Enhanced Modifications
by Yu Chen, Fan Tian, Shunlin Hu and Xiufan Liu
Viruses 2024, 16(12), 1932; https://doi.org/10.3390/v16121932 - 18 Dec 2024
Cited by 1 | Viewed by 1373
Abstract
The ongoing global health crisis caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) necessitates the continuous development of innovative vaccine strategies, especially in light of emerging viral variants that could undermine the effectiveness of existing vaccines. In this study, we developed a [...] Read more.
The ongoing global health crisis caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) necessitates the continuous development of innovative vaccine strategies, especially in light of emerging viral variants that could undermine the effectiveness of existing vaccines. In this study, we developed a recombinant virus-like particle (VLP) vaccine based on the Newcastle Disease Virus (NDV) platform, displaying a stabilized prefusion form of the SARS-CoV-2 spike (S) protein. This engineered S protein includes two proline substitutions (K986P, V987P) and a mutation at the cleavage site (RRAR to QQAQ), aimed at enhancing both its stability and immunogenicity. Using a prime-boost regimen, we administered NDV-VLP-S-3Q2P intramuscularly at different doses (2, 10, and 20 µg) to BALB/c mice. Robust humoral responses were observed, with high titers of S-protein-specific IgG and neutralizing antibodies against SARS-CoV-2 pseudovirus, reaching titers of 1:2200–1:2560 post-boost. The vaccine also induced balanced Th1/Th2 immune responses, evidenced by significant upregulation of cytokines (IFN-γ, IL-2, and IL-4) and S-protein-specific IgG1 and IgG2a. Furthermore, strong activation of CD4+ and CD8+ T cells in the spleen and lungs confirmed the vaccine’s ability to promote cellular immunity. These findings demonstrate that NDV-S3Q2P-VLP is a potent immunogen capable of eliciting robust humoral and cellular immune responses, highlighting its potential as a promising candidate for further clinical development in combating COVID-19. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

19 pages, 3705 KiB  
Article
Newcastle Disease Virus-Vectored African Swine Fever Virus Antigen Cocktail Delays the Onset of ASFV-SY18 but Is Not Protective
by Qian Li, Yiqian Jiang, Min Zheng, Xuefei Sun, Lili Hui, Yanyan Zhang, Huixian Yue, Yu Qi, Siqi Li, Junnan Ke, Qixuan Li, Boli Ma, Xiaoying Jia, Fengjie Wang, Lijuan Mi, Shoufeng Zhang, Faming Miao, Shuchao Wang, Fei Zhang, Teng Chen and Rongliang Huadd Show full author list remove Hide full author list
Microorganisms 2024, 12(12), 2590; https://doi.org/10.3390/microorganisms12122590 - 13 Dec 2024
Cited by 1 | Viewed by 1256
Abstract
African Swine Fever (ASF) is a highly contagious viral disease threatening the global pig industry. Currently, only two gene-deleted live attenuated vaccines are approved, exclusively in Vietnam, and their long-term effectiveness and safety are unproven, prompting the need for safer alternatives. This study [...] Read more.
African Swine Fever (ASF) is a highly contagious viral disease threatening the global pig industry. Currently, only two gene-deleted live attenuated vaccines are approved, exclusively in Vietnam, and their long-term effectiveness and safety are unproven, prompting the need for safer alternatives. This study assessed a cocktail of African Swine Fever Virus (ASFV) antigens delivered via a recombinant Newcastle Disease Virus (rNDV) vector against the genotype II ASFV-SY18. Antigens pB602L, pEP84R, and p22 (pKP177R) were selected based on virus neutralization and lymphocyte proliferation assays in mice and combined with capsid protein p72 (pB646L) for vaccination and challenge in pigs. The antigen cocktail delayed ASF symptoms by 3–4 days but did not prevent the lethal ASFV-SY18 infection. Significant ASFV-specific gamma interferon (IFN-γ) positive responses and NDV antibodies were detected post-inoculation, showing an induced immune response, though ASFV-specific p72 antibodies were absent. The cocktail did not cause cytokine imbalance, indicating the vector’s safety in pigs. Despite some delay in disease progression, the protection against genotype II ASFV was inadequate, underscoring the need to select more effective antigens and enhance immune responses for virus-vectored vaccines. Full article
(This article belongs to the Section Virology)
Show Figures

Figure 1

28 pages, 7934 KiB  
Article
Transcriptomic Profiling Reveals Altered Expression of Genes Involved in Metabolic and Immune Processes in NDV-Infected Chicken Embryos
by Malarmathi Muthusamy, Kannaki T. Ramasamy, Sunday Olusola Peters, Srinivasan Palani, Vasudevan Gowthaman, Murali Nagarajan, Sivakumar Karuppusamy, Vasanthakumar Thangavelu and Thiruvenkadan Aranganoor Kannan
Metabolites 2024, 14(12), 669; https://doi.org/10.3390/metabo14120669 - 2 Dec 2024
Viewed by 1628
Abstract
Objective: The poultry industry is significantly impacted by viral infections, particularly Newcastle Disease Virus (NDV), which leads to substantial economic losses. It is essential to comprehend how the sequence of development affects biological pathways and how early exposure to infections might affect immune [...] Read more.
Objective: The poultry industry is significantly impacted by viral infections, particularly Newcastle Disease Virus (NDV), which leads to substantial economic losses. It is essential to comprehend how the sequence of development affects biological pathways and how early exposure to infections might affect immune responses. Methods: This study employed transcriptome analysis to investigate host–pathogen interactions by analyzing gene expression changes in NDV-infected chicken embryos’ lungs. Result: RNA-Seq reads were aligned with the chicken reference genome (Galgal7), revealing 594 differentially expressed genes: 264 upregulated and 330 downregulated. The most overexpressed genes, with logFC between 8.15 and 8.75, included C8A, FGG, PIT54, FETUB, APOC3, and FGA. Notably, downregulated genes included BPIFB3 (−4.46 logFC) and TRIM39.1 (−4.26 logFC). The analysis also identified 29 novel transcripts and 20 lncRNAs that were upregulated. Gene Ontology and KEGG pathways’ analyses revealed significant alterations in gene expression related to immune function, metabolism, cell cycle, nucleic acid processes, and mitochondrial activity due to NDV infection. Key metabolic genes, such as ALDOB (3.27 logFC), PRPS2 (2.66 logFC), and XDH (2.15 logFC), exhibited altered expression patterns, while DCK2 (−1.99 logFC) and TK1 (−2.11 logFC) were also affected. Several immune-related genes showed significant upregulation in infected lung samples, including ALB (6.15 logFC), TLR4 (1.86 logFC), TLR2 (2.79 logFC), and interleukin receptors, such as IL1R2 (3.15 logFC) and IL22RA2 (1.37 logFC). Conversely, genes such as CXCR4 (−1.49 logFC), CXCL14 (−2.57 logFC), GATA3 (−1.51 logFC), and IL17REL (−2.93 logFC) were downregulated. The higher expression of HSP genes underscores their vital role in immune responses. Conclusion: Comprehension of these genes’ interactions is essential for regulating viral replication and immune responses during infections, potentially aiding in the identification of candidate genes for poultry breed improvement amidst NDV challenges. Full article
(This article belongs to the Special Issue Advances in Metabolomics and Multi-Omics Integration)
Show Figures

Figure 1

19 pages, 3236 KiB  
Article
The Role of Dual Mutations G347E and E349D of the Pigeon Paramyxovirus Type 1 Hemagglutinin–Neuraminidase Protein In Vitro and In Vivo
by Yu Chen, Junhao Gong, Tiansong Zhan, Mingzhan Wang, Shunlin Hu and Xiufan Liu
Vet. Sci. 2024, 11(12), 592; https://doi.org/10.3390/vetsci11120592 - 25 Nov 2024
Viewed by 1928
Abstract
Pigeon Newcastle disease (ND) is the most common viral infectious disease in the pigeon industry, caused by pigeon paramyxovirus type 1 (PPMV-1), a variant of chicken-origin Newcastle disease virus (NDV). Previous studies have identified significant amino acid differences between PPMV-1 and chicken-origin NDV [...] Read more.
Pigeon Newcastle disease (ND) is the most common viral infectious disease in the pigeon industry, caused by pigeon paramyxovirus type 1 (PPMV-1), a variant of chicken-origin Newcastle disease virus (NDV). Previous studies have identified significant amino acid differences between PPMV-1 and chicken-origin NDV at positions 347 and 349 in the hemagglutinin–neuraminidase (HN) protein, with PPMV-1 predominantly exhibiting glycine (G) at position 347 and glutamic acid (E) at position 349, while most chicken-origin NDVs show E at position 347 and aspartic acid (D) at position 349. However, the impact of these amino acid substitutions remains unclear. In this study, we generated a recombinant virus, NT-10-G347E/E349D, by introducing the G347E and E349D dual mutations into a PPMV-1 strain NT-10 using reverse genetics. The biological characteristics of NT-10 and NT-10-G347E/E349D were compared both in vitro and in vivo. In vitro, the G347E and E349D dual mutations reduce NT-10′s replication and neuraminidase activity in pigeon embryo fibroblast (PEF) cells while enhancing both in chicken embryo fibroblast (CEF) cells. Additionally, these mutations decrease NT-10′s binding affinity to the α-2,6 sialic acid receptor while significantly increasing its affinity for the α-2,3 receptor. In vivo, NT-10-G347E/E349D exhibited reduced pathogenicity in pigeons but increased pathogenicity in chickens compared to the parental NT-10 strain. The mutations also reduced the pigeon-to-pigeon transmission of NT-10 but enhanced its transmission from pigeons to chickens. Notably, significant antigenic differences were observed between NT-10 and NT-10-G347E/E349D, as an inactivated vaccine based on NT-10 provided full protection against NT-10 challenge in immunized pigeons but only 67% mortality protection against NT-10-G347E/E349D. Overall, these findings underscore the critical role of amino acids at positions 347 and 349 in PPMV-1 infection, pathogenicity, and transmission, providing a theoretical foundation for the scientific prevention and control of PPMV-1. Full article
(This article belongs to the Section Veterinary Microbiology, Parasitology and Immunology)
Show Figures

Figure 1

17 pages, 5114 KiB  
Article
Newcastle Disease Virus Expressing Cap Gene of Porcine Circovirus Type 2 Confers Protection in Mice and Induced Long-Lasting Neutralizing Antibodies in Pigs
by Sohini Dey, Rudhreswaran Murugasamy, Lukumoni Buragohain, Ajai Lawrence D’silva, Jayashree Sarma, Arpita Bharali, Saravanan Ramakrishnan, Mani Saminathan, Nagendra Nath Barman, Vikram N. Vakharia and Madhan Mohan Chellappa
Vaccines 2024, 12(11), 1285; https://doi.org/10.3390/vaccines12111285 - 15 Nov 2024
Cited by 1 | Viewed by 1752
Abstract
Background/Objectives: Porcine Circovirus 2 (PCV2) infection poses significant health and economic challenges to the global swine industry. The disease in pigs leads to lymphoid depletion, resulting in immunosuppression and increased susceptibility to co-infections with other bacterial and viral pathogens. This study evaluated [...] Read more.
Background/Objectives: Porcine Circovirus 2 (PCV2) infection poses significant health and economic challenges to the global swine industry. The disease in pigs leads to lymphoid depletion, resulting in immunosuppression and increased susceptibility to co-infections with other bacterial and viral pathogens. This study evaluated the efficacy of two novel recombinant Newcastle disease virus (NDV) strain R2B vectored vaccines that express the cap gene of PCV2 alone and along with the transmembrane and cytoplasmic tail (TMCT) domains of the NDV F gene. The efficacy of the vaccine candidates was studied in mouse and pig models. Methods: Six-week-old BALB/c mice were divided into five groups and immunized intramuscularly three times at 14-day intervals with various vaccine candidates, namely rNDV-R2B-PCVcap-TMCT, rNDV-R2B-PCVcap, and CircoFLEX commercial vaccine, along with controls. Following immunization and PCV2d virus challenge, multiple assays assessed the immune responses in animal trials. In the pig animal trial, pigs were divided into four groups: a control group (PBS), NDV-vectored PCVcap-TMCT group, NDV-vectored-PCVcap group, and CircoFLEX vaccine group. Pigs were immunized intramuscularly twice at 28-day intervals. Blood samples were collected at regular intervals over 70 days to evaluate the humoral and cell-mediated immune responses. Results: Both mice and pigs’ trials indicated that the NDV-vectored PCV2 cap-TMCT vaccine candidate elicited superior immune responses. In mice, the rNDV-R2B-PCVcap-TMCT group showed enhanced humoral and cellular immunity, increased PCV2-specific antibody levels, higher CD4+/CD8+ ratio, elevated IFN-γ and TNF-α levels, decreased IL-10 levels, reduced viral loads, and minimal histopathological changes. In pigs, the NDV-vectored PCVcap-TMCT group demonstrated better antibody responses, cytokine profiles (IFN-γ and IL-10), and higher levels of PCV2-specific neutralizing antibodies against the PCV2a, PCV2b and PCV2d genotypes when compared to other groups. Conclusions: These findings suggest NDV-vectored PCVcap-TMCT vaccine candidate, expressing the cap gene of PCV2 along with the TMCT domain, offers a promising alternative for protecting against PCV2 infection, potentially addressing the challenges posed by emerging PCV2 strains in the swine industry. Full article
(This article belongs to the Special Issue Strategies of Viral Vectors for Vaccine Development)
Show Figures

Figure 1

19 pages, 19488 KiB  
Article
RNA-Seq Profiling in Chicken Spleen and Thymus Infected with Newcastle Disease Virus of Varying Virulence
by Xiaoquan Wang, Xiaolong Lu, Mingzhu Wang, Qiwen Zhou, Xiyue Wang, Wenhao Yang, Kaituo Liu, Ruyi Gao, Tianxing Liao, Yu Chen, Jiao Hu, Min Gu, Shunlin Hu, Xiufan Liu and Xiaowen Liu
Vet. Sci. 2024, 11(11), 569; https://doi.org/10.3390/vetsci11110569 - 15 Nov 2024
Cited by 2 | Viewed by 1507
Abstract
Newcastle disease virus (NDV), known as avian paramyxovirus-1, poses a significant threat to poultry production worldwide. Vaccination currently stands as the most effective strategy for Newcastle disease control. However, the mesogenic vaccine strain Mukteswar has been observed to evolve into a velogenic variant [...] Read more.
Newcastle disease virus (NDV), known as avian paramyxovirus-1, poses a significant threat to poultry production worldwide. Vaccination currently stands as the most effective strategy for Newcastle disease control. However, the mesogenic vaccine strain Mukteswar has been observed to evolve into a velogenic variant JS/7/05/Ch during poultry immunization. Here, we aimed to explore the mechanisms underlying virulence enhancement of the two viruses. Pathogenically, JS/7/05/Ch mediated stronger virulence and pathogenicity in vivo compared to Mukteswar. Comparative transcriptome analysis revealed 834 differentially expressed genes (DEGs), comprising 339 up-regulated and 495 down-regulated genes, in the spleen, and 716 DEGs, with 313 up-regulated and 403 down-regulated genes, in the thymus. Gene Ontology (GO) analysis indicated that these candidate targets primarily participated in cell and biological development, extracellular part and membrane composition, as well as receptor and binding activity. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis unveiled a substantial portion of candidate genes predominantly involved in cellular processes, environmental information processing, metabolism, and organismal systems. Additionally, five DEGs (TRAT1, JUP, LPAR4, CYB561A3, and CXCR5) were randomly identified through RNA-seq analysis and subsequently confirmed via quantitative real-time polymerase chain reaction (qRT-PCR). The findings revealed a marked up-regulation in the expression levels of these DEGs induced by JS/7/05/Ch compared to Mukteswar, with CYB561A3 and CXCR5 exhibiting significant increases. The findings corroborated the sequencing accuracy, offering promising research directions. Taken together, we comprehensively evaluated transcriptomic alterations in chicken immune organs infected by NDV strains of diverse virulence. This study establishes a basis and direction for NDV virulence research. Full article
(This article belongs to the Section Veterinary Microbiology, Parasitology and Immunology)
Show Figures

Figure 1

Back to TopTop