Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (292)

Search Parameters:
Keywords = Neu-N

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4777 KB  
Article
Erebosis of Neurons May Exist in the Brain with Alzheimer’s Disease
by Jun Li and Zhiyi Zuo
Cells 2025, 14(19), 1546; https://doi.org/10.3390/cells14191546 - 3 Oct 2025
Viewed by 278
Abstract
Erebosis is a newly described form of cell death but has been reported only in the gut enterocytes of Drosophila, a group of fast turnover cells. Angiotensin-converting enzyme 2 (ACE2) accumulation in cells is a biomarker for erebotic cells. Brain cell loss [...] Read more.
Erebosis is a newly described form of cell death but has been reported only in the gut enterocytes of Drosophila, a group of fast turnover cells. Angiotensin-converting enzyme 2 (ACE2) accumulation in cells is a biomarker for erebotic cells. Brain cell loss is a characteristic of patients with Alzheimer’s disease (AD), the leading neurodegenerative disease. The objectives of this study are to determine whether there is erebosis in the mammalian brain. Here we show that there is more ACE2 staining in the hippocampus of old wild-type (C57BL/6J) male mice, female mice with AD neuropathology (3xTg-AD mice), and human AD sufferers. Some ACE2 positive cells have fragmented or small nuclei, lose NeuN staining and are positive for TUNEL staining, indicators for cell injury/dying. ACE2 positive cells are neurons in the hippocampus and are often positive for phospho-tau in the mice with AD neuropathology. Phospho-tau injected into the hippocampus of wild-type young adult mice increases its ACE2 expression. Some ACE2 staining is extracellular. Our results suggest that erebosis may exist in the mammalian brain and may be increased with aging and AD neuropathology. This form of death may occur in the long-lasting cells like neurons and can be activated by phospho-tau in the brain. Our findings highlight the therapeutic potential of regulating erebosis for attenuating brain aging and AD neuropathology. Full article
Show Figures

Figure 1

15 pages, 529 KB  
Article
Tackling Weaning Stress in Dairy Calves Using Cannabidiol Oil Supplementation—A Pilot Study
by Marinela Enculescu, Ioana Nicolae and Dinu Gavojdian
Dairy 2025, 6(5), 54; https://doi.org/10.3390/dairy6050054 - 26 Sep 2025
Viewed by 537
Abstract
This pilot study evaluated the effects of cannabidiol (CBD) oil supplementation on growth performance, stress biomarkers, and haematological profiles in dairy calves undergoing the weaning transition. Nineteen Holstein calves were divided into two paternal-sibling groups: a CBD-supplemented experimental group (n = 10) and [...] Read more.
This pilot study evaluated the effects of cannabidiol (CBD) oil supplementation on growth performance, stress biomarkers, and haematological profiles in dairy calves undergoing the weaning transition. Nineteen Holstein calves were divided into two paternal-sibling groups: a CBD-supplemented experimental group (n = 10) and a CON-control group (n = 9). The CBD group received 5 mL/head/day of CBD oil for the first two days (pre-weaning), followed by 10 mL/head/day for three consecutive days post-weaning. Body weight increased significantly over time in both groups (p = 0.000); nevertheless, no significant differences were observed between groups (p = 0.173) or for the group × time interaction (p = 0.929), indicating that CBD did not affect overall growth trajectory. However, a significant group × time interaction (p = 0.006) for average daily gains in the CBD group was observed. Serum cortisol concentrations were significantly lower in CBD-supplemented calves at Day 0 and +2 days, compared to the CON group, indicating a transient anti-stress effect (p = 0.043 for group effect). At +5 days, cortisol levels in the CBD group increased, surpassing control values, though this difference was not significant. A trend-level group × time interaction (p = 0.067) suggested a distinct temporal cortisol response in CBD-treated calves. Immune cell counts (LYM, MON, NEU) showed no significant differences, though monocyte levels trended lower in CBD calves at early time points. Platelet indices revealed a significant reduction in mean platelet volume (p = 0.047) and stable PDWc and plateletcrit values in the CBD group, suggesting modulation of inflammatory status. Alanine aminotransferase levels increased over time with a significant group effect (p = 0.014), indicating a mild hepatic response, while glucose and alkaline phosphatase remained within physiological ranges. These findings suggest that short-term CBD supplementation may transiently modulate stress and inflammatory responses during weaning, with potential benefits for physiological resilience. However, rebound endocrine effects and hepatic sensitivity highlight the need for further research to refine dosing strategies and assess long-term safety in dairy production systems. Full article
(This article belongs to the Section Dairy Animal Nutrition and Welfare)
Show Figures

Figure 1

17 pages, 2618 KB  
Article
Metabolomic Analysis of Key Metabolites and Regulatory Mechanisms in the Transition of Uterine Receptivity in Water Buffalo (Bubalus bubalis)
by Xingrong Lu, Jingyuan Song, Gan Liang, Huapei Zhong, Yuanyuan Xu, Yingxue Xie, Deshun Shi and Chan Luo
Metabolites 2025, 15(9), 615; https://doi.org/10.3390/metabo15090615 - 17 Sep 2025
Viewed by 386
Abstract
Background: While economically vital, buffalo exhibits low reproductive efficiency largely due to embryonic losses during implantation. Successful implantation requires precise embryo–maternal communication and metabolic/immune adaptations in the endometrium. We aimed to identify key serum metabolic signatures and associated peripheral immune responses that characterize [...] Read more.
Background: While economically vital, buffalo exhibits low reproductive efficiency largely due to embryonic losses during implantation. Successful implantation requires precise embryo–maternal communication and metabolic/immune adaptations in the endometrium. We aimed to identify key serum metabolic signatures and associated peripheral immune responses that characterize the endometrial receptivity window during early pregnancy in water buffalo. Methods: Blood samples from pregnant (Preg, n = 12) and non-pregnant (Non-P, n = 10) buffaloes were collected on days 15, 18, and 21 post-artificial insemination (AI). We measured leukocyte counts and hormone levels and performed untargeted serum metabolomic profiling using LC-MS. Results: Pregnant buffaloes showed significantly reduced total white blood cell count, lymphocyte (LYM%), and neutrophil (NEU%) percentages, indicating immune remodeling at the beginning of pregnancy establishment. Metabolomic analysis identified 131 differentially expressed metabolites (DEMs) associated with pregnancy status at different stages. Enriched pathways included steroid hormone synthesis, retinol metabolism, starch/sucrose metabolism, and phenylalanine biosynthesis. Crucially, alterations in unsaturated fatty acids, retinol, and phenylalanine metabolism, along with monocyte (MON%)/LYM% ratios, were strongly linked to receptivity changes and successful implantation. Conclusions: Endometrial receptivity in buffalo during the embryonic implantation window was associated with changes in immune cells and metabolism in the blood, suggesting that immunometabolism may play an essential role in modulating endometrial receptivity during the implantation window. This study provides potential clues and a metabolic framework for understanding the underlying mechanisms of buffalo embryonic implantation. Full article
Show Figures

Figure 1

19 pages, 11017 KB  
Article
Functional Recovery by Transplantation of Human iPSC-Derived A2B5 Positive Neural Progenitor Cell After Spinal Cord Injury in Mice
by Yiyan Zheng, Xiaohui Chen, Ping Bu, Haipeng Xue, Dong H. Kim, Hongxia Zhou, Xugang Xia, Ying Liu and Qilin Cao
Int. J. Mol. Sci. 2025, 26(18), 8940; https://doi.org/10.3390/ijms26188940 - 13 Sep 2025
Viewed by 641
Abstract
Human induced pluripotent stem cells (hiPSCs) hold great potential for patient-specific therapies. Transplantation of hiPSC-derived neural progenitor cells (NPCs) is a promising reparative strategy for spinal cord injury (SCI), but clinical translation requires efficient differentiation into desired neural lineages and purification before transplantation. [...] Read more.
Human induced pluripotent stem cells (hiPSCs) hold great potential for patient-specific therapies. Transplantation of hiPSC-derived neural progenitor cells (NPCs) is a promising reparative strategy for spinal cord injury (SCI), but clinical translation requires efficient differentiation into desired neural lineages and purification before transplantation. Here, differentiated hiPSCs—reprogrammed from human skin fibroblasts using Sendai virus-mediated expression of OCT4, SOX2, KLF4, and C-MYC—into neural rosettes expressing SOX1 and PAX6, followed by neuronal precursors (β-tubulin III+/NESTIN+) and glial precursors (GFAP+/NESTIN+). Both neuronal and glial precursors expressed the A2B5 surface antigen. A2B5+ NPCs, purified by fluorescence-activated cell sorting (FACS), proliferated in vitro with mitogens, and differentiated into mature neurons and astrocytes under lineage-specific conditions. Then, NOD-SCID mice received a T9 contusion injury followed by transplantation of A2B5+ NPCs, human fibroblasts, or control medium at 8 days post-injury. At two months, grafted NPCs showed robust survival, progressive neuronal maturation (β-tubulin III+→doublecortin+→NeuN+), and astrocytic differentiation (GFAP+), particularly in spared white matter. Transplantation significantly increased spared white matter volume and improved hindlimb locomotor recovery, with no teratoma formation observed. These results demonstrate that hiPSC-derived, FACS-purified A2B5+ NPCs can survive, differentiate into neurons and astrocytes, and enhance functional recovery after SCI. This approach offers a safe and effective candidate cell source for treating SCI and potentially other neurological disorders. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Spinal Cord Injury and Repair)
Show Figures

Figure 1

34 pages, 17016 KB  
Article
Investigation of the Expression, Localization, and Acidosis-Associated Conformational Changes in Connexin 43 in Traumatic Brain Injury with the Development of a Neural Network Model for Assessing Systemic Inflammation
by Chizaram Nwosu, Evgeniya Kirichenko, Stanislav Bachurin, Mikhail Petrushan, Alexey Ermakov, Rozaliia Nabiullina, Marya Kaplya, Alexander Logvinov and Stanislav Rodkin
Int. J. Mol. Sci. 2025, 26(18), 8855; https://doi.org/10.3390/ijms26188855 - 11 Sep 2025
Viewed by 400
Abstract
Traumatic brain injury (TBI) is one of the most common forms of neurotrauma, accompanied by significant disruptions in neuronal homeostasis and intercellular communication. A key protein involved in these processes is connexin 43 (Cx43), which facilitates the formation of gap junctions in the [...] Read more.
Traumatic brain injury (TBI) is one of the most common forms of neurotrauma, accompanied by significant disruptions in neuronal homeostasis and intercellular communication. A key protein involved in these processes is connexin 43 (Cx43), which facilitates the formation of gap junctions in the astrocytic network. In this study, using confocal and immunofluorescence microscopy, ultrastructural analysis, and molecular modeling, we investigated the dynamics of Cx43 expression and structural changes in neuroglia during various post-traumatic periods following TBI. It was shown that in the acute phase, 24 h post-injury, there is a reduction in Cx43 expression, accompanied by apoptotic neuronal degradation, disruption of nuclear NeuN localization, and destruction of cellular ultrastructure. By 7 days post-injury, a significant increase in Cx43 levels was observed, along with the formation of protein aggregates associated with pronounced reactive astrogliosis. Peripheral blood analysis revealed persistent neutrophilia, lymphopenia, and reduced monocyte levels, reflecting a systemic inflammatory response and immunosuppression, which was corroborated by a custom-trained neural network-based computer vision model. Linear regression and correlation analyses further identified a strong positive association between normalized monocyte levels and Cx43 expression, a moderate negative correlation with lymphocytes, and no significant correlation with neutrophils. Using a custom-built computer vision model, we confirmed these hematological trends and detected subtle changes, such as early increases in platelet counts, that were not captured by manual evaluation. The model demonstrated strong performance in classifying common blood cell types and proved to be a valuable tool for monitoring dynamic post-traumatic shifts in blood. Molecular dynamics modeling of Cx43 identified a pH-dependent mechanism of conformational reorganization under post-traumatic acidosis, mediated by the interaction between protonated His142 and Glu103. This mechanism mimics the structural consequences of the pathogenic E103K mutation and may play a critical role in the neurotoxic effects of Cx43 in TBI. These findings highlight the complexity of Cx43 regulation under traumatic conditions and its potential significance as a target for neuroprotective therapy. Full article
(This article belongs to the Special Issue The Function of Glial Cells in the Nervous System: 2nd Edition)
Show Figures

Figure 1

18 pages, 10575 KB  
Article
Generation of Active Neurons from Mouse Embryonic Stem Cells Using Retinoic Acid and Purmorphamine
by Ruby Vajaria, DeAsia Davis, Francesco Tamagnini, Duncan G. G. McMillan, Nandini Vasudevan and Evangelos Delivopoulos
Int. J. Mol. Sci. 2025, 26(17), 8372; https://doi.org/10.3390/ijms26178372 - 28 Aug 2025
Viewed by 536
Abstract
Multiple differentiation protocols have emerged in recent years, producing neurons with diverse morphologies, gene and protein expression profiles, and functionality. Many of these differentiation techniques require months of culture and the use of expensive growth factors. Most importantly, the derived neurons usually do [...] Read more.
Multiple differentiation protocols have emerged in recent years, producing neurons with diverse morphologies, gene and protein expression profiles, and functionality. Many of these differentiation techniques require months of culture and the use of expensive growth factors. Most importantly, the derived neurons usually do not exhibit any electrical activity. This limits the value of the protocol as a tool for engineering and investigating neural networks. Here, we describe an efficacious method for differentiating mouse embryonic stem cells into functional neurons. CGR8 cells were neurally induced via the simultaneous application of retinoic acid and purmorphamine. The derived cells expressed neuronal (TUJ1 and NeuN) and synaptic (GAD2, PSD-95, Synaptophysin, and VGLUT1) markers. During whole-cell recordings, neurons exhibited inward and outward currents, likely caused by fast-inactivating voltage-gated potassium channels. Upon current injection, miniature action potentials were also recorded. The efficient generation of diverse subtypes of functional neurons can be a useful tool in fundamental investigations of neural network activity and translational studies. Full article
(This article belongs to the Special Issue Neural Stem Cells: Latest Applications and Future Perspectives)
Show Figures

Figure 1

28 pages, 5633 KB  
Article
Investigation into Efficacy and Mechanisms of Neuroprotection of Ashwagandha Root Extract and Water-Soluble Coenzyme Q10 in a Transgenic Mouse Model of Alzheimer’s Disease
by Caleb Vegh, Gabrielle Walach, Keanna Dube, Bromleigh Dobson, Rohan Talukdar, Darcy Wear, Hasana Jayawardena, Kaitlyn Dufault, Lauren Culmone, Subidsa Srikantha, Iva Okaj, Rachel Huggard, Jerome Cohen and Siyaram Pandey
Nutrients 2025, 17(16), 2701; https://doi.org/10.3390/nu17162701 - 20 Aug 2025
Viewed by 1147
Abstract
Background: Alzheimer’s Disease (AD) is one of the most prevalent neurodegenerative disorders and the most common form of dementia. Although current treatments examine disease progression, many have side effects and primarily target symptomatic relief as opposed to halting further neurodegeneration. Objective: The current [...] Read more.
Background: Alzheimer’s Disease (AD) is one of the most prevalent neurodegenerative disorders and the most common form of dementia. Although current treatments examine disease progression, many have side effects and primarily target symptomatic relief as opposed to halting further neurodegeneration. Objective: The current study aims to determine the neuroprotective effects of water-soluble coenzyme Q10 (Ubisol-Q10) and an ethanolic Ashwagandha extract (E-ASH) on a transgenic mouse model of AD. Methods: A variety of immunofluorescence staining of biomarkers was conducted to assess mechanisms commonly implicated in the disease. Additionally, spatial and non-spatial memory tests evaluated cognitive functions at two timepoints throughout the progression of the disease. Results: A substantial reduction in microglial activation and amyloid-β (Aβ) plaques when treated with a combination of natural health products (NHPs), Ubisol-Q10 and E-ASH. Moreover, activation of autophagy was upregulated in both the Ubisol-Q10 and combination (Ubisol-Q10+E-ASH given as a combined “Tonic” solution) groups. Oxidative stress was decreased across treated groups, while astrocyte activation was elevated in both the E-ASH and Tonic group. The Tonic group expressed an elevation in the fluorescent intensity of neuronal nuclei (NeuN) and brain-derived neurotrophic factor (BDNF) levels. Interestingly, treatment with E-ASH and Ubisol-Q10 enhanced synaptic vesicle formation compared to controls. Pre-mortem memory tests revealed the treatments to be effective at preserving cognitive abilities. Conclusions: Based on these findings, the combination of E-ASH and Ubisol-Q10 may effectively mitigate the various mechanisms implicated in AD and ultimately prevent further disease progression. Full article
Show Figures

Figure 1

18 pages, 2683 KB  
Article
Aptamer-CRISPR/Cas12a-Based Lateral Flow Technique for Visualized Rapid Detection of Endogenous Damage Factor Neu5Gc in Red Meat
by Yuxi Guo, Honglin Ren, Han Wang, Xuepeng Duan, Shuaihao Qi, Xi Yang, Chunyi Shangguan, Haosong Li, Yansong Li, Pan Hu, Qiang Lu and Shiying Lu
Foods 2025, 14(16), 2879; https://doi.org/10.3390/foods14162879 - 19 Aug 2025
Viewed by 663
Abstract
The N-glycolylneuraminic acid (Neu5Gc), a major salivary acid molecule found on the cell surface of animals such as pigs, cows, and sheep, can be metabolically incorporated into the body through consumption of animal-derived foods like red meat. This leads to an immune response [...] Read more.
The N-glycolylneuraminic acid (Neu5Gc), a major salivary acid molecule found on the cell surface of animals such as pigs, cows, and sheep, can be metabolically incorporated into the body through consumption of animal-derived foods like red meat. This leads to an immune response and chronic inflammation in individuals who do not naturally produce Neu5Gc, including humans and poultry, further increasing the risk of cancer. The trans-cleavage activity of Cas12a is activated by the recognition of the target aptamer by the crRNA, resulting in the cleavage of the dual-labeled probe. By combining this with immunochromatographic techniques, we established a chromatographic test strip assay that allows immediate on-site detection of Neu5Gc contamination in non-red meat samples devoid of Neu5Gc. Further optimization enabled specific detection within 25 min with a minimum detectable limit of 10 ng/mL. These analyses successfully detected the spiked samples and actual samples containing Neu5Gc. The developed lateral flow test strips based on aptamer-Cas12a can be utilized for detecting Neu5Gc contamination in non-red meat food products, animal bioproducts, and poultry feeds. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

13 pages, 6532 KB  
Article
Comparative Analysis of Davidson and Glyoxal Fixatives on Autofluorescence and Immunolabeling in Medaka (Oryzias latipes) Tissues
by Li Xiao, Eriko Sato, Ryoji Ide, Naohiro Shimamura, Chikako Saiki and Nobuhiko Miwa
Biomedicines 2025, 13(8), 2002; https://doi.org/10.3390/biomedicines13082002 - 18 Aug 2025
Cited by 1 | Viewed by 655
Abstract
Background: Fixation influences the quality of staining across species, especially in neuroscience, where accurate visualization of neuronal structures and protein localization is crucial for understanding brain function and pathology. This study compared two commonly used fixatives—9% glyoxal (G-fix) and Davidson’s solution (D-fix)—regarding [...] Read more.
Background: Fixation influences the quality of staining across species, especially in neuroscience, where accurate visualization of neuronal structures and protein localization is crucial for understanding brain function and pathology. This study compared two commonly used fixatives—9% glyoxal (G-fix) and Davidson’s solution (D-fix)—regarding their effects on autofluorescence, immunolabeling specificity, and histological quality in medaka brain tissue. Methods: Mixed-sex medaka from five strains were fixed with either G-fix or D-fix. Autofluorescence was assessed in posterior bodies and brain tissues, including sections stained with fluorescently conjugated secondary antibodies alone. Tissues were also injected with fluorescent dyes or immunolabeled for neuronal markers (PGP9.5, NeuN, and NCAM) using fluorescent secondary antibodies. Hematoxylin and eosin (H&E) staining and immunohistochemistry were used to evaluate tissue morphology and chromogenic antigen detection. Results: Both fixatives induced autofluorescence: D-fix enhanced blue signals, while G-fix increased green and red fluorescence. These autofluorescence levels were significantly weaker than those from fluorescent dyes or PGP9.5 immunolabeling. Posterior body tissue showed patterns similar to deparaffinized brain sections, supporting its use for pre-screening fixation. G-fix yielded more neuron-specific PGP9.5 staining, whereas D-fix showed broader signal distribution. NeuN and NCAM were not detected, likely due to antibody incompatibility. PGP9.5 was undetectable by immunohistochemistry, while D-fix provided superior H&E staining quality. Conclusions: Although both fixatives induced autofluorescence, their signals were weaker than those of conventional dyes and antibodies. Glyoxal improved specificity for neuronal immunofluorescence, while Davidson enhanced histological detail. These findings provide practical guidance for optimizing fixation strategies in medaka-based neuroscience and histopathological research. Full article
Show Figures

Figure 1

20 pages, 2361 KB  
Article
Abelmoschus esculentus Ameliorates Cognitive Impairment in Hyperlipidemic ApoE−/− Mice via Modulation of Oxidative Stress and Neuronal Differentiation
by Chiung-Huei Peng, Hsin-Wen Liang, Chau-Jong Wang, Chien-Ning Huang and Huei-Jane Lee
Antioxidants 2025, 14(8), 955; https://doi.org/10.3390/antiox14080955 - 4 Aug 2025
Viewed by 719
Abstract
Cardiovascular disease (CVD) and dementia may share common pathogenic factors such as atherosclerosis and hyperlipoproteinemia. Dyslipidemia-induced oxidative stress contributes to dementia comorbidity in CVD. Abelmoschus esculentus (AE, okra) potentiates in alleviating hyperlipidemia and diabetes-related cognitive impairment. This study evaluated the effects of AE [...] Read more.
Cardiovascular disease (CVD) and dementia may share common pathogenic factors such as atherosclerosis and hyperlipoproteinemia. Dyslipidemia-induced oxidative stress contributes to dementia comorbidity in CVD. Abelmoschus esculentus (AE, okra) potentiates in alleviating hyperlipidemia and diabetes-related cognitive impairment. This study evaluated the effects of AE in hyperlipidemic ApoE−/− mice treated with streptozotocin (50 mg/kg) and fed a high-fat diet (17% lard oil, 1.2% cholesterol). AE fractions F1 or F2 (0.65 mg/kg) were administered for 8 weeks. AE significantly reduced serum LDL-C, HDL-C, triglycerides, and glucose, improved cognitive and memory function, and protected hippocampal neurons. AE also lowered oxidative stress markers (8-hydroxy-2′-deoxyguanosine, 8-OHdG) and modulated neuronal nuclei (NeuN) and doublecortin (DCX) expression. In vitro, AE promoted neurite outgrowth and neuronal differentiation in retinoic acid (RA)-differentiated human SH-SY5Y cells under metabolic stress (glucose and palmitate), alongside the upregulation of heme oxygenase-1 (HO-1), Nuclear factor-erythroid 2-related factor 2 (Nrf2), and brain-derived neurotrophic factor (BDNF). These findings suggest AE may counter cognitive decline via oxidative stress regulation and the enhancement of neuronal differentiation. Full article
Show Figures

Graphical abstract

16 pages, 1850 KB  
Article
Effect of Biochar-Coated Urea on Soil Nitrogen, Plant Uptake, and Sweet Corn Yield in Sandy Soil
by Sa’adah Shofiati, Gabryna Auliya Nugroho, Zaenal Kusuma and Syahrul Kurniawan
Nitrogen 2025, 6(3), 61; https://doi.org/10.3390/nitrogen6030061 - 28 Jul 2025
Viewed by 957
Abstract
The low nitrogen-use efficiency (NUE) in sandy soils, due to high porosity and poor nutrient retention, necessitates proper management in fertilization. This study aims to evaluate the effect of biochar-coated urea (BCU) with different coating thicknesses and nitrogen doses on soil nitrogen content, [...] Read more.
The low nitrogen-use efficiency (NUE) in sandy soils, due to high porosity and poor nutrient retention, necessitates proper management in fertilization. This study aims to evaluate the effect of biochar-coated urea (BCU) with different coating thicknesses and nitrogen doses on soil nitrogen content, nitrogen uptake, NUE, growth, and yield of sweet corn in sandy soil. The experiment used a factorial randomized block design with two factors, including biochar coating thicknesses (i.e., 14% and 29%) and fertilization doses (i.e., 50%, 100%, 150%, 200%, and 250%). The results showed that the 29% biochar coating thickness led to 9.9–21.3% higher plant height, N uptake, and N-use efficiency, but it led to 22.8% lower yield, as compared to the 14% biochar coating thickness. Additionally, the application of BCU doses of 100% and 150% (~161 and 241.5 kg N/ha) led to 9.2–97.3% higher maize growth, yield, N uptake, and NEU as compared to the other doses (i.e., 50%, 100%, 250%). This study confirmed that the combination of a 29% biochar coating thickness with 150% of the recommended BCU dose (~241.5 kg N/ha) was the best combination, resulting in the highest N uptake, growth, and yield of maize. Full article
Show Figures

Figure 1

19 pages, 8295 KB  
Article
Melatonin as an Alleviator in Decabromodiphenyl Ether-Induced Aberrant Hippocampal Neurogenesis and Synaptogenesis: The Role of Wnt7a
by Jinghua Shen, Lu Gao, Jingjing Gao, Licong Wang, Dongying Yan, Ying Wang, Jia Meng, Hong Li, Dawei Chen and Jie Wu
Biomolecules 2025, 15(8), 1087; https://doi.org/10.3390/biom15081087 - 27 Jul 2025
Viewed by 832
Abstract
Developmental exposure to polybrominated diphenyl ethers (PBDEs), which are commonly used as flame retardants, results in irreversible cognitive impairments. Postnatal hippocampal neurogenesis, which occurs in the subgranular zone (SGZ) of the dentate gyrus, is critical for neuronal circuits and plasticity. Wnt7a-Frizzled5 (FZD5) is [...] Read more.
Developmental exposure to polybrominated diphenyl ethers (PBDEs), which are commonly used as flame retardants, results in irreversible cognitive impairments. Postnatal hippocampal neurogenesis, which occurs in the subgranular zone (SGZ) of the dentate gyrus, is critical for neuronal circuits and plasticity. Wnt7a-Frizzled5 (FZD5) is essential for both neurogenesis and synapse formation; moreover, Wnt signaling participates in PBDE neurotoxicity and also contributes to the neuroprotective effects of melatonin. Therefore, we investigated the impacts of perinatal decabromodiphenyl ether (BDE-209) exposure on hippocampal neurogenesis and synaptogenesis in juvenile rats through BrdU injection and Golgi staining, as well as the alleviation of melatonin pretreatment. Additionally, we identified the structural basis of Wnt7a and two compounds via molecular docking. The hippocampal neural progenitor pool (Sox2+BrdU+ and Sox2+GFAP+cells), immature neurons (DCX+) differentiated from neuroblasts, and the survival of mature neurons (NeuN+) in the dentate gyrus were inhibited. Moreover, in BDE-209-exposed offspring rats, it was observed that dendritic branching and spine density were reduced, alongside the long-lasting suppression of the Wnt7a-FZD5/β-catenin pathway and targeted genes (Prox1, Neurod1, Neurogin2, Dlg4, and Netrin1) expression. Melatonin alleviated BDE-209-disrupted memory, along with hippocampal neurogenesis and dendritogenesis, for which the restoration of Wnt7a-FZD5 signaling may be beneficial. This study suggested that melatonin could represent a potential intervention for the cognitive deficits induced by PBDEs. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

25 pages, 4296 KB  
Article
StripSurface-YOLO: An Enhanced Yolov8n-Based Framework for Detecting Surface Defects on Strip Steel in Industrial Environments
by Haomin Li, Huanzun Zhang and Wenke Zang
Electronics 2025, 14(15), 2994; https://doi.org/10.3390/electronics14152994 - 27 Jul 2025
Cited by 1 | Viewed by 798
Abstract
Recent advances in precision manufacturing and high-end equipment technologies have imposed ever more stringent requirements on the accuracy, real-time performance, and lightweight design of online steel strip surface defect detection systems. To reconcile the persistent trade-off between detection precision and inference efficiency in [...] Read more.
Recent advances in precision manufacturing and high-end equipment technologies have imposed ever more stringent requirements on the accuracy, real-time performance, and lightweight design of online steel strip surface defect detection systems. To reconcile the persistent trade-off between detection precision and inference efficiency in complex industrial environments, this study proposes StripSurface–YOLO, a novel real-time defect detection framework built upon YOLOv8n. The core architecture integrates an Efficient Cross-Stage Local Perception module (ResGSCSP), which synergistically combines GSConv lightweight convolutions with a one-shot aggregation strategy, thereby markedly reducing both model parameters and computational complexity. To further enhance multi-scale feature representation, this study introduces an Efficient Multi-Scale Attention (EMA) mechanism at the feature-fusion stage, enabling the network to more effectively attend to critical defect regions. Moreover, conventional nearest-neighbor upsampling is replaced by DySample, which produces deeper, high-resolution feature maps enriched with semantic content, improving both inference speed and fusion quality. To heighten sensitivity to small-scale and low-contrast defects, the model adopts Focal Loss, dynamically adjusting to sample difficulty. Extensive evaluations on the NEU-DET dataset demonstrate that StripSurface–YOLO reduces FLOPs by 11.6% and parameter count by 7.4% relative to the baseline YOLOv8n, while achieving respective improvements of 1.4%, 3.1%, 4.1%, and 3.0% in precision, recall, mAP50, and mAP50:95. Under adverse conditions—including contrast variations, brightness fluctuations, and Gaussian noise—SteelSurface-YOLO outperforms the baseline model, delivering improvements of 5.0% in mAP50 and 4.7% in mAP50:95, attesting to the model’s robust interference resistance. These findings underscore the potential of StripSurface–YOLO to meet the rigorous performance demands of real-time surface defect detection in the metal forging industry. Full article
Show Figures

Figure 1

20 pages, 3857 KB  
Article
Temporal and Sex-Dependent N-Glycosylation Dynamics in Rat Serum
by Hirokazu Yagi, Sachiko Kondo, Reiko Murakami, Rina Yogo, Saeko Yanaka, Fumiko Umezawa, Maho Yagi-Utsumi, Akihiro Fujita, Masako Okina, Yutaka Hashimoto, Yuji Hotta, Yoichi Kato, Kazuki Nakajima, Jun-ichi Furukawa and Koichi Kato
Int. J. Mol. Sci. 2025, 26(15), 7266; https://doi.org/10.3390/ijms26157266 - 27 Jul 2025
Viewed by 783
Abstract
We conducted systematic glycomic and glycoproteomic profiling to characterize the dynamic N-glycosylation landscape of rat serum, with particular focus on sex- and time-dependent variations. MALDI-TOF-MS analysis revealed that rat serum N-glycans are predominantly biantennary, disialylated complex-type structures with extensive O-acetylation [...] Read more.
We conducted systematic glycomic and glycoproteomic profiling to characterize the dynamic N-glycosylation landscape of rat serum, with particular focus on sex- and time-dependent variations. MALDI-TOF-MS analysis revealed that rat serum N-glycans are predominantly biantennary, disialylated complex-type structures with extensive O-acetylation of Neu5Ac residues, especially in females. LC-MS/MS-based glycoproteomic analysis of albumin/IgG-depleted serum identified 87 glycoproteins enriched in protease inhibitors (e.g., serine protease inhibitor A3K) and immune-related proteins such as complement C3. Temporal analyses revealed stable sialylation in males but pronounced daily fluctuations in females, suggesting hormonal influence. Neu5Gc-containing glycans were rare and mainly derived from residual IgG, as confirmed by glycomic analysis. In contrast to liver-derived glycoproteins, purified IgG exhibited Neu5Gc-only sialylation without O-acetylation, underscoring distinct sialylation profiles characteristic of B cell-derived glycoproteins. Region-specific glycosylation patterns were observed in IgG, with the Fab region carrying more disialylated structures than Fc. These findings highlight cell-type and sex-specific differences in sialylation patterns between hepatic and immune tissues, with implications for hormonal regulation and biomarker research. This study provides a valuable dataset on rat serum glycoproteins and underscores the distinctive glycosylation features of rats, reinforcing their utility as model organisms in glycobiology and disease research. Full article
(This article belongs to the Special Issue Glycobiology of Health and Diseases)
Show Figures

Figure 1

22 pages, 1822 KB  
Article
Increased Concentration of Anti-Egg Albumin Antibodies in Cerebrospinal Fluid and Serum of Patients with Alzheimer’s Disease—Discussion on Human Serpins’ Similarity and Probable Involvement in the Disease Mechanism
by Dionysia Amanatidou, Magdalini Tsolaki, Vasileios Fouskas, Ioannis Gavriilidis, Maria Myriouni, Anna Anastasiou, Efthimia Papageorgiou, Diona Porfyriadou, Zoi Parcharidi, Eleftheria Papasavva, Maria Fili and Phaedra Eleftheriou
Biomolecules 2025, 15(8), 1085; https://doi.org/10.3390/biom15081085 - 27 Jul 2025
Viewed by 1025
Abstract
Alzheimer’s Disease (AD) is a multifactorial process. Amyloid plaque formation constitutes the main characteristic of the disease. Despite the identification of numerous factors associated with AD, the mechanism remains unclear in several aspects. Disturbances in intestinal and blood–brain barrier (BBB) penetration, observed in [...] Read more.
Alzheimer’s Disease (AD) is a multifactorial process. Amyloid plaque formation constitutes the main characteristic of the disease. Despite the identification of numerous factors associated with AD, the mechanism remains unclear in several aspects. Disturbances in intestinal and blood–brain barrier (BBB) penetration, observed in AD, may facilitate immunologic response to food-derived antigens. In the present study, antibodies against egg albumin, bovine-casein, and N-Glycolyl-Neuraminic acid (Neu5Gc) were measured in the cerebrospinal fluid (CSF) and serum of the patients using an enzyme-linked immunosorbent assay (ELISA). Zero anti-Neu5Gc and low concentrations of anti-casein antibodies were detected. Increased anti-native egg albumin antibodies were present in the serum of patients of all stages with 65% positivity (p < 0.001) in mild disease and a higher percentage in females (81.9%, p < 0.001). Lower serum positivity to anti-denatured egg albumin antibodies was observed, showing a gradual increase with severity and higher prevalence also in females. In the CSF, anti-native and anti-denatured egg albumin antibodies were mainly observed in severely ill patients with accumulative positivity to either antigen, reaching 61.8% in severe vs. 15% in mild disease (p < 0.001). Increased values were mainly observed in males. Anti-egg albumin antibodies may be implicated in the disease mechanism through sequence/structural similarity with human proteins, mainly serpins, and it would be worth consideration in further investigations and therapeutic strategies. Full article
Show Figures

Figure 1

Back to TopTop